
www.jamasoftware.com | 1.800.679.30582016 © Jama Software, Inc

Agile Systems Development
In a Medical Environment

www.jamasoftware.com | 1.800.679.3058

Meet Jama

Cary Bryczek

Jama Software

Requirements & Test Management

“Simplify Complex Product
Development”

https://www.jamasoftware.com/

https://www.jamasoftware.com/

www.jamasoftware.com | 1.800.679.3058

Meet Kelly

Kelly Weyrauch

Agile Quality Systems

www.jamasoftware.com | 1.800.679.3058

Agenda (2hrs)
Organizing your Agile Data (1.5 hour)

• Intro

• Mechanisms, Roles, Cadence

• Your System

Agile Reqs (1 hour)

• Taxonomy, Writing Tips, Examples

• Group Exercise – Stories

• Team Review

Transitioning to Agile (1 hour)

• Group Exercise: Transform real examples to Agile

• Team Discussion: Challenges and Barriers

Close and Retrospective (½ hour)

What is Agile?

▪ Industry and FDA participation

▪ FDA Recognized Consensus Standard

AAMI TIR45:2012 Guidance on the Use of AGILE Practices in the Development of

Medical Device Software

www.jamasoftware.com | 1.800.679.3058

The Agile Manifesto

www.jamasoftware.com | 1.800.679.3058

The Agile Manifesto

We are uncovering better ways of developing software by doing it and
helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

Manifesto for Agile Software Development, www.agilemanifesto.org

www.jamasoftware.com | 1.800.679.3058

Principles behind the Agile Manifesto
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4. Business people and developers must work together
daily throughout the project.

5. Build projects around motivated individuals. Give them
the environment and support they need, and trust
them to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Continuous attention to technical excellence  and good

design enhances agility.

10. Simplicity--the art of maximizing the amount  of work not

done--is essential.

11. The best architectures, requirements, and designs emerge

from self-organizing teams.

12. At regular intervals, the team reflects on how  to become

more effective, then tunes and adjusts  its behavior

accordingly.

Manifesto for Agile Software Development, www.agilemanifesto.org

www.jamasoftware.com | 1.800.679.3058

Agile Mechanisms

▪Four Levels

▪Portfolio-Level Epics

▪Large-Solution-Level Capabilities

▪Program-Level Features

▪Team-Level Stories

▪Two Perspectives

▪Customer-Facing, Business Value

▪Solution-Facing, Enablers

Layers / Kinds of Backlog Items
(as defined by the Scaled Agile Framework, SAFe®)

Epics
(Portfolio)

Capabilities
(Large Solution)

Features
(Program)

Stories
(Team)

Responsible Portfolio
Management
Enterprise
Architect (+PM,
+SE)

Solution Management,
Solution Architect
(+PM, +SE)

Product Management
(+PO, +SE)

Product Owner
(+Team)

Provides
Value to

Customers,
Business

“Who” of the Capability,
Customers,
Enterprise Architect,
The Epic

“Who” of the Feature,
Business Owners,
Solution Architect,
The Capability/Epic

“Who” of the Story,
System Architect,
The Feature

Delivered by N/A, delivered
through
Capabilities &
Features

Agile Teams,
System Team,
Specialty Team?

Agile Teams,
System Team

Agile Teams

Delivered
when

Depends - When
all
Capabilities/Featur
es complete? Only
some?

When all Features
complete (1 or more
Increments)

Each Program Increment Each Sprint

Demoed N/A, Demo done
with lower layers

System Demo,
Validation Studies

System Demo Team’s Sprint Demo

Content Lightweight
Business Case

Description & Benefit,
Acceptance Criteria,
Definition Of Done

Description & Benefit,
Acceptance Criteria,
Definition Of Done

Story Pattern,
Acceptance Criteria,
Definition Of Done

▪ SAFe® term: “Enablers”

▪Enabling the “Architectural Runway” upon which customer-
facing value can be delivered.

▪ Infrastructure (Development, Product)

▪ Debt

▪ Spikes (Definition, Technical, Decision)

▪ System Integration

▪ Quality System Satisfaction

▪ …

Solution-Facing Backlog Items

www.jamasoftware.com | 1.800.679.3058

Sprint /

Increment

Definition: a fixed time box (e.g. 2 weeks)

where team build an incremental business

or product functionality.

Purpose:

• Delivers value to customers more

quickly

• Allows faster feedback from customers

• Allows teams to incorporate feedback

and adjust priorities and improve

process

www.jamasoftware.com | 1.800.679.3058

Release

Definition: Traditionally, when value is

delivered to a customer. In Agile, a release

could be anytime.

Examples

• After several sprints and demos to

customers, functionality is packaged

and delivered to production

• After each sprint, developed value is

released to customers

• For mature, continuous integration

organizations, release every time code

is checked in!

www.jamasoftware.com | 1.800.679.3058

Source: http://www.scaledagileframework.com/develop-on-cadence-release-any-time/

Scaled Agile Framework® (SAFe®)

www.jamasoftware.com | 1.800.679.3058

Your System?

ISO 15288 System Life Cycle Processes

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design

System Development Processes

System Design Product Realization

Implement

Adapted from: NASA Systems Engineering Handbook, NASA/SP-2007-6105

Technical Management

Processes

Technical Planning

Requirements Management

Interface Management

Risk Management

Configuration Management

Data Management

The Systems

Engineering Engine

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design Implement

Subsystems We

Integrate With

But Don’t Build

Define

Requirements

Architect

Design

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design Implement

Subsystem

System

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design Implement

Subsystem

Define

Requirements
Verify

Design

Components

We Build

Implement

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design Implement

Subsystem

Define

Stakeholder

Expectations

Validate

Define

Requirements
Verify

Architect Integrate

Design Implement

Subsystem

Define

Requirements

Design

Components

We Buy / Re-Use

Other

Systems

Users,

Stakeholders

What is the System?
And What are the Activities & Deliverables?

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements

Define

Stakeholder

Expectations

Verify

Validate

Architect

Design

Test the

Integration
Integrate

(Assemble)

System

Define

Requirements
Verify

Architect

Define

Stakeholder

Expectations

Validate

Test the

Integration
Integrate

(Assemble)
Design

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements

Define

Stakeholder

Expectations

Verify

Validate

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Device Subsystem Software Subsystem

Hardware Embedded Software Platform Application Software

Code Code

www.jamasoftware.com | 1.800.679.3058

Exercise in Jama

1. Draw a block diagram of your
System.

2. Identify levels of
requirements

3. Identify levels and kinds of
testing

www.jamasoftware.com | 1.800.679.3058

Organizing Information in Jama

Item Type:

• How the types of information that exist in a project are defined and categorized in
Jama (functional requirements, user stories, test cases, etc.)

• Created and/or customized by an Organization Admin

Item:
• A single unit of defined and

organized information a single
functional requirement, non-
functional requirement, or test
case)

www.jamasoftware.com | 1.800.679.3058

Component:

• A structural container used to
organize a project

• Each Component may contain
multiple Sets of items

Set:

• A structural container of like items

• May contain folders, Text Items

www.jamasoftware.com | 1.800.679.3058

Component: Logical subset within a project

May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.

May contain: Components, Sets & Text Items

Set: A grouping of like items

May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set

May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.jamasoftware.com | 1.800.679.3058

Component: Logical subset within a project

May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.

May contain: Components, Sets & Text Items

Set: A grouping of like items

May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set

May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.jamasoftware.com | 1.800.679.3058

Component: Logical subset within a project

May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.

May contain: Components, Sets & Text Items

Set: A grouping of like items

May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set

May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.jamasoftware.com | 1.800.679.3058

Cadence of Writing Requirements?

www.jamasoftware.com | 1.800.679.3058

Large

System

Reqs Doc

Multiple

Sub-System

Specs

Long Dev

Lifecyle

Long V&V

Cycle

Req

Design

Dev

Test

Multiple

Sub-System

Specs

Multiple

Sub-System

Spec

Req

Design

Dev

Test

Req

Design

Dev

Test

Comprehensive
documentation
(if needed)
grows over time
and complete
after several
iterations

www.jamasoftware.com | 1.800.679.3058

Methods of Eliciting Requirements

Customer Feedback
• Qualitative: regularly scheduled customer interviews and feedback sessions
• Quantitative: “In Product” feedback and NPS surveys

Innovation
• Market Research
• Customer Obsession

Tips
Think in terms of the “problem” rather than the “solution”
Include team members in customer interviews

www.jamasoftware.com | 1.800.679.3058

Anti-Patterns to watch for

• The entire project is spec'd out in great detail before engineering work begins

• Thorough review and iron-clad sign-off from all teams before work even starts

• Designers and developers don't know when requirements have changed

• The product owner writes requirements without the participation of the team

Atlassian: https://www.atlassian.com/agile/requirements

www.jamasoftware.com | 1.800.679.3058

So when you say “requirements”…

www.jamasoftware.com | 1.800.679.3058

Requirements vs Design

Requirements Design

Describes the NEED for something A RESPONSE to the requirements that

describes something that meets the

requirements

www.jamasoftware.com | 1.800.679.3058

Feature

User Story

Code

Product Architecture

Establish a clear hierarchy.

Kelly’s layer

Sys
Sub
Comp

www.jamasoftware.com | 1.800.679.3058

Building Something Complex?

Themes

Epics

System Architecture

Program 2 Feature

Architecture Spec

Program 1 Features

Architecture Spec

User Story TechStory

Code/Des Code/Des

User Story TechStory

Code Design

Product Concept

Backlogs relations

www.jamasoftware.com | 1.800.679.3058

Common Agile

Requirements Taxonomy

www.jamasoftware.com | 1.800.679.3058

Theme

Definition

• High-Level Goal

• Strategic Objective

• Innovation or Differentiator

• May span multiple releases and teams

Examples:

• Lower distribution center costs

• Implement new billing system

• Deliver new upgrades on a more frequent
basis

Related to:

• Epics

www.jamasoftware.com | 1.800.679.3058

Epic

Definition

• Derived from Themes

• Describe business/technical value

• SAFe “Business” or ”Enabler”

• Too big to fit within a sprint

Example:

• For Jama customers in our hosted environment,
the In-Service Update will deliver new features on
a weekly basis and increase our uptime rates
unlike the existing version updates that only occur
monthly and require system downtime on
weekends

Related to:

• Higher-Level Themes

• Lower-Level Features and Stories

www.jamasoftware.com | 1.800.679.3058

Feature

Definition

• Short description of a system feature and benefit

• Easy for business stakeholders to understand

• Higher-level than a User Story – it may span
multiple user roles/user stories

• Used in some methodologies to bridge Epics to
Stories

Example:

• In service software update
– Benefit: Reduces software downtime

– Acceptance Criteria: 1) Choice of Automated or
Manual 2) Rollback option after update 3) support
configuration through GUI

Related to:

• Higher-Level Epics

• Lower-Level Stories

www.jamasoftware.com | 1.800.679.3058

User Story

Definition

• Derived from Epics and Features

• Fits within 1 sprint

• As a <role> I can <activity> so that <business
value>

• Role can be human or system

Example:

• As an administrator I can configure automated
or manual software updates so that I can
deliver new features to my users

– Acceptance Criteria: 1) Pick-List option of
Automated or Manual 2) If Automated, choice of
day/time to pull updates

Related to:

• Higher-Level Features/Epics

www.jamasoftware.com | 1.800.679.3058

Sample Agile Models in Jama - Replace with Customer trace model?

www.jamasoftware.com | 1.800.679.3058

Tips for Writing “Good” Agile Requirements

www.jamasoftware.com | 1.800.679.3058

Requirement Rules?

Examples:
1. An Agile requirement may not

contain the word “and.” An “and”
indicates the presence of two
requirements, which must be
separated.

2. Requirements must be written in
the form of a scrum user story

3. A requirement may not contain
more than 22 words.

Strict rules are not realistic. The “golden
rule” of requirements is:

Clear and effective
communication

among your
stakeholders.

www.jamasoftware.com | 1.800.679.3058

Stories to Choose

Is backlog planning?
Or is backlog the artifacts/req themselves

The output of Stories are requirements (support baselines
and version management) “snapshot that represents the
state of the final product”

www.jamasoftware.com | 1.800.679.3058

Authoring Requirements ACC

www.jamasoftware.com | 1.800.679.3058

Recommendation – Use a Template

User type:

As a [user class or actor name]...

Result type:

... I need to [do something]...

Object:

... [to something].

Qualifier:

…so that I can do [response time
goal or quality objective]

www.jamasoftware.com | 1.800.679.3058

Recommendation – Use Active Voice

Passive: “As a user, I need to change the state of a requirement, so that
it is logged in the event history.”

Whenever possible, recast such requirements in the much clearer active
voice

Active: “As a user, I need to change the state of a requirement, so that I
can see the new state and the time of the state change in the event
history log.”

www.jamasoftware.com | 1.800.679.3058

Recommendation – Be Positive!

Negative

• Feature: The migration
tool will not migrate
users with more than
three accounts

• As a Project Admin, I
should not have ability to
change the web user
accounts.

Positive

• Feature: The migration
tool will migrate only users
with one or two accounts

• As a System Administrator,
I need to change web user
accounts so that I can
change user’s desired
email address and display
name

www.jamasoftware.com | 1.800.679.3058

Recommendation – Avoid “ly” words

Adverbs provide ambiguity:

• …so that I can provide a reasonably predictable end-user
experience.

• …so that I can offer significantly better download times.

• …so that I can optimize upload and download to perform quickly.

It’s hard to test ”quickly” or “reasonably.”

When possible - include a qualifying objective
(acceptance criteria) that is measurable and
testable.

www.jamasoftware.com | 1.800.679.3058

Exercise in Jama

1. Write some User Stories in
Jama and use different
templates

www.jamasoftware.com | 1.800.679.3058

Refining the Requirements

www.jamasoftware.com | 1.800.679.3058

Recommendation - Review and Discuss

The point is a shared understanding of the need.

Taking time up-front to review requirements:

- Gives you feedback and makes you a better author

- Increases shared understanding amongst team

- Helps define acceptance criteria and ensure testability

- Reduces surprises and missed requirements

Methods: Face-to-face conversations, Jama comments, Jama reviews
(collection of requirements).

www.jamasoftware.com | 1.800.679.3058

Recommendation – Build Detail Iteratively

We need details but it can be “negotiated” throughout 3 major phases:

• Initial draft

• Backlog Grooming & Iteration Planning (more detailed)

• Test Development (e.g. for Stories, all acceptance criteria defined)

Too Detailed Just Right

As a team member, I can click a red button
to expand the table to include detail, which
lists all the tasks, with rank, name, estimate,
owner, status so that I understand
development progress

As a team member, I can view the iteration's
stories and their status with main fields so I
understand development progress

<acceptance criteria of specific fields defined
later>

www.jamasoftware.com | 1.800.679.3058

Anti-Patterns to watch for

• The entire project is spec'd out in great detail before engineering work begins

• Thorough review and iron-clad sign-off from all teams before work even starts

• Designers and developers don't know when requirements have changed

• The product owner writes requirements without the participation of the team

Atlassian: https://www.atlassian.com/agile/requirements

www.jamasoftware.com | 1.800.679.3058

Exercise in Jama

1. Create some comments on
items

2. Create a Review

www.jamasoftware.com | 1.800.679.3058

Summary:

Agile

Requirements

• Any hierarchy that describes the “need”
- not the ”how”

• Gathered, prioritized, improved on a
regular cadence

• May be owned by a specific role (e.g.
Product Owner) but is a team effort to
author and refine

• Constructive feedback, co-authoring
with colleagues, and conversations can
help anyone become a better reqs
writer.

www.jamasoftware.com | 1.800.679.3058

BREAK: 10 min

www.jamasoftware.com | 1.800.679.3058

Traceability and V&V

“Traceability” Sounds waterfall but when done right,
enables agility and fast response to change

www.jamasoftware.com | 1.800.679.3058

Solution Traceability

Large and Complex Systems often need to track much more than User Stories

System
Requirements

Sub-System
Reqs

Verification

Validation

Standards

Failure Modes

Defects
Designs

Epics
User Stories

Risks

User Needs

Test Results

www.jamasoftware.com | 1.800.679.3058

Solution Traceability

www.jamasoftware.com | 1.800.679.3058

Exercise in Jama

1. Establish Requirements
Traces

2. Establish Testing Traces

3. Identify gaps in Traces

www.jamasoftware.com | 1.800.679.3058

System Activities and Deliverables

System Activities (and
deliverables)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements

Define

Stakeholder

Expectations

Verify

Validate

Architect

Design

Test the

Integration
Integrate

(Assemble)

System

Define

Requirements
Verify

Architect

Define

Stakeholder

Expectations

Validate

Test the

Integration
Integrate

(Assemble)
Design

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements
Verify

Design & Implement

Define

Requirements

Define

Stakeholder

Expectations

Verify

Validate

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Define

Requirements
Verify

Architect

Design

Test the

Integration
Integrate

(Assemble)

Device Subsystem Software Subsystem

Hardware Embedded Software Platform Application Software

Code Code

Synchronization Activities from TIR45:2012

Design Inputs & Design Outputs

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Release)

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design

Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Release)

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Formal

Design

Reviews

Formal

Design

Reviews

Formal

Design

Reviews

Formal

Design

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Verification

Reviews

Synchronization Activities from TIR45:2012

Verification Reviews & Design Reviews

Synchronization Activities from TIR45:2012

Verification Testing

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Release)

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Continuous

Integration

& Test

Incremental

Verification
Final Formal

Verification

Incremental

Verification

Incremental

Verification

Synchronization Activities from TIR45:2012

Design Validation

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Increment)

Synchronize

Design Inputs &

Design Outputs

(Release)

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Story

Design Output

Activities

Design Input

Activities

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Customer

Role

Demo
User

Acceptance

Testing
Demo Demo

▪ TIR45:2012 describes how documentation is produced in an Agile

model, using a “Sum Of The Parts” concept

Documentation in the Agile Model

Assemble

the Document

Revision Control

the Document

Approve

the Document

At synchronization

points, generate the

complete Documents

that are needed

Repository
of Parts

Document
Versions

Within each Story,

create the part

relevant

to that Story

Create

the Part

Revision Control

the Part

Approve

the Part

www.jamasoftware.com | 1.800.679.3058

Recap

www.jamasoftware.com | 1.800.679.3058

Discussion

What are the challenges or barriers to using Agile
Requirements?

What challenges to you see in satisfying regulatory
expectations?

What changes would be necessary to overcome the
challenges?

▪ Cary Bryczek

▪ cbryczek@jamasoftware.com

▪ 202-236-2227

▪ www.jamasoftware.com

▪ Connect with me on LinkedIn

Contact Information

▪ Kelly Weyrauch

▪ Kelly@AgileQualitySystems.com

▪ 763-688-0980

▪ www.AgileQualitySystems.com

▪ Connect with me on LinkedIn

mailto:cbryczek@jamasoftware.com
http://www.jamasoftware.com/
mailto:Kelly@AgileQualitySystems.com
http://www.agilequalitysystems.com/

www.jamasoftware.com | 1.800.679.3058

Appendix (if needed)

www.jamasoftware.com | 1.800.679.3058

3 Challenges at Scale

• Documentation – for some, documentation will
still exist. How do we make it “just enough?”

• Prioritization & Alignment – what should we work
on next, how do we align multiple teams?

• Traceability – being agile in a more
complex/regulated environment still requires
complex traceability

www.jamasoftware.com | 1.800.679.3058

Documentation:

more important at scale, how to balance “just

enough?”

www.jamasoftware.com | 1.800.679.3058

Documentation

Large systems may still require documentation (e.g. traceability matrices,
documented specifications, regulatory compliance).

Traditionally, documentation done “up-front” before beginning design &
development.

Lean and Agile principles recommend keeping design options open – and
finalizing documentation at the end.

www.jamasoftware.com | 1.800.679.3058

Economic Prioritization

Feature / Req 1

Biz Value: High (5)
LOE: Med (3)
Priority Score 15

Business Value Job Size

High (5) High (1)

Med (3) Med (3)

Low (1) Low (5)

Light-weight, relative ranking
that considers both business
value and LOE

Feature / Req 2

Biz Value: High (5)
LOE: Low (5)
Priority Score 25

www.jamasoftware.com | 1.800.679.3058

Weighted Shortest Job First (WSJF)

Reinertsen, Donald (2008). Principles of

Product Development Flow: Second

Generation Lean Product Development.

The jobs (Features, Epics, Reqs) get weighted with the cost of delay

so that the most costly jobs get done sooner.

www.jamasoftware.com | 1.800.679.3058

Economic Prioritization:

At Scale, consider economics when

prioritizing.

Understand the cost of delay.

