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There are three key questions addressed

What are the nuance of additive manufacturing, and why is aerospace unigue?
What parts are vulnerable to displacement by additive manufacturing?

How, when, and to what extent will the supply chain be disrupted?
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Section 1: Additive Manufacturing Overview
Section 2: Aerospace Overview

Section 3: SLS Process Modeling

Section 4: Case Study ~ AM Implementation
Appendix
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Section 1

Additive Manufacturing Overview
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All major aerospace companies have engaged
In some type of additive manufacturing (AM)

Source: secondary
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AM enables building parts that historically were
not possible to machine

Typical Parts from an AM Process

Organic Shape Optimization Internal Lattice Optimization

AM is the process of adding - as opposed to removing - material to create a part

Ultimate benefit is ability to lightweight a part via
topology optimization

S : lysi i
ource: analysis www.incose.org/glrc2018



AM Is categorized by material source and
energy method, clearly involving benefits/risks

Classification
1) Material source:
= Powder bed
= Powder feed
= Wire feed

2) Energy method:
= Laser
» Electron beam
= Plasma

Source: analysis

AM Characterization

Benefits
» Reduce weight
» Reduce part count
» Reduce lead time
» Increase material yield

. N

Aerospace Applications ( Risks
= Repairs (1980s) = Microstructure quality |
= Tooling (1990s) » Process repeatability |
= Whole parts (2010s)* \ " Surface finish y

www.incose.org/glrc2018 * Mostly prototyping, not production



Two most common AM “modalities” In
aerospace are powder bed and wire feed

Predominate AM Technologies*

Powder Bed — Selected Laser Sintering (SLS) Wire Feed — Directed Energy Deposition (DED)

Growing layers via melting/sintering
powder metal — developed at UT in
1980s for DARPA

Melting wire — similar to welding
— to create molten pool to build
linear layers

Advantages: high near net, complex geometry Advantages: high deposition, economical
Disadvantages: limited size, small batches, Disadvantages: more machining, residual
source material control stresses, voids/occlusions

PB SLS favors engine (castings) parts, whereas wire DED
basically targets aerostructures (forgings)

* Powder DED is less common

Source: analysis, secondary www.incose.org/glrc2018 in aviation/aerospace



AM process, however, introduces variability
and thus risk into production process

AM Physical Process & Resulting Microstructure

centreline Axial .2 4
grains -

Inner contour  ——
pass regular ‘
columnar
grains

nucleation

Base plate
nucleation

In-fill hatching
large irregular
columnar grains

= AM is complex physics process

= Extreme heating/cooling affect gain and
mechanical properties

= Aerospace historically uses isotropic metals

» Problems such as creep and fatigue initiated
by grain boundaries and surface finish

Source: Herzog et al. 2016
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AM parts are economically attractive for
“smaller” production runs

Notional Marginal Cost Analysis — Traditional vs AM

14
12 » Molds (casting) and dies (forging) are
_ Traditional Mfg expensive and have long development times
% : :
bt 10 = Thus, economies for these tool/die are
é 3 realized over long production runs*
‘g 6 = AM parts are less expensive for short runs
©
DE_ Additive Mfg . Break—evc_en also depenc!s upon part _
4 \ complexity, thus complicating ROI analysis
|
2 I
|
0 |
: Units

Break-even

_ * Includes amortization of initial NRE
Source: secondary www.incose.org/glrc2018 (non-recurring engineering) 10



Section 2

Aerospace Overview
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Differences between aircraft and automotive
effectively define their manufacturing strategies

Aerospace vs Automotive Industry

Units Produced: 4K 10K

Unit Size: 100 to 200 ft2 5-10 ft (dia)
Part Count: 2.5M 30K

Design Objective: Airworthiness Airworthiness
Quality Drivers: Product integrity Product integrity
Supplier Base: Duopoly Oligopoly

Source: analysis, secondary www.incose.org/glrc2018

30K

Crashworthiness
Production integrity

Globally competitive

* commercial turbine aircraft 11



Aerospace Is unigue in part due to lower
margins-of-safety due to weight constraints

Marqgin of Safety

Margin
= Aircraft designed with margin-of-safety of Safety
1.5 to 2 to minimize weight
= Automotive uses 3, pressure vessels 4 | [\ Besien
II]F.. IIII II

Material
Strength

= This helps minimize fuel consumption ) /

* Thus aerospace has stringent quality Soom0] , .,H
control and maintenance schedules | f.u \

Probability
of Failure

14 1500 1550 1600 1650 17060
Stress / Strength Units

Source: analysis, secondary www.incose.org/glrc2018
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FAA certification Is costly/arduous to guarantee

six-sigma adherence to design and safety

Aircraft Design Substantiation*
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= Certification is process of substantiating both
aircraft design and production

= Engineering proves structure can withstand
anticipated static and dynamic loads

SIHUNLVY3IH TVHNLONYLS

» Testing begins with material samples to identify
basic material properties

™) = In certain cases, full-scale testing is required —
expensive both time and money

-

3sva viva

* Others regulating entities

www.incose.org/glrc2018 Include EASA, NASA, DoD
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Section 3

SLS Process Modeling

www.incose.org/glrc2018

15



There are three fundamental decisions to
determine a part’s candidacy for SLS AM

SLS AM vs Casting Decision Analysis for Early Adoption

@ @ ES[ PI‘OCGSS ‘}
YES Integral A

@ YES AM Target A Design?
Part?
Detailed on fint | < NO
part — O.T. '?,) NO
drawing critical” Q [

NO

<

|

Conventional process

@ Is the part flight critical ?*
@ Does the part conform to: small, complex and small lot? <:I Critical for Powder Bed SLS

@ Can we safely assume comparable material characteristics? <:I Uncertainty Quantification

* Avio’s TI-AL LPT blades serve

16
as a strong counter example

Source: analysis www.incose.org/glrc2018



Casting I1s a multi-step process, which ultimately
require final assembly for complex parts

Simplified Casting Scheme

Skilled
operator
Physical
mold %
Caster
Molten @
metal
Excess
metal
S alys

Post
:> :> process

Machine ]I::}[ Inspect }

(e

www.incose.org/glrc2018

@ Information
@ Labor
@ Material

@ Capital
KEY*:(OLow High@

* Loosely compared to forgings
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...whereas for “targeted” parts, AM SLS can
make complex assemblies more readily

Simplified SLS AM Scheme

Semi-skilled
technician

CAD 3D
model

Metal
powder

Source: analysis

N

l

AM Near- Post : .
Machine :>:>[ process* }Q[ Machine }@[ Inspect }

U

Excess
powder

AM is known as more labor and material efficient

www.incose.org/glrc2018

@ [Information

— —— —

'?) Labor I
LO Material I

@ Capital
KEY:O Low High@

* Red — more intense/scrutinized process
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Business case needs to consider economics and
production efficiency vs mechanical properties

Hardware Optimization Concerns

Hardware
Concerns
Mechanical Production Economic
Performance / Durability Design & Manufacture Build Maintain
/ Develop
e
Specific Specific Fatigue & Corrosion : .
Strength Stiffness Damage Tol Resist Machine Assemble Labor Equipmnt
Concept Model Materials
Analyze

The most important consideration for AM aerospace parts is
integrity to ensure safety over the life of the asset

Source: analysis www.incose.org/glrc2018



Nonetheless, multiple variables — some unique
to AM — complicate understanding of properties

Process Input Parameters for AM

(1) EQUIPMENT (3) LABOR (5) INSPECTION
Calibration Training Visual
Machine Standards
Software \ Parameters* Experience \ pocument/ Digital
version Pedigree scan
: : . Conformed
Part Design > Planning > Fabrication Final Part
. Particle Stress Relief
Purity distribution HIP (Hot Iso Press)
" Heat Treat
. Traceability
Shelf life Surface Finish
Sphericity
(@) MATERIAL (4) POST PROCESSING
Source: analysis Www.incose.org/glr02018 " Includes laser intenSity’ hatch

pattern, sweep rate, etc.

20



FAA currently lacks specific guidelines for AM part
gualification — most companies use “point design’

AM Part Substantiation

» FAA 14 CFR specifies new parts/process be qualified via testing: 2X.603
(Materials), 2X.605 (Fabrication), and 2X.613 (Design Values)

» However, FAA has not yet established an acceptable generic means of
compliance of AM parts — an Issue Paper is a common*

CODE OF FIDERAL REGULATIONS

= Applicants outline means of compliance to control material and process
variation, then use “point design” and qualify by testing

4

= MMPDS Emerging Tech Work Group is developing AM guidelines

= Solution will likely combine: a) process controls and validation, b)
damage tolerance framework, and c) sophisticated NDI methods

* NASA offers MSFC Std

Source: Jonas - NIAR, Freisthler & Gorelik - FAA www.incose.org/glrc2018 & Spec 3716 & 3717 21



Section 4

Case Study: AM Implementation

www.incose.org/glrc2018
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A simplified framework helps identify elements
necessary for systems modeling

Rudimentary Systems Schematic

Processes
@ Constraints
Matter .
’ : Finish
Energy, |:> Conversion |:> Product
Information
Input Output

www.incose.org/glrc2018



GE’s new turboprop — which is 35% printed — is
used as a case study

GE’s New Advanced Turboprop

JME 4
_ ENGINEERING“‘ = GE prints 35% of new gas turbine in 1000-1600 SHP class
%) . | ...‘r .II".IIL . \ I'F IIIIII..-'" it s y "

= Over 850 parts replaced by 12, mostly castings*
» Parts includes: cases, frames, comb liner, heat exchangers

= AM parts reduced weight by 5% and contribute to 1%
improvement in specific fuel consumption (SFC)

= Moreover, a similar GE engine redesign using AM
eliminated 10-15 suppliers typically required

= Qverall PLM costs can be significantly reduced

Source: company website, ASME www.incose.org/glrc2018 * Static only (i.e. no LLPS)
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Analyzing trade-offs require comparing similar
work-steps for castings vs AM...

Casting vs AM Process Resource Utilization

Parts
MEI —> N —> Part

Casting AM Casting AM Casting AM
Information @ O Create mold vs Prepjob O @ Weight @ @
Labor @ @ Pour mold vs Printpart @ @ Processtime O @
Material @ @ Removepart @ @ Material yield @ @
Capital @ O HIP&HeatTreat @ O Asmbcmplx @ @
. [ 5 - 1
Machine @© ® I_Pl‘edIC'[ablllty @) O_I
Surface Treat @ O
KEY* @ Better
Inspect O O O
Assemble © @ O worse

Source: analysis ] )
www.incose.org/glrc2018 * Process loosely compared to forgings



... these steps then are viewed In light of
amount of processing time

Notional Time per Work-Step for Initial Build - Casting vs AM*

50
= For “moderately” complex castings, creating
40 - Assemble molds/tooling can take from weeks to months
Inspect = Creating molds/fixtures is the most time
intensive and is the most variable step
g 30 Pour Surface treat L .
= mold = For initial production, AM parts can be
Machine produced at least twice as fast as castings

20 HIP, heat trea\

Remove part

10
Create Print part
mold Prep job
0
Casting AM * Assumes CAD model is available:
www.incose.org/glrc2018 ignores design iterations for AM 26

Source: analysis, interviews



AM will greatly impacted mold creation, though
other functions will likely not be materially affected

Anticipated Impact on Resources & Suppliers — Casting vs AM

Create mold vs Prep job Foundry OE/SB*
Pour mold vs Print part Foundry OE/SB /
Remove part Foundry OE/SB
HIP & Heat Treat 3rd party 3rd party i
Machine OEM/3pty  OE/SB/3pty S
Surface Treat 3rd party 3 party?
Inspect OEM OE/SB
Assemble OEM OE/SB
-100% -50% 0 +50% +100%
(worse) (better)

Source: analysis www.incose.org/glrc2018 * OEM or major Service Bureau 27



Thus, foundry market share will decrease, but
other tier suppliers will be much less affected

Summary of Impact of AM Parts and Suppliers

. Work-Step Casting AM Resource Net Change
" AM S greateSt advantage IS IaCk Of Create mold vs Prep job Foundry OE/SB* ﬂ,___)k
tooling; this, along with ‘insourcing’, Pourmold vs Printpart  Foundry ~ OE/SB x|
will eventually impact foundries’ remove part roundry - OF/SB f
HIP & Heat Treat 3 party 3 party 4
market Share Machine OEM/3pty  OE/SB/3pty :;*
. Surface Treat 3 party 3rd party? x
= The mold pour process is labor nspect oEM — ,(
intensive and dangerous, requiring Assemble OEM OE/SB Nk
firing the ceramic shell oo 0 o o

= [nterestingly, CNC machine shops will likely not be impacted since: a) castings require little machining,
and b) most machining of engine parts is conducted internally

= AM will possibly require more regular inspection (e.g. X-ray, FPI, visual, dimensional) to reduce uncertainty

www.incose.org/glrc2018 28



AM will impact foundries yet timeline is at least a
decade hence for meaningful parts production

Conclusion of Impact of AM in Aerospace

= AM can achieve an optimized part, yet material characterization
is difficult due to the unpredictability of the build

» GE's advanced turboprop illustrates potential impact of AM in
aerospace, targeting engine structural castings

» A systems model predicts considerable impact on foundries but
not CNC machine shops as many believe

= Significant adoption is likely 10-15 years due to lack of
technology maturity as well as new engine platforms

www.incose.org/glrc2018
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