The Big Happy Family of System Architecture Approaches

Chris Phillips
14 Jun 2018
Agenda

- Introduction
- Overview
- Key Definitions
- System Architecture Overview
- Architectural Approaches
- Integrating Architectural Approaches
- Conclusion
“All architecture is great architecture after sunset; perhaps architecture is really a nocturnal art, like the art of fireworks.” – G.K. Chesterton

Source: https://www.gocomics.com/calvinandhobbes/2012/05/24/
Introduction

- Systems Engineer – current focus on System Architecting
- Education:
 - BS – Engineering (Electrical Concentration / Specialty) – Colorado School of Mines - 2007
 - MS – Applied Systems Engineering – Georgia Institute of Technology – 2017
- Member of Coast Guard Auxiliary
Large focus within Systems Engineering on the development and use of descriptive modeling tools, methods, techniques, etc.

Descriptive modeling typically focuses on descriptive modeling of a system’s architecture.

Various paradigms / approaches have been developed for describing system architectures:
 - Each approach is suited for a different purpose.

For large, complex systems, integrating multiple approaches is typically required.

Purpose of this presentation is to introduce main approaches and discuss methods for integrating them.
Key Definitions / Terms

- **Architecture** – the fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution [1, 2]

- **Architecture Description** – a collection of artifacts or work products used to describe an architecture [3]

- **Architecture Framework** – describes the principles and practices used to develop an architecture description

- **Architecture Model** – a representation of a model which typically consists of numerous constituent models including descriptive models, analytical models, requirements models, etc.

- **Metamodel** – “Model of the model”. Describes the conventions, relationships, etc. used within an architecture model

 [1]: ANSI/IEEE 1471-2000
 [3]: IEEE 1471-2007 Conceptual Framework
System Architecture Overview

“Every System has [at least one] architecture” [1]
- True whether documented or not

An architectural description includes: [1]
- Identification of stakeholders
- Architectural concerns
- Architectural viewpoints
- Architectural views
- Architectural models

NOTE: Architecture, Architectural Description, and Architecture Model often interchangeable (especially if using a Model-Based approach)

[1]: IEEE 1471-2007 Conceptual Framework for Architectural Description
Architectural Approaches

Numerous approaches exist:
- Enterprise
- Service-oriented
- Solution-oriented
- Product-line
- IT System
- Etc.
Approach 1: Enterprise Architecture

- Description: “well-defined practice for conducting enterprise analysis, design, planning, and implementation, using a holistic approach at all times, for the successful development and execution of strategy.” [1]

- Highly abstract / conceptual. Describes system elements in terms of provided capabilities and use within an operational context

- Useful for integrating large system-of-systems especially within broader federation of systems

- Examples: DoDAF, MoDAF
Approach 1 Example: Universal Core

Approach 2: Solution-Oriented Architecture

- Description: considered the “typical” architecture for a system designed to meet a particular need. Easily mapped to the SE V Model. Describes system from perspectives of requirements, functionality, and / or structure.

- Highly tailorable to address multiple levels of abstraction in all three domains
 - Example: Conceptual (Use Cases / Operational) -> Logical (Desired Functionality) -> Physical (Actual Functionality)

- Useful for describing standalone systems.

- Numerous examples
Approach 2 Example: Basic CubeSat Flight System Framework

Approach 3: Service-Oriented Architecture

- Description: A set of components which can be invoked, and whose interface descriptions can be published and discovered [World Wide Web Consortium]

- Also called net-centric. Treats individual components as black boxes that execute functions / provide data & services

- Most typically used for software-intensive systems w/ strong object-oriented design. Can also be used for hardware-oriented system-of-systems especially if kept at conceptual / abstract level.

- Example: World Wide Web
Approach 4: Product-line Architecture

- Description: Describes a product model or series of product models based on the desire to provide a generically applicable solution or set of solutions to a range of problems.

- Typically very concrete – focus is on describing a solution for use in other models which may be more abstract

- Architecture serves same / similar purpose as data sheet

- Relatively new approach – still maturing practices & techniques

- Examples: Automobile, COTS equipment
Product-Line Approach: Vision

Source: http://www.productlineengineering.com/concepts/ple-defined.html
Approach 5: IT Architecture

- Description: describes a set of resources that will be deployed to provide a required set of capabilities.
- Combines aspects of other approaches as required.
- Treats software & communications as primary interface mechanism. Hardware components and interfaces typically considered peripheral.
- Examples: Network deployment diagrams.
Example: IT Architecture
Architecture Approaches - Selection

Each project / program and organization typically selects an overall approach at inception.

If required, overall framework is setup / implemented:
- Can be done at start or as time progresses
- Ultimate result is Architecture Framework and Metamodel

Choice driven by various factors:
- Contractual Requirements
- Purpose of the Architecture
- Business Model
- Personal Preferences
- Best Practices (internal or external)
- Architectural characteristics (Standalone or SoS, complexity, complication, etc.)
Integrating Architecture Approaches

- Goal of MBSE: use models to describe and understand systems
 - Complex systems typically utilize federation of models within MBSE approach
 - Descriptive (Architecture) Models within federation may use numerous approaches & styles

- Challenge is to federate model types. Typical examples include:
 - Government / Contractor (Enterprise + Something else)
 - IoT Design Agent (Solution-oriented + Service-oriented [WWW])
 - System designer vs. potential suppliers (Solution-oriented + Product-Line)
Integrating Architecture Approaches – Enterprise with Everything

- Enterprise Architecture goal is to be an integration point
- Enterprise Architecture Frameworks have defined level of high abstraction
 - Individual systems (people, products, etc.) represented as black box
 - Lower-level details can be detailed out in separate architecture descriptions
Integrating Architecture Approaches – Solution-Oriented with Service-Oriented

- Typical approach is to establish top Solution-oriented item up as a Service-providing element
 - Leverages Service-Oriented “Black Box” concepts (similar to Enterprise)
 - Typically easier to detail out internal elements using the solution-oriented approach
 - Can be difficult / burdensome to maintain largely redundant parallel architectures
- Can be leveraged for key requirements & system definition processes:
 - Functional / Use Case Analysis
 - External Interface Definition
- Allows for invocation of behavior from external actors
Integrating Architecture Approaches – Solution-oriented with Product-line

- Area that will need to be addressed soon as Product-line Architecture Concepts mature
 - Challenges arise when performing trade studies, during sustainment / replacement projects, etc.

- Numerous factors
 - Different internal approaches
 - Limited and loose community standards
 - Different goals of each architecture
 - Proprietary / sensitive data (both sides)

- Two main approaches seen to date (not mutually exclusive):
 - Leveraging Domain Cross-cutting relationships
 - Heavy use of Specializations
Solution and Product-line Approaches: Integrating with Domain Cross-Cutting Relationships

- Cross-cutting relationships primarily correlate Requirements, Structure, and Behavior
- Considered relatively weak (shown as dashed line in SysML)
- Also used to tie sub-tier elements of single domain (e.g., Logical & Physical)
Solution and Product-line Approaches: Integrating with Domain Cross-Cutting Relationships

- Example implementation: use of logical & physical domains
- Logical follows solution-oriented principles
- Lower-level items considered definitional / requirements
- Physical uses product line items as though solution-oriented
Solution and Product-line Approaches: Specialization

- A generic representation is present within all domains
- Elements within the Product Line Architecture are created as specializations of the generic element
- Required to provide same basic set of descriptive properties
Solution with Product-Line Architectures: Pros & Cons

Cross-Cutting

Pros:
- Integration across high-priority domains / areas
- Products can be treated as static items in original state across multiple solutions
- Easily understood separation of data between generators / owners

Cons:
- External interfaces (e.g., analytical models) may require additional wrappers built over time

Specializations

Pros:
- Continued Plug-and-play integration across model in all domains / areas
- Creates apples-to-apples comparison mechanisms

Cons:
- Additional work to initially integrate
- Risk of information overload (all information in one place)
- Model maintenance activities may require maintenance of obsolete options
- Product line architecture variants as each solution’s architecture developed
Conclusion / Summary

- System Architecture continues to be combination of art and science
- As practice of System Architecting matures, various approaches may be used
- Approaches can be integrated in various ways depending on types & desired strength of relationships
- Integrating Product-line Architectures presents key set of challenges and opportunities
That's all Folks!