

Industrialized Agile Quality: Leveraging ISO Standards to Deliver Business Agility with World Class Quality

Agenda

- Agenda Review
- Quality Fundamentals
- Agile Quality Processes
- Enabling Business Agility Through Quality
- Q&A

Quality Fundamentals

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use

Exercise I

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use | 4

Meets Requirements (QAI) Quality Control – The act of testing, Appraisal Product Quality Model (ISO25010) – Functional Quality

Fit for Use (QAI)

Quality Assurance – The review of the people, processes, and tools for delivering quality, **Prevention**

Quality in Use Model (ISO25010) – System Quality

Principle 2 – Exhaustive testing is impossible

Testing everything (all combinations of inputs & preconditions) is not feasible except for trivial cases

Principle 3 – Early testing (Shift left, Early Error Detection)

To find defects early, testing activities shall be started as early as possible

Principle 4 – Defect clustering

Testing effort shall be focused proportionally to the expected and later observed defect density

Principle 5 – Pesticide paradox

If the same tests are repeated over and over again, eventually the same set of test cases will no longer find any new defects

Principle 6 – Testing is context dependent

Testing is done differently in different contexts

ISO Standards Definitions

ISO25040: Evaluation Processes

Provides a process description for evaluating software product quality and states the requirements for the application of this process

ISO25030: Requirements Quality

Provides requirements and recommendations for quality requirements, and guidance for the processes used to define and analyze quality requirements

ISO16085: Life Cycle Processes - Risk Management

Improving the search for and identification of potential problems that can affect life cycle activities and the quality and performance of products, and for improving the active management of projects

ISO25010: Product Quality & Quality In Use

The characteristics and sub-characteristics provide consistent terminology for specifying, measuring and evaluating system/software product quality. They also provide a set of quality characteristics against which stated quality requirements can be compared for completeness

ISO25012: Data Quality

Establish data quality requirements, define data quality measures, or plan and perform data quality evaluations

Industrialized Quality Processes

Shifting the Agile Quality Mindset

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use

Golden Circles of Agile Quality

Evaluation Processes (ISO25040)

Shift-Left Planning

Doing the work prior to the Sprint is just as important as doing the Sprint activities. These pre-Sprint activities help QA achieve higher shift-left value.

Pre-planning

- QA checks stories of Next Sprint
- QA checks stories of Next Sprint -Acceptance Criteria
- QA checks stories of Next Sprint -Automation

Grooming Sessions

What do I need:
Technology
Test Data
E2E
Strategy:
How
High level estimate

Sprint Planning

Story

 Explain Strategy
 Detail Estimate
 Risk Assessment
 Questions

Effective Test Planning (ISO25010)

-Easily Identify What to Test
-Decide How Much to Test
-Understand When to Test
-Active Mitigation (Anticipate)
-Collaborate on Resolution

Test Data Management (ISO25012)

Risk Assessment (ISO16085)

The purpose of risk management is to identify potential managerial and technical problems before they occur so that actions can be taken that reduce or eliminate the probability and/or impact of these problems should they occur.

Event: The occurrence of a particular set of circumstances

- Probability: The extent to which an event is likely to occur
- Consequence: An outcome of an event

Risk: The combination of the probability of an event and its consequence

Risk Category: A class or type of risk (e.g., technical, legal, organizational, safety, economic, engineering, cost, schedule)

Risk Criteria: The terms of reference by which the significance of risk is assessed

Risk Exposure: The potential loss presented to an individual, project, or organization by a risk; a function of the probability that the risk will occur and the magnitude of the consequences of its occurrence

Risk Profiles: A project's current and historical risk-related information; a compendium or aggregate of all of the individual risk profiles in a project

Agile QA Timelines

With our guidance, clients are able to align the testing effort within the same sprint as the development team. This approach supports speed and agility, and enables the potential "shift left" value of agile/Scrum.

Pre-Sprint	Sprint Planning	Test Prep & Run	Test Execution	Sprint Completion
	(Day 1)	(Day 2-4)	(Day 5-7)	(Day 8-10)
 Risk Recommendation Grooming future Sprint work 	 Risk Acceptance Test Strategy Test Prep Grooming future Sprint work 	 Automation Scripting Test Data Feature Testing Functional/Regression Prioritization Smoke Testing Execution (CI) 	 Smoke Testing Automated Testing Feature Testing Functional/Regression Testing Defect Management QA Sign-off (Story) Accept Feature Status Reporting 	 Feature Testing End-to-end Testing Performance Testing Defect Management UAT Demo Sign-off (Sprint) Retrospective

Exercise II

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use | 17

Elliot was at his best friend's birthday party on Saturday and having a great time when something totally unexpected happened; he hurt his arm while playing tag. This pain wasn't any normal kinda pain, it hurt a lot and Elliot was crying.

His parents came and took him to urgent care. The doctor said it might be broken and ordered an x-ray for him. When the x-ray came back, the doctor confirmed Elliot had a broken arm, BUMMER! The doctor placed a cast on Elliot's arm and sent him home with a lollipop for his troubles.

That's when the really bad stuff started to happen for Elliot's parents. Because they were in a rush to get Elliot seen for his arm, they took him to the nearest urgent care facility which turns out is out-of-network. What's more, they hadn't met any of the deductibles for the year and their out of pocket expenses were pretty high.

Elliot's parents called their insurance company and negotiated a monthly payment plan to cover the cost of services. They were gonna have to pay for it over 6 months. On Monday, Elliot's parents sent in the first monthly payment.

Shared QA Responsibility

Analyst (Any)

- Story
- Test Data
- Functional/Regression Prioritization
- Feature Testing
- Transparency, updates to sprint goals

Shared

- Risk Recommendation
- Backlog Maintenance
- Risk Acceptance
- Test Strategy
- Definition of Ready
- Definition of Done
- Sizing
- Defect Management
- Commitment to Sprint goals
- End-to-end Testing
- QA Sign-off (Story)
- Demo
- Retrospective

Engineer (Any)

- Automation Scripting
- Smoke Testing
- Automated Testing
- Functional/Regression Testing
- Performance Testing
- Alignment to architecture

Tying the Approach Together

Enabling Business Agility Through Quality

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use

Best Practices

Quality as a Service

Vision & Strategy

- Enterprise Frameworks
- Product Quality
- Quality in Use
- Data Quality
- Analytics Services (Metrics)
- Innovation (AI, MBL, BI)
- Predictive Quality
- DevOps
- Tools Consolidation

Utilizing Intelligent Test Architecture

Understanding Needs, Building Strategies, and Pragmatically Executing

Paired Testing

Who:

- QA Analyst SME
- SDET Technical solutions

What:

- Knowledge transfer
- Peer reviews
- Test case design sessions

Why:

- Allay fears and give purpose
- More complete technical solutions
- Better total quality
- Collaboration

How:

- One hour a day, every day
- Rotate the focus
- Keep a log

Best Practices:

- Rotate partners every other Sprint
- Communication should be dialogues
- Be customer-driven
- Think operationally
- Create a community of practice forum
- Encourage "natural" synergies

Holistic Views of Quality

Flidse OI QA	Discovery	implementation	Acceptance	FIGURCION	IUtal lest Cases
Manual	1000	500	200	0	1700
Automated	5000	20000	20000	0	45000
Performance		300	100	0	400
Services	1000	100	100	0	1200
Total	7000	20900	20400	0	48300

Product A				
Phase of QA	Quality Throughput			
Discovery	30.0			
Implementation	40.3			
Acceptance	19.8			
Production	0.0			
Total	90.1			

Quality should not be measure by a two-dimensional metric like Velocity. Instead use a multi-dimensional metric like Throughput to truly understand the whole picture

Exercise III

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use | 25

Understanding Your Agile Health

Making sure your enterprise automation framework enables "shift left" by your QA teams is also important to track. Keeping an eye on where defects are discovered is a great indicator of shift left.

Let's Change Our Mindset

Production		
Pre-Prod/Stage	 Acceptance 	
QA	 Regression System Functional Exploratory 	
Dev	ExploratoryCode IntegrationUnit	

In order to truly "shift left", our destination is no longer production, its Acceptance Testing

Questions?

Q&A

Thank you for your attention

Copyright © 2018 by Robert Gormley/Trissential-SQS USA - Permission Granted to INCOSE to Publish and Use