

Need for Robust Systems Engineering in a Time of Budget Austerity

Rich Rosenthal, TASC

William Neuendorf, TASC

Sarah Sheard, Third Millennium Systems LLC

Agenda

- Goals
- Systems Engineering Need
- Adapting Systems Engineering
- Global 21st Century SE Challenges
- Complexity Science and Systems Engineering
- Evolving Considerations
- Conclusion

Goals

- Show systems engineering is still needed despite budget cuts
- Describe how Systems Engineering is adapting to the challenges of 21st century acquisition
- Recognize international nature of Systems Engineering organizations

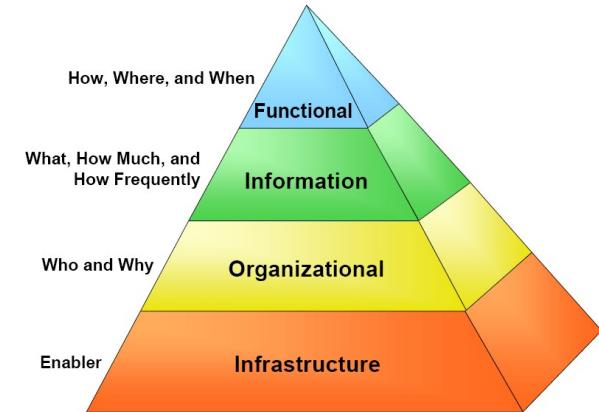
Systems Engineering Need, 1

- Acquisition is more challenging in 21st Century.
 - More capable, complex, interoperable systems
 - Need to be built more quickly at less cost
- Aerospace, defense, and energy sectors
- Complex systems *must work*: Failures are societal events and national tragedies
 - Three-Mile Island
 - *Challenger*
 - *Columbia*
 - Power blackouts of 1965 and 2003 in the northeast United States
 - Gulf of Mexico oil spill
- Systems engineering protects the mission and the nation, and minimizes the effect of budget cuts

Systems Engineering Need, 2

- **SE objective:**
Ensure system is designed, built, and operated to accomplish its purpose, cost-effectively
 - Performance, cost, schedule, and risk
- **SE role re cost cuts**
 - Before: SE ensures system (or SoS) design is as modular as possible in order to be robust to programmatic changes
 - During: SE identifies which cuts will have the minimum effect
 - After: SE establishes the appropriate tradeoffs to ensure the remaining system is optimized for performance, given the remaining funds

Adapting Systems Engineering, 1


- Support incremental commitment acquisition
 - Dealing with uncertainty and changes
- Use tools to deal with complexity and uncertainty
 - Hierarchical design, architectural patterns, trade studies
 - Designing systems to provide best value, managing complexity, decision making with best practice + new analysis
- Improve decision-making under uncertain conditions
 - Statistical analysis, economics analysis, operations research, management science
- Improve integration with collaboration tools
 - Coordinate multiple disciplines, ensure system integration
- Apply orchestrated integrative review
 - Multiple disciplines and organizations

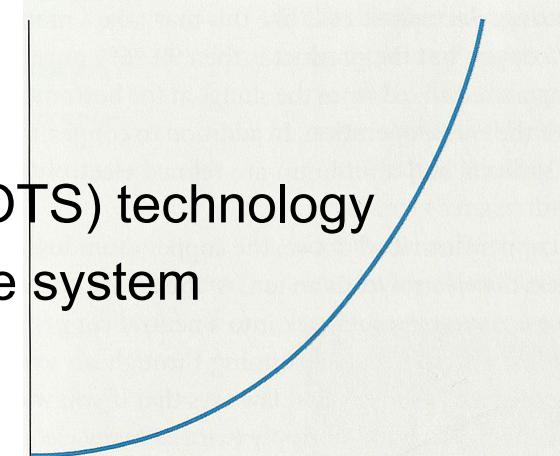
Adapting Systems Engineering, 2

- Define and implement enterprise architecture roadmaps
 - Capability roadmaps
 - Define and maintain the critical dependencies among system components
- Identify Emerging Technologies
 - Web services, grid computing, virtualization, autonomic computing, and migration to on-demand adaptive environments.
 - Assess each technology's potential benefits and costs, variable and fixed
- Create useful and enduring models: Model Based Systems Engineering (MBSE)

Global 21st Century SE Challenges

- Broad Base
 - Government and commercial organizations
 - All over the world
- E-collaboration with multi-national teams: challenges of communications, culture and globally dispersed locations

Complexity Science and Systems Engineering



- Insights from the science of complexity now being applied to the engineering of large-scale complex systems
 - Chaos, Complexity and Order
 - Hierarchy and modularity
 - Linearity, nonlinearity, and fractals
 - Design creation and evolution
 - Analysis and risk management
- Example: Identifying and reusing or adapting technologies that have performed a specific function well in the past, systems engineers minimize program risk.

Evolving Considerations, 1

- System failure is unacceptable
 - SE needs well-controlled and high-assurance processes that provide system synchronization, balance, assurance, and agility
- Rapid pace of change will accelerate. Focus on:
 - Mission priorities
 - Adaptation of technology
 - Modular use of Commercial Off-the-Shelf (COTS) technology
 - Tailor system to evolving understanding of the system environment. and tailoring system to it
 - Incremental development
 - Model-based engineering will provide both prescience and rapid adaptability

Evolving Considerations, 2

- **Integration is riskier**
 - Tendency to underestimate integration difficulty and simultaneously overestimate the maturity of items that require integration
 - Massive amounts of interacting software will be important
 - Role of humans within complex systems
 - Legacy elements
- **New roles for SEs**
 - Learn about more new discipline and more models and tool
 - Identify appropriate tools and provide skilled tool users
- **SEs provide math for management of complexity**
 - Stochastic statistics
 - Chaos and complexity
 - Combinatorial computation
 - More typical engineering math such as Fourier and Laplace transforms

Conclusion

- Historically SE has been vulnerable to budget reductions
- Today's larger, more complex systems are riskier than before, with major consequences if they fail
- Systems engineering is needed now more than in the past, and it would be a mistake to reduce funding for systems engineering at the same time that government or commercial programs in general are being reduced
- The challenges of 21st century acquisition for systems engineering are global in nature

References

- Ashby, Ross. 1956. "Cybernetics and Requisite Variety", *An Introduction to Cybernetics*, Accessed 21 October 2011. <http://www.panarchy.org/ashby/variety.1956.html>
- Boehm, Barry, Ricardo Valerdi, and Eric Honour. 2008. The ROI of Systems Engineering: Some Quantitative Results for Software-Intensive Systems. *Systems Engineering* 11(3).
- Boehm, Barry and JoAnn Lane. October 2007. "Using the incremental commitment model to integrate systems acquisition, systems engineering, and software engineering." *CrossTalk – The Journal of Defense Software Engineering* 20(10): pp. 4-9. (Boehm and Lane, 2007a). 2007. "System of Systems Lead System Integrators: Where Do They Spend Their Time and What Makes Them More or Less Efficient?" *Wiley Interscience*. (Boehm and Lane, 2007b)
- Box, George E. P. 1987. *Empirical Model-Building and Response Surfaces*, co-authored with Norman R. Draper, p. 424, ISBN 0471810339
- Conrow, Edmund. February 2005. "Risk Management for Systems of Systems." *CrossTalk – The Journal of Defense Software Engineering*.
- Griffin, Michael D. "How do we fix systems engineering?" 61st International Astronautical Congress, Prague, Czech Republic, 27 September–1 October 2010.
- Honour, Eric C. 2004. "Understanding the Value of Systems Engineering." Proceedings of the Fourteenth Annual International Symposium of the International Council on Systems Engineering, Toulouse, France.
- Hybertson, Duane "Next Generation Systems Engineering: Expansion, Foundation, Unification" The MITRE Corporation McLean, VA INCOSE 2011.
- Lloyd, Jim. October 2007. "While You Were Sleeping: The Loss of the Lewis Spacecraft" NASA Leadership ViTS.
- Petty, Mikel "Modeling and Validation Challenges for Complex Systems" Huntsville, AL, AMSC Complex Systems M&S Workshop, 3 February 2010.
- Sheard, Sarah A. "Twelve Systems Engineering Roles" Proceedings of the Sixth Annual International Symposium of the International Council on Systems Engineering, Boston Massachusetts, July 7-11, 1996.
- Wang, Zhenyu. Dec. 2007. "The Emergence of Modularity in Biological Systems," Accessed 21 October 2011. http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2007/files/Wang.pdf