
  

   

 

Configuration Management of Sets of Links in a 
Federated Tool Environment

 
Adriana D’Souza 

Airbus 
Aerospace Avenue, Filton 

BS34 7PA, Bristol, UK 
+44 7793905547 

adriana.dsouza@airbus.com 

 
David Hetherington 

SSI 
1221 Bowers St. #50 

Birmingham, MI 48012, USA 
+1 844 797 8369 

david_hetherington@ieee.org 
 
 

Géza Kulcsár 
IncQuery 

1065 Budapest, Nagymező u. 44., Hungary 
+36 30 467 9890 

geza.kulcsar@incquerylabs.com 
 
 

 
Bryan Orozco 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Dr, 
Pasadena, CA 91011, USA 

+1 818 354 4321 
bryan.d.orozco@jpl.nasa.gov 

Aleksander Przybyło 
Boeing 

3003 W Casino Rd, 
Everett, WA 98204, USA 

+1 425 418 2667 
aleksander.przybylo2@boeing.com 

István Ráth 
IncQuery 

1065 Budapest, Nagymező u. 44., Hungary 
+36 30 467 9890 

istvanrath@incquerylabs.com 

 

Copyright © 2024 by Adriana D’Souza, David Hetherington, Géza Kulcsár, Bryan Orozco, Aleksander Przybyło, István Ráth. Permission granted 
to INCOSE to publish and use. 

Abstract. In the era of document-centric systems engineering, large organizations developing complex 
systems had practical methods of associating drawings, specifications, requirements and other information 
with each other. Mostly these evolved methods involved part numbers and drawing numbers, although 
sometimes the methods included mundane techniques such as storing drawings in specific drawers in spe-
cific filing cabinets. These manual methods were very labor intensive, did not handle changes gracefully, 
and were somewhat error prone. As computer software and modeling tools began to displace paper draw-
ings and filing cabinets, a “connect and forget” style of linking evolved. We can see this sort of thinking in 
the relationships in UML and SysML, but also in other places such as the use of Universally unique iden-
tifiers (UUIDs) in the XMI file format underlying UML/SysML, the relationships in DOORS and related 
requirements tools, as well as the original architecture of OSLC which depended on URIs embedded in 
design artifacts to establish relationships. While these “click to connect” features provided increased con-
venience compared to the previous manual numbering approaches, these “hard-coded” links have 
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introduced a new set of problems. The root of most of the new problems comes in the difficulty of managing 
this sort of extremely large set of direct links as configuration items in their own right. In a larger system, 
this sort of link set quickly grows to thousands or even millions of links. Managing change, modularity, 
variants, subsystem reuse, and so on all become very difficult in the presence of such a large, unplanned, 
and uncontrolled link set. In this paper, we will review the different approaches to creating and managing 
such sets of links and provide a concise best practices recommendation for the configuration management 
of such sets of links. 

Introduction 
Managing relationships between engineering artifacts is not a new discipline. Engineers have been per-
forming this task for as long as the design of a product could not fit on a single drawing. While the product 
complexity has been growing so have the software system architectures to manage their design. Today, it 
is all but obvious that in order to bring a product to market, engineering data will have to be federated across 
multiple engineering software applications, since no single monolithic tool can handle all the tasks that 
need to be performed. The relationships between the artifacts managed in the different tools in this federated 
architecture are the glue that holds it all together. This paper explores the different mechanisms that exist 
for managing those relationships and discusses pitfalls of each one of them. Before concluding, the paper 
provides a list of critical capabilities a complete engineering data management solution must provide. 

Evolution from Paper/Document Centric to Digital 

Paper/Document-Based Era 
In the document-based engineering world, through decades of lessons learned, best practices have emerged 
to relate content across documents. Picture sheets detailing installation plans call out parts by their base 
number to indicate that any part within the same family (i.e. with a matching base number) can fulfill the 
role regardless or its “dash number” or revision. In digital terms, the actual part number and revision are 
resolved by late binding at the time the part actually gets installed on the final product in the factory. The 
hypothetical link between the picture sheet and the drawing that this method implements would exist be-
tween the picture sheet revision and the object aggregating a hierarchy of all dash numbers and revision. 

Picture sheet
123-1 A

Drawing family
456

Drawing
456-1

Drawing
456-3

Drawing 
revision
456-1 A

Drawing 
revision
456-1 B

Drawing 
revision
456-1 C

Drawing 
revision
456-3 A

 
Figure 1. Managing relationship lifecycles through partial ID references 

The main rationale for using this method is that revising a drawing for a detail part does not change the way 
the part is installed, hence there is no need to update the picture sheet and installation instructions and 
unnecessarily spend countless hours going through engineering change boards. Various processes have 
emerged for instilling semantics into part numbers and revisions (e.g. form-fit-function) that govern the 
business rules for when methods like this can be employed. 



  

   

 

Those methods have not translated well into modern digital tools where engineering data is managed as a 
connected set of uniquely identified digital artifacts. More often than not, making minor changes causes 
ripple effects across the system by reconnecting links and forcing revisions to released artifacts. 

The example described here is a simple one, but things quickly get complex when the relationships involve 
evidence used for certification, artifacts owned by different organizations, etc. The business rules built into 
the lifecycles of the links require establishment of thoughtful data models that support the needs and be-
havior expectations. 

Digital Linking Era 
In the evolution of digital engineering, one of the key challenges has been adapting traditional paper-based 
linking methods to the digital realm. This transformation has been pivotal in managing data relationships 
and ensuring efficient information retrieval and utilization. 

Primary and Foreign Keys in Relational Databases: The initial approach in digital linking mimicked tra-
ditional index systems, utilizing primary and foreign keys in relational databases. This method provided a 
straightforward way to establish relationships between different sets of data. However, it was limited by 
the scope of a single database and often required complex joins for retrieving related information across 
tables. 

Federated Databases and Universally Unique IDs: The advent of federated databases necessitated a shift 
towards universally unique identifiers (UUIDs). This development was driven by the need to reference data 
across multiple, distributed databases. UUIDs offered a more universal solution, enabling data to be 
uniquely identified regardless of its location. An example of such a strategy is elaborated in the subsequent 
Section on Overview of Methods, in the subsection on Smart Numbering. 

Namespace-based Approaches: An alternative to the UUID approach is namespace-based thinking. This 
method involves organizing data into distinct namespaces, each with its own identification scheme. This 
approach aids in disambiguating similar identifiers and allows for more structured data organization. In this 
context, various identification mechanisms have emerged, including fully qualified names, URLs, URIs, 
and even e-mail addresses for specialized purposes. While being easily readable by humans, this comes 
with the drawback of links easily deteriorating or becoming dangling. A general introduction to this kind 
of thinking, focusing on the capacities offered by OSLC and UAF, can, again, be found in the following 
Section, in the subsection on Semantic Understanding of Linked Data. 

Cross-referencing Data Exchange / Serialization: In scenarios involving data structure exchange, the mo-
tivation for cross-referencing shifts towards pointer serialization. This process involves converting pointers 
or references in data structures into a format that can be stored or transmitted, facilitating data exchange 
between different systems or applications. Also related to OSLC and similar uniformization initiatives (see 
above), further details on fostering efficient data exchange scenarios are found under Standard APIs and 
Schemas in the subsequent Section. 

In conclusion, the adaptation of paper-based linking methods to the digital realm has undergone significant 
evolution, driven by the needs of federated databases, data structure exchanges, and the challenges of a 
distributed digital era. Issues such as dangling edges and broken links are common, resulting from the 
deterioration of references over time or changes in the underlying data structures. To address these chal-
lenges, digital thread platforms (e.g. Syndeia (Syndeia, 2023, Bajaj et al., 2017), Smartfacts (Smartfacts, 
2023), IncQuery (IncQuery, 2023), OpenMBEE (OpenMBEE, 2023, Kruse & Blackburn, 2019), etc.) have 
emerged, elevating the status of links to that of first-class citizens. Additionally, modern Product Lifecycle 
Management / Engineering systems (e.g. Polarion, Jama, PTC, etc. – for conceptual details, cf. Configura-
tion Awareness of Linking Capabilities at the end of the subsequent Section) also incorporate powerful 



  

   

 

features to manage traceability links that connect various digital engineering artifacts, like digital thread 
principles. All these platforms adopt a philosophy akin to semantic web technology, inheriting both its 
advantages and limitations, such as costly resolution of links leading to scalability issues, highlighting the 
ongoing need for innovation in digital engineering. 

Overview of Methods 
Multiple methods of maintaining configuration management across federated systems have emerged since 
we started gradually moving towards more digital product data management. Those methods lie on a spec-
trum going from loosely coupled to tightly coupled 

Smart Numbering 
Of all integration methods, referencing based on smart numbering is probably the one that most loosely 
coupled data in a federated set of applications. Rather than creating and maintaining links between the 
different applications, each application references data from other applications by truncating parts of ele-
ment identifiers whose changes it is assumed will not impact the validity of the reference. This is very 
similar to the methods used in paper days described above. 

While this method is very easily established, it doesn’t make use of technological advances that allow more 
flexibility, more efficient relationship traversal, more specificity etc. Also, in practice, this method is often 
abused to easily bypass costly and time-consuming engineering change boards, by “slipping through” major 
changes as minor (e.g. changes that should require a new part number are fast-tracked by changing the 
revision number). 

Linking by Early/Late Binding 
One way to instill more flexibility into linking mechanisms is by controlling when revisions of linked data 
are resolved. Early binding means that the link explicitly and persistently specifies the revision or variant 
of the linked data, while late binding means that the revision or variant is resolved at a specific time (e.g. 
when the product is baselined or when a unit is delivered to a customer). The key difference between late 
binding and simple smart numbering is that with late binding an artifact that specifies the revision or variant 
of the linked element is created and can be preserved for traceability. Early and late binding methods are 
well understood in software engineering and have been used for decades. Systems such as Gradle and Ma-
ven for example allow software developers to specify hard dependencies against a specific version of a 
library or simply use the latest one that is available. Same as in software engineering where we compile the 
source code in order to build a deliverable binary, in manufacturing engineering models and other engi-
neering artifacts need to be baselined in order to establish the set of data that can be delivered to a supplier, 
customer or regulator. 

In Model Based Systems Engineering (MBSE), modular model features in different tools often allow late 
or early binding but rarely both. Also, the capability to establish traceability with the baselined models 
when an early binding method was used is virtually always missing. What this means is that it is impossible 
to answer questions such as “which established baselines are affected by a requirement change?” 

Centralized Configuration 
On the other end of the loosely/tightly coupled spectrum is the centralized configuration method. Essen-
tially, it requires a configuration managed structure that acts as the single index of all configurations in all 



  

   

 

applications. This method (often called configuration hub or hub and spoke) turns engineering applications 
into simple authoring apps and takes away all of their configuration management responsibilities. 

This approach can seem very appealing as, at least in theory, it eliminates all integration hurdles but in 
practice is nearly impossible to implement for multiple reasons which vary from external to internal. The 
primary reason is that the different applications which OEMs use are often developed by competitors who 
refuse to allow their data to be managed by a competing product. Another reason is that it often requires 
the existence of data standards that either do not exist or whose fidelity is insufficient to properly represent 
the data. Finally, within the OEM itself, the data is owned by different organizations or divisions who refuse 
to allow the data they own to be managed by others. 

Smarter Linking 

Smart Numbering 
Smart numbering emerged as a common practice for embedding information about an object into its iden-
tifier. While almost every manufacturing company utilizes smart numbering, there is virtually no standard-
ization on the patterns that should be used to create or decode a part number. On top of identifying where 
in a product structure a part is installed, what material it’s made of etc., it is common to also structure the 
part number in a way that a change in its structure is informative of the type of change that was made to a 
part and its potential impact. As described above in the Paper/Document-Based Era section, linking tech-
nologies can utilize this information to automate link propagation and change event notifications. 

A common challenge with this method is that the smart number patterns are rigid and require multiple 
“decoder rings” due to the lack of standardization. The rigidity can cause year 2K types of issues when an 
insufficient amount of space was given for a piece of data. The lack of standardization can cause confusion, 
for example when parts are collected from different suppliers with different part numbering schemes. 

While smart numbering has been used for decades, it is still evolving, and a lot of research focuses on 
enhancing the effectiveness of its use by both standard bodies (International Organization for Standardiza-
tion, 2022) and individual experts (Dullaart, 2023). 

A major challenge that companies often face when using those methods is deciding which organization will 
own and manage the use of the numbering patterns across the company. This is a key enabler for the con-
figuration management of the set of links for a given system. 

Semantic Understanding of Linked Data 
Open Services for Lifecycle Collaboration (OSLC) aim at connecting data across various platforms using 
a similar approach to the web   



  

   

 

 
Figure 2. OSLC representation (OSLC, 2023) 

Links are defined between RDF files that define in an XML format that predicates for the resource and 
specify the namespaces for the resource types. On one hand it is positive that we have links between various 
tools, however the links are hard wired in the RDF/XML format between the object types.  

One challenge of the basic OSLC design is that it is designed around the peer-to-peer architecture of the 
semantic web. No one is in charge. There is also no inherent concept of a set of links going to a well-defined 
subsystem. Each link is made individually and managed individually. If a manufacturer decides to substitute 
a major end item component, there is no immediately obvious place where the links can be disconnected 
and reattached as a set. Instead, tools that are currently offered to manage large OSLC configurations end 
up having to query and spool all the links into a central database so that queries can be run to see what is 
connected to what. 

The Unified Architecture Framework (UAF) is based on the Unified Modeling Language (UML), Systems 
Modeling Language (SysML), the Unified Profile for the U.S. Department of Defense's Architecture 
Framework (DoDAF) and the U.K.'s Ministry of Defence's Architecture Framework (MoDAF) (UPDM) 
and the North Atlantic Treaty Organization's (NATO) Architecture Framework (NAF). When these military 
requirements were combined with business sector requirements (90% of concepts and themes captured in 
the military frameworks are equally applicable in the commercial domains), the UAF was born which serves 
both commercial and military interests (OMG UAF, 2023). 

The relationships defined in the UAF metamodel are only allowed between predefined element types. This 
is useful as only those types of links are allowed. The instantiation of this link type is then used in the actual 
model. In this way of working the links are standardized and fixed. The modelling can only instantiate the 
links from the generic ones. UAF does have limitations though when connecting UAF elements generated 
in different tools as there is no standard interfaces defined (this is intended to be solved with a future revi-
sion to UAF based on KerML). 

Standard APIs and Schemas 
OpenAPI provides a standard for interactions with HTTP APIs. It gives guidance for creating a specification 
document in which an application can document the HTTP routes available and the structure of the response 
in each route. When an application has a standard OpenAPI specification document, Software Development 
Kits can be automatically generated. Open-Source Systems Engineering Tools like OpenMBEE’s Model 
Management System 4 have benefited from creating OpenAPI Specifications and created Python clients 
from this specification document. While this solution enables communication with one tool, it becomes 



  

   

 

challenging to persist changes across different environments. One of the pitfalls in this approach is the fact 
that each tool implements its own schema. 

Open Services for Lifecycle Collaboration (OSLC) standardized the way in which applications shared data 
with each other. It provided a querying standard for how to retrieve information, as well as a structure for 
how to interpret it. With specified structures such as those in Figure 1, a shared vocabulary was created. 
The interpretation of the data exposed through OSLC was defined by a given “domain”. Domains are spec-
ified by OSLC working groups, such as change management, test management, requirements management 
and configuration management. OSLC created a common way to share information across engineering 
tools. Each resource in OSLC has an RDF representation, allowing for rich data structures. 

The issue lies with many software tools not having OSLC implementations. Enterprise applications such as 
Jira and GitHub rely on their own REST API for the ingress and egress of information. 

Configuration Awareness of Linking Capabilities  
Product Lifecycle Engineering (PLE) has emerged as an efficient method to manage reuse of model con-
tents across multiple product variants in a product line or family. While it greatly helps drive down mainte-
nance cost of model data by decreasing replication, it also introduces major complexities because no two 
tools manage variants the same way. The impact to linking approaches lies in the fact that the linking 
platform is typically not aware of the applicability (range of products on which an element can be used) 
and effectivity (range of products on which an element is used) of the linked element and therefore cannot 
properly assess the level of impact of a change to a linked element. For example, a process specification 
could be linked to hundreds of operations, but those operations may be applicable to a product variant that 
very rarely is ordered by customers. Hence, a change to the process specification may be identified as a 
high impact, when in fact it almost never gets invoked. On the other hand, a process specification linked to 
a single operation may be considered low impact, even though it is linked to an operation performed on 
every single build unit. 

 
Figure 3. Links with Variant Management 

A much more critical issue arises when the links are used for certification or safety assessment of a product. 
A part of a design may satisfy a regulatory requirement but at the same time be an optional component. 
When analyzing the design for completeness of requirement coverage, if the linking platform is not variant 
configuration aware, the analysis will not detect potential issues such as requirements not covered in spe-
cific build units where an option was not selected. 



  

   

 

Position statement 
In the last few years, a multitude of digital thread enabling applications have been released in the market. 
Most of them provide significant improvements in terms of user interfaces and variety of data types that 
can be integrated but very few focus on what actually makes the linking problem hard: maintaining config-
uration management across diverse data sets. For an application to properly address the challenges of link-
ing across a digital thread, it must have the following features: 

• Ability to choose between early and late binding of revisions and variants during the development 
phase 

• Detection of suspect/broken links (i.e. links that need to be reviewed after linked data has been 
revised, deleted or deprecated) with the capability to provide recommendations for replacement 

• Ability to break the chain reaction of change impact by stopping the impact notification propagation 
where the impact stops (e.g. if it has been determined that a requirement change has no effect on a 
function that satisfies the requirement, the owner of the logical component that performs the func-
tion does not need to be notified) 

• Customization of the configuration ownership of data sets, referred to as configuration control 
zones (Scotto d’Apollonia, 2016), including links (e.g. a satisfy link between a function and a re-
quirement can be placed within the configuration control zone of the function). 

• Inspection of past revisions of links including revisions and variants of linked data consistently 
with all reference data 

• Configuration management of the overall set of links in a distributed way (i.e. in the absence of a 
centrally managed global configuration) 

• Promotion of internal model features as external interfaces for the purpose of linking models at 
higher abstraction levels (enables model modularity and reuse and decreases overhead of link man-
agement) 

• Ability to evaluate a link’s status across various internal configuration engines (PLE, variant man-
agement, effectivity etc.) 

Conclusion 
Managing relationships between different engineering artifacts is a crucial and critical capability every 
engineering organization must master. While it is by no means a new discipline or one only applicable to 
the digital era of engineering, there is little consensus on how it should be performed and the tools currently 
available on the market still lack some or most of the features required to address challenges engineers face 
daily. Methods developed during the paper and document centric era have first been applied as-is into the 
digital tools and then, in most cases, missed the opportunities provided by more advanced hardware capa-
bilities and data management evolutions. 

In order to reach their full potential, modern engineering data platforms must evolve to embrace data fed-
eration across multiple disciplines and organizations while maintaining configuration management. Some 
approaches to achieve this may seem good on paper but crumble when put into practice due to the volume 
of changes, variability of the data and number of parties involved. A robust and scalable solution must 
exhibit some characteristics that are listed in this paper. 
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