

Modeling and Simulation at GE Healthcare

Chris Unger Chief Systems Engineer, GE Healthcare Co-lead, INCOSE Healthcare WG chris.unger@ge.com

#hwgsec

How Systems Engineering Can Reduce Cost & Improve Quality Copyright © 2018 by Chris Unger. I 9-20 April, 2018 Twin Cities, Minnesota Permission granted to INCOSE to publish and use.

Vision

Design is a human activity Fail early, fail often...in virtual space Enable greater creativity...

"Predictive Directed Exploration"

Business Outcomes

Reduced Cycle time

Optimal designs (explore design space)

Predictability (better decisions earlier)

Business Integration Behavior Physics/Performance Systems – SysML/UML Image/Signal Quality Parts stock/warranty reserve Control loops Workflow **Acoustics** Reliability MFG capacity Predictive, **multi-variable design models** enabling characterization, understanding of interactions and margin Electrical performance Vibration Safety Thermal *Structure/Stress/Stiffness* Lifing

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota

Examples of Modelling Control Algorithms

How Systems Engineering Can Reduce Cost & Improve Quality

Joey Incubator

4th Annual Systems Engineering in Healthcare Conference

An incubator maintains a safe environment (heat, humidity, O2...) for a Infant.

Goal - To develop multi-physics, control & system model that will reduce design iterations

Detailed Goals:

- Thermal: Build system CFD model and downselect 2 options for further physical prototyping and CFD; develop ROM for further control loop development
- Electrical: Reduced board spins
- EMI/EMC: Eliminate the need for screen room testing

Benefits

Design cycle acceleration

- Electrical: 0 board re-spin
- Control algorithms: Development, virtual testing and Automated design document generation

#hwgsec

• Testing and Verification acceleration

Joey Incubator

Thermal Control Modeling Goals

- Optimizing the thermal/humidity control loops in weeks (typically takes months)
- Balancing constraints
 - Thermal : Control accuracy, Stabilization time vs overshoot
 - Balancing performance vs. Acoustic noise

How Systems Engineering Can Reduce Cost & Improve Quality

Control Algorithm Conclusions

Achieved cycle time reductions

- · Generated initial reduced order control model for 'optimization'
- Chose optimal heater configuration (fans, heater coil configuration)
- Eliminated control board spins

Able to accelerate experiment cycle (thermal/humidity balancing)

Enabling actions

- Do the proper model validation
- Tight collaboration between modeling and systems teams

Examples of Modelling Behavioral Modeling

How Systems Engineering Can Reduce Cost & Improve Quality

Behavioral Modeling in Computed Tomography

Moderately complex system with complex behavior

- ~5,000 parts
- ~5M lines of code
- Triple nested control loops
 - Axial, Cradle, mA/kV

- Feature analysis and simulation in SIMULINK
- Auto-generation of code

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota

Computed Tomography

MBSE techniques are used to perform behavioral analysis of key system features and functions.

- discover and verify system requirements
- identify and detail subsystem functions and interfaces
- seed FMEA analysis
- develop system test scenarios

#hwgsec

How Systems Engineering Can Reduce Cost & Improve Quality

Behavioral Modeling Conclusions

- SysML is a "barrier to adoption"
 - Define clear roles and scaled training
 - Plan for how to communicate to non-experts
- Start with a pilot project to "work out the kinks" and tailor the process
 - Clearly define goals/step completion criteria
- Define a subset of views/diagrams to start with

Examples of Modelling Reliability Modeling

How Systems Engineering Can Reduce Cost & Improve Quality

Solder joint reliability

Once a board is designed, what is its reliability?

- Solution 1: accelerated reliability testing (~3 months)
- Solution 2: perform computer modeling (<1wk)
 - Provides quick response to make board changes
 - Choose different IC packages
 - Change component locations

#hwgsec

ackup Properties							
The following board properties are based on the currently defined board outline and the individual layer properties shown below.							
Board Dimension:	240 x 105 mm [9.4 x 4.1 in]	CTExy:	18.189 ppm/C	Board Weight:	155.2 grams		
Board Thickness:	2.301 mm [90.6 mil]	CTEZ:	62.405 ppm/C	Total Part Weight:	607.6 grams		
Board Density:	2.7332 g/cc	Exy:	33,989 MPa	Mount Point Weight:	0 grams		
Conductor Layers:	16	Ez:	4,167 MPa	Fixture Weight:	0 grams		

Stackup Layers

Double click any row to edit the properties for that layer or select one or more rows and press the Edit Selected button below to edit properties for a batch of layers. Press the Generate Stackup Layers button to replace all layers using a given PCB thickness and default layer properties.

Layer	Туре	Material	Thickness	Density	CTExy	CTEz	Exy	Ez
1	SIGNAL	COPPER (29.6%) / COPPER-RESIN	0.5 oz	3.9016	40.410	40.410	35,912	35,912
2	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450
3	POWER	COPPER (86.9%) / COPPER-RESIN	1.0 oz	7.9699	21.844	21.844	98,656	98,656
4	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450
5	SIGNAL	COPPER (31.7%) / COPPER-RESIN	0.5 oz	4.0507	39.729	39.729	38,212	38,212
6	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450
7	SIGNAL	COPPER (29.4%) / COPPER-RESIN	0.5 oz	3.8874	40.474	40.474	35,693	35,693
8	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450
9	POWER	COPPER (87.1%) / COPPER-RESIN	1.0 oz	7.9841	21.780	21.780	98,874	98,874
10	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450
11	SIGNAL	COPPER (11.7%) / COPPER-RESIN	0.5 oz	2.6307	46.209	46.209	16,312	16,312
12	Laminate	Generic FR-4	4.92 mil	1.9000	17.000	70.000	24,804	3,450

How Systems Engineering Can Reduce Cost & Improve Quality

4th Annual Systems Engineering in Healthcare Conference

CCA Stackup Information

The following stackup information was used during the circuit card analysis.									
Board Size:	71 x 71 mm	PCB CTExy:	14.013 ppm/C						
PCB Thickness:	91.1 mil	PCB CTEz:	43.699 ppm/C						
PCB Density:	2.3076 g/cc	PCB Exy:	29,869 MPa						
Copper Layers:	14	PCB Ez:	3,885 MPa						

Layer	Туре	Thickness	Material
1	SIGNAL	1.0 oz	COPPER (29.8%)
2	Laminate	.147 mm	370HR
3	POWER	0.5 oz	COPPER (74.2%)
4	Laminate	0.15 mm	370HR
5	SIGNAL	0.5 oz	COPPER (44.3%)

Physics of failure solder joint model

Electronic circuit design

Material properties

#hwgsec

Life estimation (cycles to failure) based on computer modeling

						ACCELERATED TESTING			USE CONDITIONS		
ID	PACKAGE	MODEL		MATERIAL	PN	CY 0 100C	CY -40 125C	AF1	YRS 20 45C	CY 20 45	AF2
U12	BGA-128	BGA	ТОР	LAMINATE-BGA	5505464	1259	329	3.8	88	32061	97.5
U14	BGA-144	BGA	тор	LAMINATE-BGA	5499296	4106	1071	3.8	286	104244	97.3
U4	QFN-40 (MO-251AFFB-1)	QFN	ТОР	OVERMOLD-QFN	5504797	9272	2415	3.8	643	234822	97.2
Y1	QFN-4 (MO-220WEEB)	QFN	тор	ALUMINA	5437405	21863	5684	3.8	1509	550823	96.9
U3	QFN-20 (MO-220VGGD-1)	QFN	ТОР	OVERMOLD-QFN	5455903	95311	24782	3.8	6581	2402109	96.9
U11	QFN-12 (MO-208BBEA)	QFN	ТОР	OVERMOLD-QFN	5498573	200956	52239	3.8	13868	5061976	96.9

Able to include Reliability in Up-Front Systems Trade Studies

How Systems Engineering Can Reduce Cost & Improve Quality

Examples of Modelling Physics (Electro-Optics)

How Systems Engineering Can Reduce Cost & Improve Quality

Cathode Design for X-Ray Tubes

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota

Performing Systems Optimization Tradeoffs Visually

- Extensively explored design space
- Identified opportunities for increased production margin (design robustness)
- Helped save iterations...several further iterations were planned...full design verification

Summary – Benefits to Industry of MBSE

- Improved Communication: Pictures, Models vs. Text
- Improved Quality: Model Analysis, Simulation vs. Reviews
- Improved Quality: Identify Root Cause of Integration Issues
- Improved Predictability and Efficiency (Time to Market)

Questions?

Chris Unger Chief Systems Engineer GE Healthcare INCOSE Healthcare WG Co-Lead; INCOSE ESEP christopher.unger @med.ge.com

How Systems Engineering Can Reduce Cost & Improve Quality

Thank you for attending! Share your experiences at #HWGSEC

Questions?

Chris Unger Chief Systems Engineer GE Healthcare INCOSE Healthcare WG Co-Lead; INCOSE ESEP christopher.unger@med.ge.com

How Systems Engineering Can Reduce Cost & Improve Quality

19-20 April, 2018 Twin Cities, Minnesota