

Balancing Safety, Security and Usability in the Design of Secure Medical Devices

Ken Hoyme Director, Product Security Boston Scientific Ken.hoyme@bsci.com

Copyright © 2018 by Boston Scientific, Inc.. Permission granted to INCOSE to publish and use.

How Systems Engineering Can Reduce Cost & Improve Quality

- Safety
- Safety & Usability
- Safety & Security
- Safety, Usability & Security
- System of Systems & Emergent Properties

Medical Device Safety

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota

14971 and 60601

- 14971 defines the process for (safety) risk management
 - Defines harm, hazard and hazardous situation
 - Defines a process to evaluate risk, with or without protective measures
 - Documents means to assess acceptable residual risk
 - Establishes monitoring process requirements
 - Auditable but not testable

- 60601 defines "basic safety and essential performance"
 - Broadly and for individual device classes
 - Explicitly addresses usability
 - Addresses device response to failure
 - Generally testable

How Systems Engineering Can Reduce Cost & Improve Quality

Usability recognized as a source of patient harm

- Order entry system confusion
- Surgery in the wrong location
- Ventilators left off accidentally (post X-ray)
- Tubing confusion in hospitals
- Alarm confusion/fatigue
- Similar device/different user interface designs

Usability and Safety Risks

- Usability risks that impact safety
 - User confusion leads to wrong pump setting
- Usability risks that don't impact safety
 - Wordiness, spelling errors
- Safety risks unassociated with usability
 - Power supply failure

Usability Analysis/62366

- Usability Engineering Process
 - 1. Specify application of device Intended use & user
 - 2. Identify frequently used functions
 - 3. Identify hazards and hazardous situation related to usability ISO 14971 foreseeable misuse
 - 4. Identify device primary op. functions
 - 5. Develop usability specification
 - 6. Prepare usability validation plan
 - 7. Design & implement user interface
 - 8. Usability verification
 - 9. Validate usability of medical device

- Lifecycle stages
 - Concept development
 - User needs/requirements
 - Risk management
 - Verification and Validation
 - Post-market monitoring
- No explicit references to "Usable security"

Security recognized as a source of patient harm

- Implantable Defibrillator hacking demonstrations (2008+)
- Wearable insulin pump hacking demonstrations (2010+)
- Cardiac company short sell (2016)
- WannaCry impacts on devices and hospital operations (2017)
- Ransomware hits hospitals (2017+)

Security and Safety Risks

- Security risks that impact safety
 - Hacked pump changes drug flow rate
- Security risks that don't impact safety
 - PHI exposed
- Safety risks unassociated with security
 - Power supply failure

AAMI TIR57

- Addresses security risk management in the context of 14971.
- Creates clear linkages between the consideration of safety and security.
- Recognized by the FDA and referenced in their recent post-market guidance.

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota

Safety, Usability and Security

- All three can interact
 - Positively good usable security can enhance safety
 - Negatively elimination of a security control for fast access

Development Implications

- Early usability and security analysis must be done interactively
 - Early prototype assessment needs to have planned security controls in place
- Complete set of stakeholders/users need assessment
 - End user
 - Network/Device administrator (e.g. BMET department)
- Post-market monitoring and response to cyber-vulnerabilities needs to include usability analysis
 - Added controls to close a security hole might introduce user issues

System of Systems & Emergent Properties

- Safety, Usability and Security are all emergent systems properties
 - Can construct a system with property X from components without it
 - And vice-versa
- Regulatory processes encourage consideration of these properties only at a single device level.
- When integrated into a network, is the property preserved??

Healthcare System Implications

- Who serves the role of "systems integrator" in the creation of a network of heterogeneous medical devices?
- What new standards are needed will reduce the integration effort?
- What tools and methods can support ad hoc integrators?
 - E.g. Small to mid-sized hospitals with less experienced staff?

Conclusions

- Achieving system safety depends on a balance of supporting properties
 - Usability and Security need to be considered together
- Work is needed to better understand how to ensure safety, security and usability in networks of integrated heterogeneous devices

Thank you for attending! Share your experiences at #HWGSEC

How Systems Engineering Can Reduce Cost & Improve Quality

