

SysML and FMEA (Failure Modes Effects Analysis)

James Hummell

Consultant

MBSE Solutions, LLC

October 18, 2018

Bio

- ❖ James Hummell is an expert trainer for SysML, UML, and UPDM/UAF, currently working as chief consultant for MBSE Solutions. He is an expert in software and systems engineering, specializing in modeling and simulation analysis using UML and SysML.
- ❖ James has extensive experience in embedded systems for safety critical systems (Do178b Level A), configuration management (CM), the software development life cycle (SDLC), and process engineering development. He has been developing software and systems in model-based design engineering (UML and SysML) for over 20 years.
- ❖ He is a member of the RTCA SC-205 subgroup developing Do-178C model-based development and verification supplement, and has worked with the Object Management Group (OMG) and the International Council on Systems Engineering (INCOSE) on many specifications and working groups.

<http://MBSE.Solutions>

jhummell@MBSE.Solutions

In/jameshummell

T: 480-463-4359

M: 480-521-2125

Agenda

- ❖ What is FMEA
- ❖ How to Identify Failure Modes
- ❖ How to Mitigate Failure Modes
- ❖ How to Simulate Failure Modes
- ❖ Other Tools Available

What is FMEA?

Failure mode and effects analysis (FMEA)— was one of the first highly structured, systematic techniques for failure analysis. It was developed by reliability engineers in the late 1950s to study problems that might arise from malfunctions of military systems*

- A step-by-step approach for identifying all possible failures in a design, a manufacturing or assembly process, or a product or service.
- **Failure Modes** means the ways, or modes, in which something might fail. Failures are any errors or defects, especially ones that affect the customer, and can be potential or actual.
- **Effects Analysis** refers to studying the consequences of those failures.
- Failures are prioritized according to how serious their consequences are, how frequently they occur and how easily they can be detected. The purpose of the FMEA is to take actions to eliminate or reduce failures, starting with the highest-priority ones.

What Is FMEA?

More and more companies and government agencies are required by contract to perform Failure Modes Effects Analysis (FMEA)

- The Food and Drug Administration (FDA) has mandated that FMEAs must be done for any product that is put out on the market
- Original equipment manufacturers (OEMs) are now requiring FMEAs in the production of parts and in the making of devices
- Medical, aerospace, and automotive companies all understand the need to generate FMEA tables and forms in order to prove acceptability in the marketplace
- Any company that is producing any product should have a design and a FMEA, and that same design should trace to requirements, define any hazards that may exist, and should be able to demonstrate the failure modes

How is Risk Assessment Different Than FMEA?

Risk assessment has to do with looking at the product itself and assessing it, or quantifying it, in order to determine the likelihood of a certain risk.

- FMEA describes when you are doing analysis against your actual product, or the end thing. It is the process of identifying the failure mode of the system, analyzing it, and determining what to do when it happens.
- It asks the question, “what do I have to do to mitigate or resolve the failure, and how am I going to do that?”
- **FMEA as a whole should include:**
 - ❖ the design (dFMEA)
 - ❖ the instructions for use (uFMEA)
 - ❖ the manufacturing process (pFMEA)
 - ❖ All of these can have failure modes, and they can all have effects. In order to figure out how to resolve these, analysis must be done.

Other Tools Available

Traditionally FMEAs are captured in a spreadsheet/table data format

- Windchill Quality Solutions
- ReliaSoft's Xfmea
- Excel

DET = detection

FMEA = failure mode and effects analysis

FWREA = FISHING RATES

RSPD = responsible

RPN = risk priority number

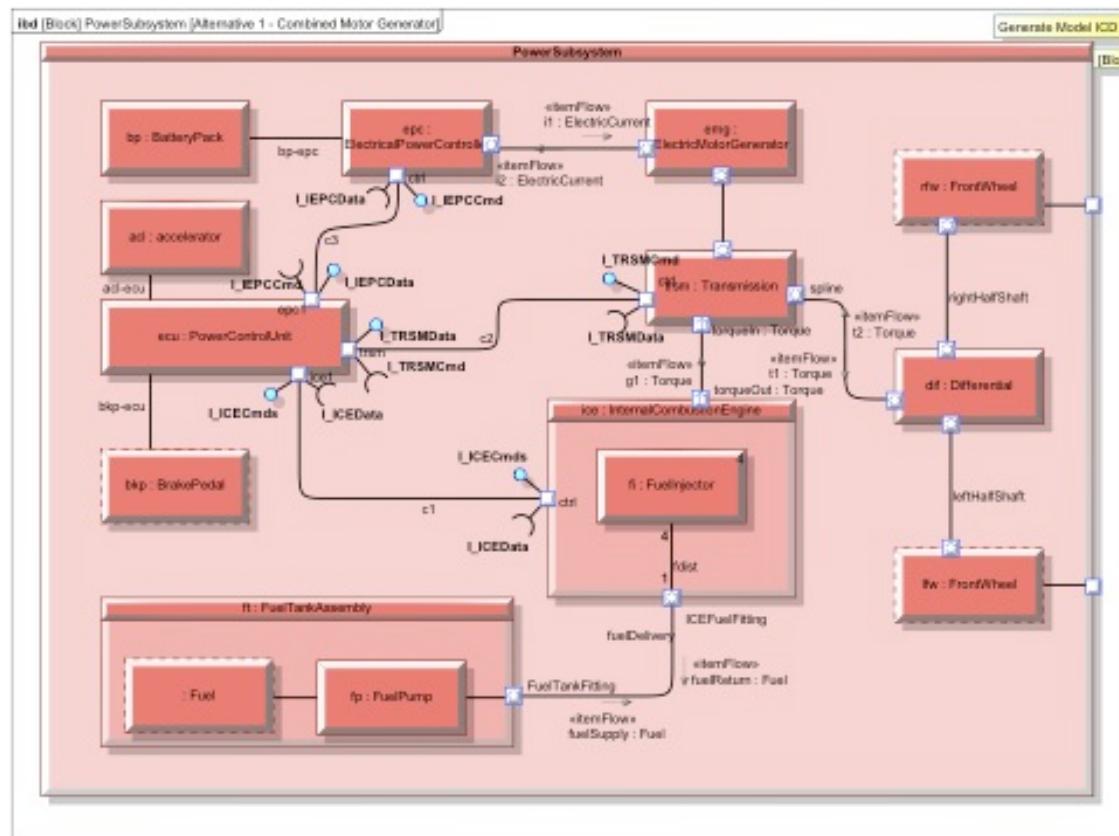
SEY = SERVICE

Process Steps in FMEA

- **Step 1: Identify potential failures and effects**
- **Step 2: Determine severity**
- **Step 3: Gauge likelihood of occurrence**
- **Step 4: Failure detection**
- **Risk priority number (RPN)**

Why Model Your FMEAs

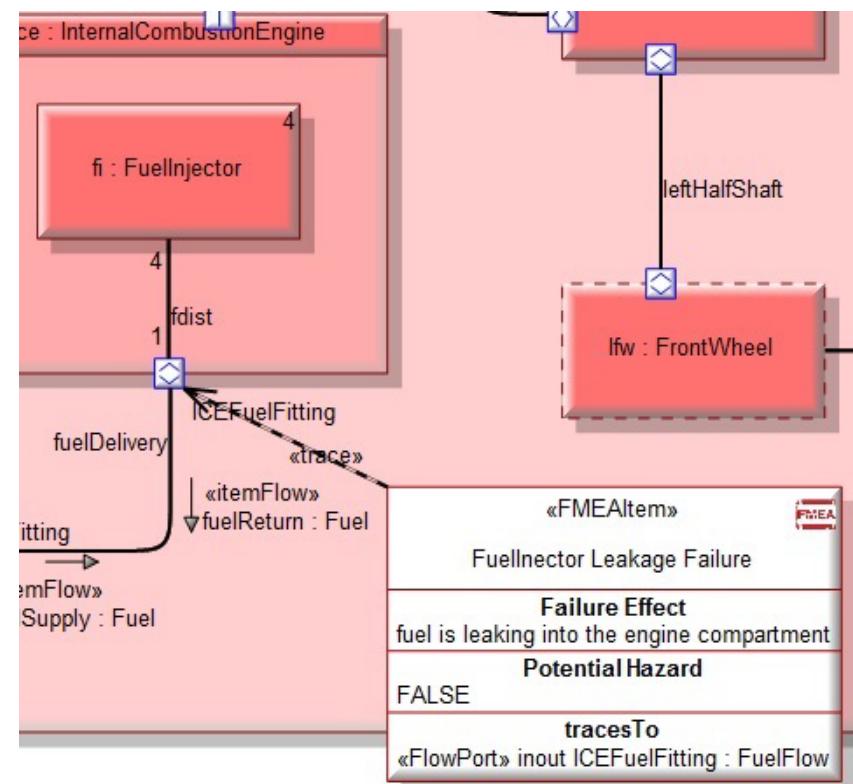
FMEAs can be modeled to be tied to your systems


- By doing modeling, the review process will be much easier because everything will be traced to what is necessary.
- The model can be used during the review process and generate any answers the reviewer may ask about the product.
- After the model is generated, you can then do traceability to your systems, subsystems, and requirements.
- You can also list your failure modes and the estimated effects.
- In addition to structural design, you can draw a process in an activity diagram, and then generate those linked items into the traditional spreadsheet format, or tool of choice.

How to Model Your FMEAs – Using SysML

Using SysML you can model anything in the real world. You can model down to the wire on a circuit board and highlight the failure due to EMF issues and more

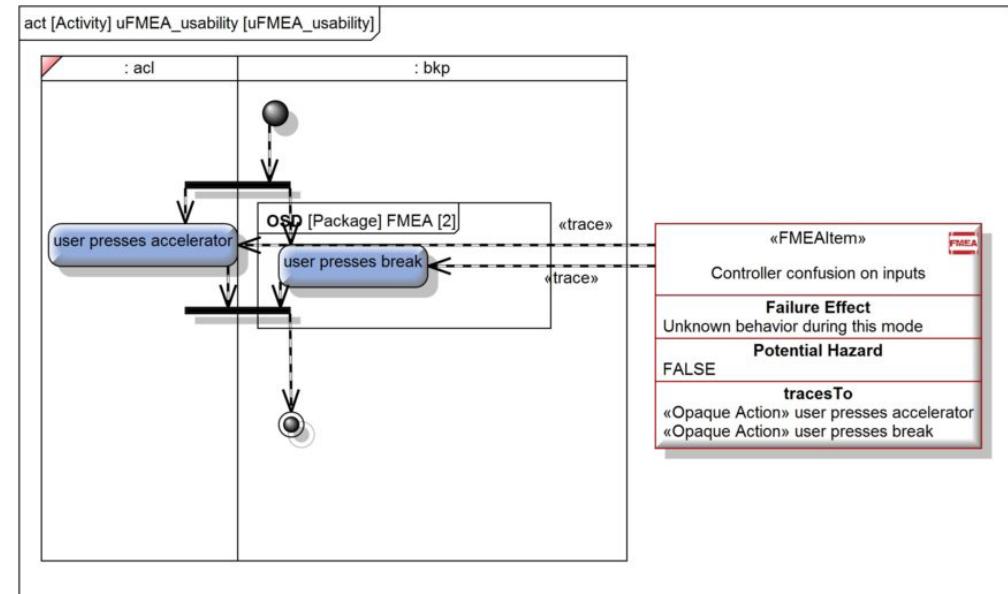
A Typical SysML Design With Physical Interfaces



How to Identify Failures

dFMEA - Using this profile, you can trace to your design or functions to create design FMEA

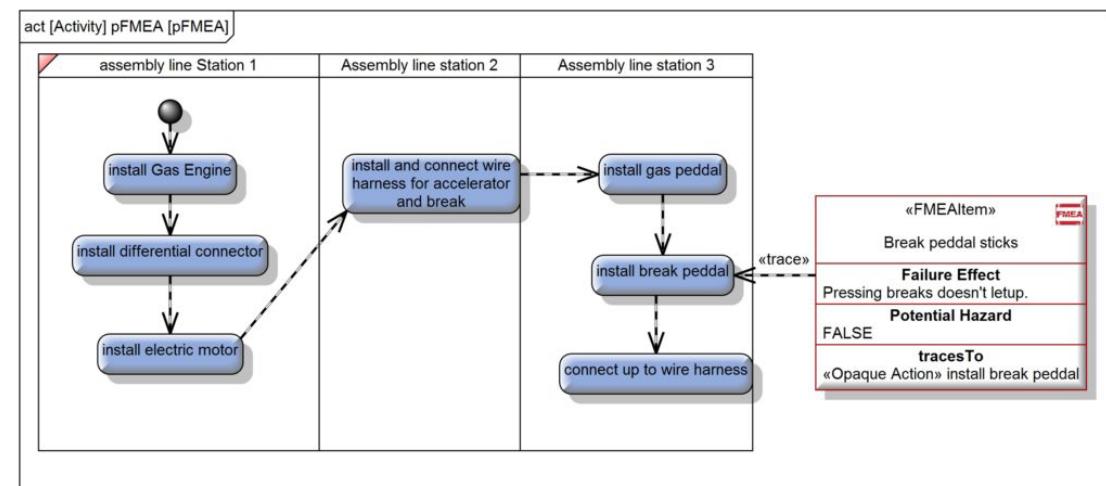
- Identify failures on any modeling item
- Create a trace relationship to set up the data relationship necessary to generate information into any FMEA tool or FMEA spreadsheet.



How to Identify Failures

uFMEA – Create a Usage FMEA to analyze how the user will use the system and the potential failure modes

- The best way to show usability in modeling is to do a use case and an activity diagram to describe flow
- Swim-lanes will be the systems that the user interacts with for that failure
- This information can also be traced to the systems it may affect



How to Identify Failures

pFMEA —defines the process of building the system and identifies potential failure modes during construction

- This is best described as an activity diagram where each swim-lane identifies the person or equipment involved in doing that process step
- The effects detection will be directly identified in the activity step

How to Mitigate Your Failure Modes

- Each FMEA Item will generate a row in the FMEA table tied to any modeling (MOF level) attribute that you need to identify as a failure in the system
- All values are generated into FMEA tools of your choosing or spreadsheet formats.

Failure Mode and Effect Analysis																	
Item Name:		FMEA Team:			Prepared by:												
					FMEA Date (Orig):					Revision:							
Process Step or Variable or Key Input	Potential Failure Mode	Potential Effect on Customer Because of Defect	S E V	Potential Causes	O C C	Current Process Controls	D E T	R P N	Risk Priority # to rank order concerns	Actions Recommended	Resp.& Target Date	Actions Taken	S E V	S O C C	D E T	Future RPN	
What is the process step? Or Variable ? Or Input ?	In what ways can the Process Step, Variable, or Key Input go wrong? (chance of not meeting requirements)	What is the impact on the Key Output Variables (customer requirements) or internal requirements?	How Severe is effect to the	What causes the Key Input to go wrong? (How could the failure mode occur?)	How/often is cause likely to	What are the existing controls that either prevent the failure mode from occurring or detect it should it occur?	How probable is detection of cause?			What are the actions for reducing the Occurrence of the cause, or improving Detection? Should have actions on high RPN's or Severity of 9 or 10.		Who's Responsible for the recommended action? What date?	What were the actions implemented? Include completion month/year. (Then recalculate resulting RPN.)	Future Severity	Future Occurrence	Future Detection	
Customer Application	Checks Being Printed Incorrectly	Checks Have To Be Re-issued	6	Incorrect Information On Application Form	4	Check of Application Form for Correct Information by Data Entry Operator	8	192		Clerk Reviews information with customer	Clerk Manager	Completed	8	2	4	64	
Data Entry	Checks Being Printed Incorrectly	Checks Have To Be Re-issued		Data Entry Error													

How to Mitigate Your Failure Modes

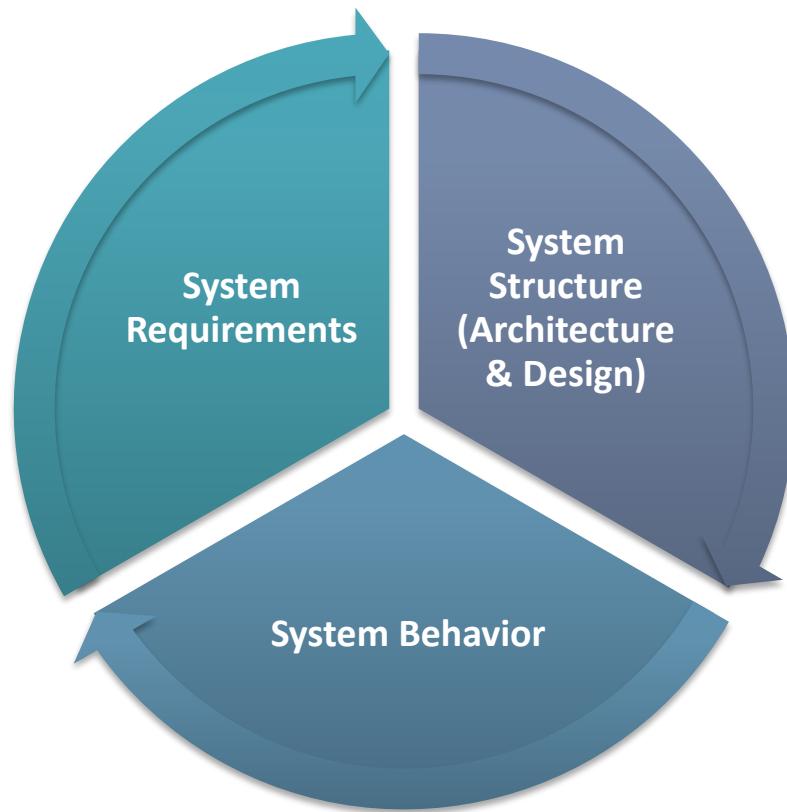
Each company has a unique set of FMEA columns or data that they want to capture with their failure modes

- Using the same technique, you can model your controls to mitigate these failures by tracing controls to the corresponding FMEA item
- This generic FMEA profile can be modified to handle whatever the needs are.

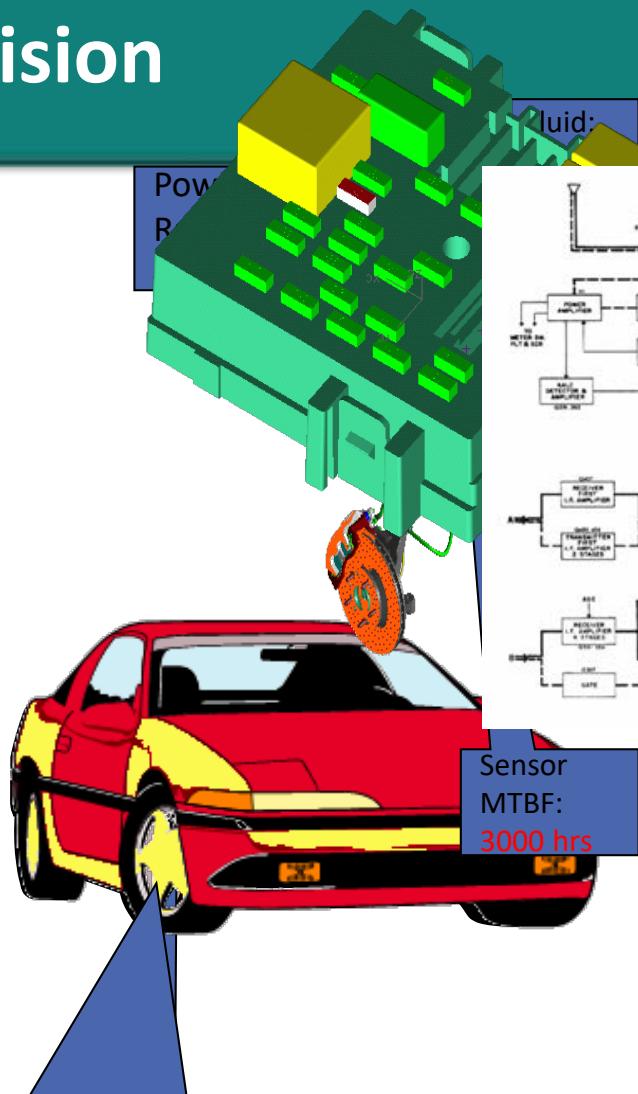
Why Create a FMEA | SysML System

SysML – a Modeling *Language*

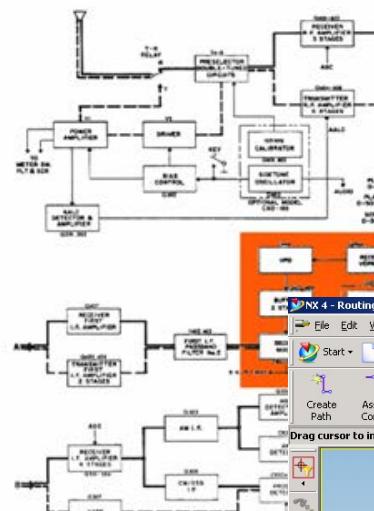
- Standardization
- Reusability
- Documentation and Traceability Reports
- Understanding of the Complete System



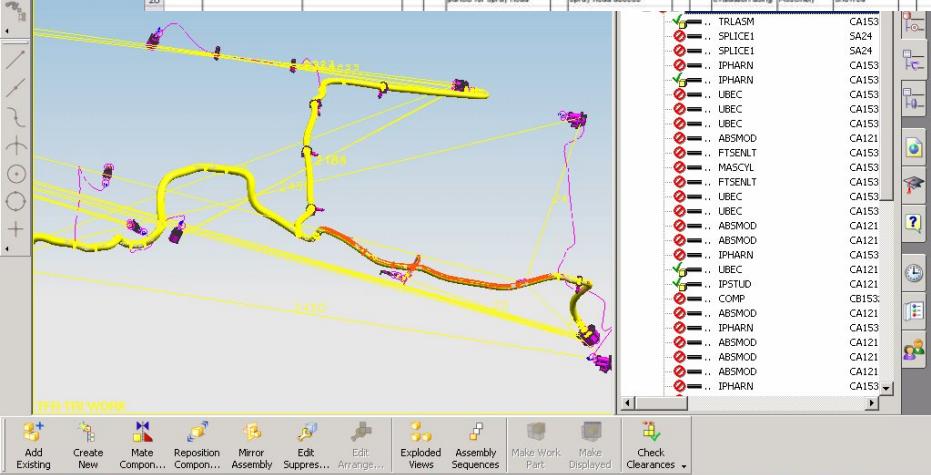
Why Create a FMEA | SysML System


SysML Allows for An Understanding of the Complete System

It Describes and Shows Interconnection of:


Integrated Systems Engineering

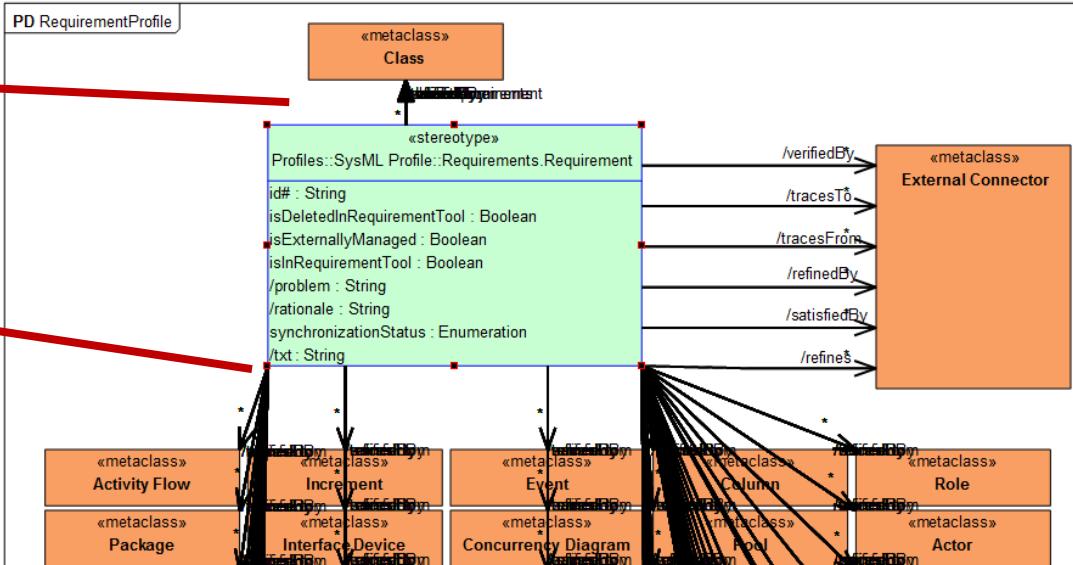
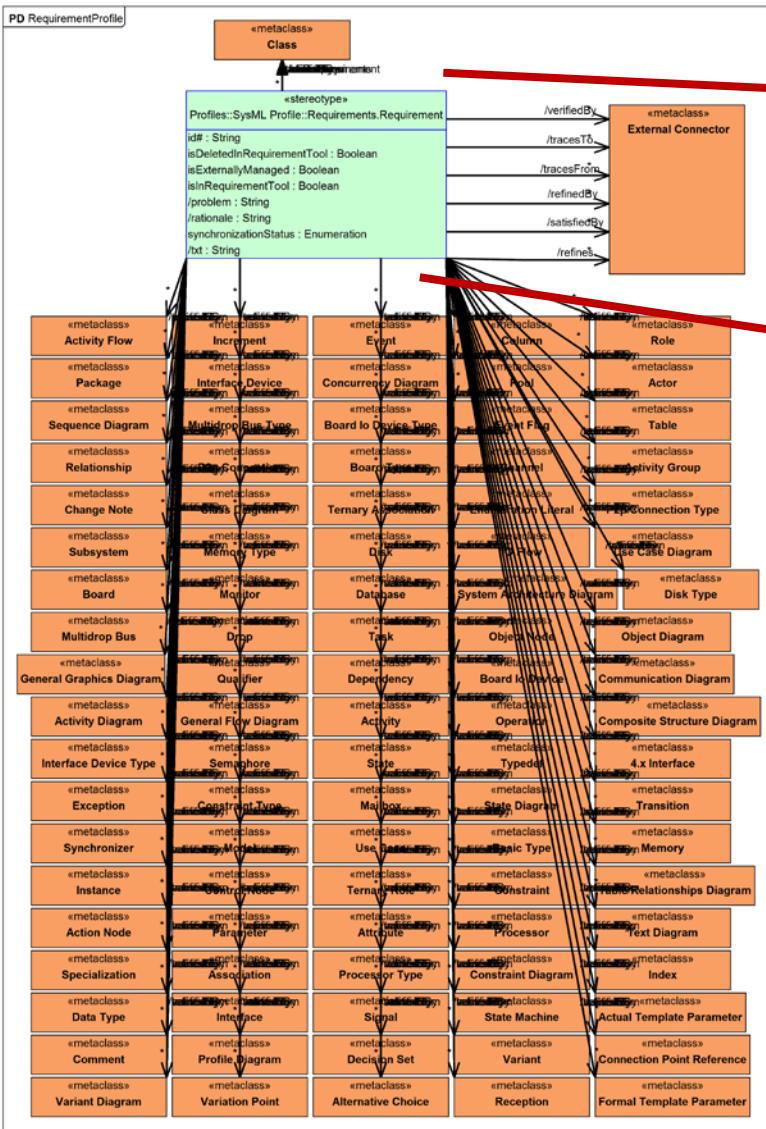
Vision



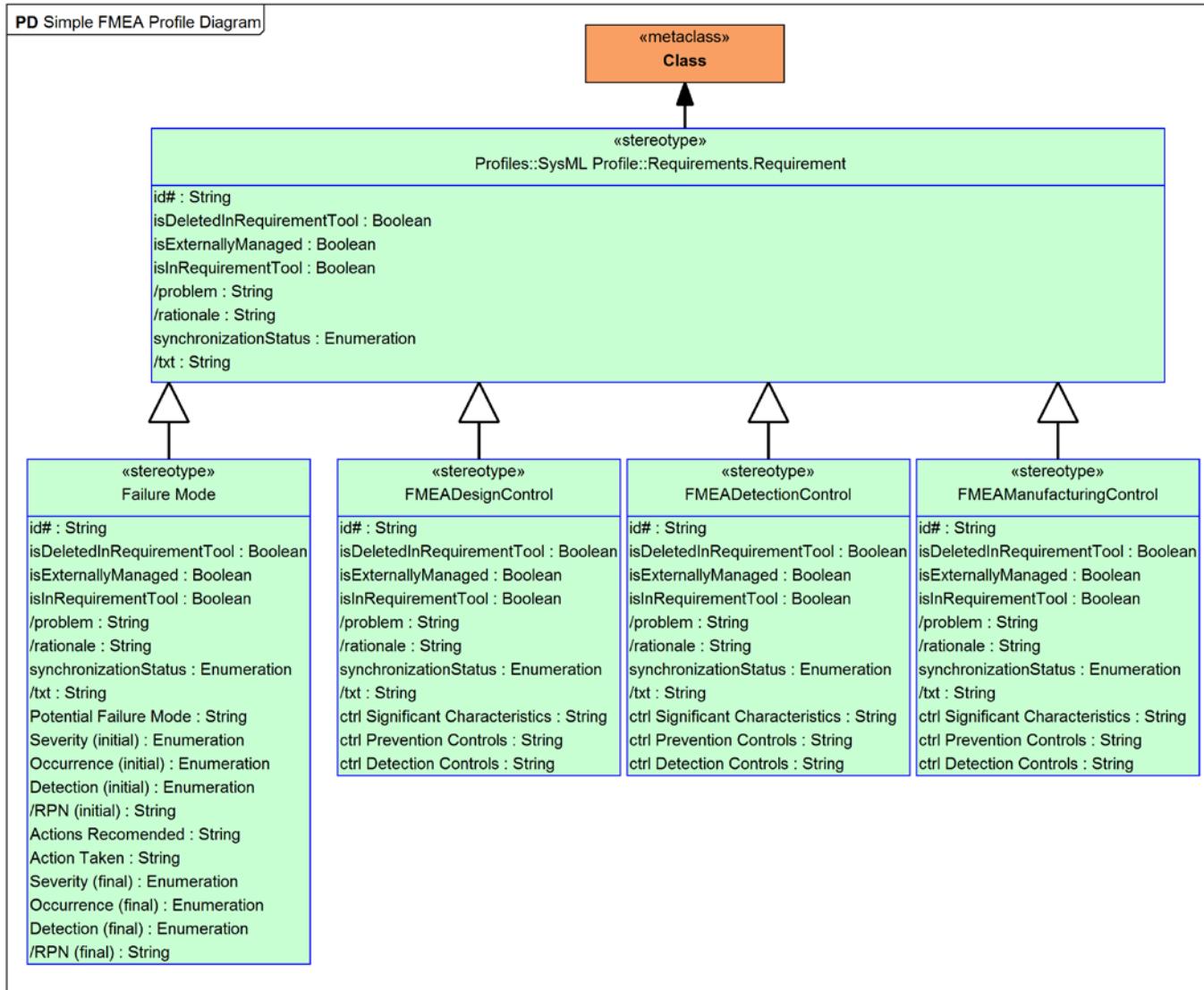
Minimum Turn Radius: 24 ft.

Dry Pavement Braking Distance at 60 MPH: 110 ft. ~~90 ft~~

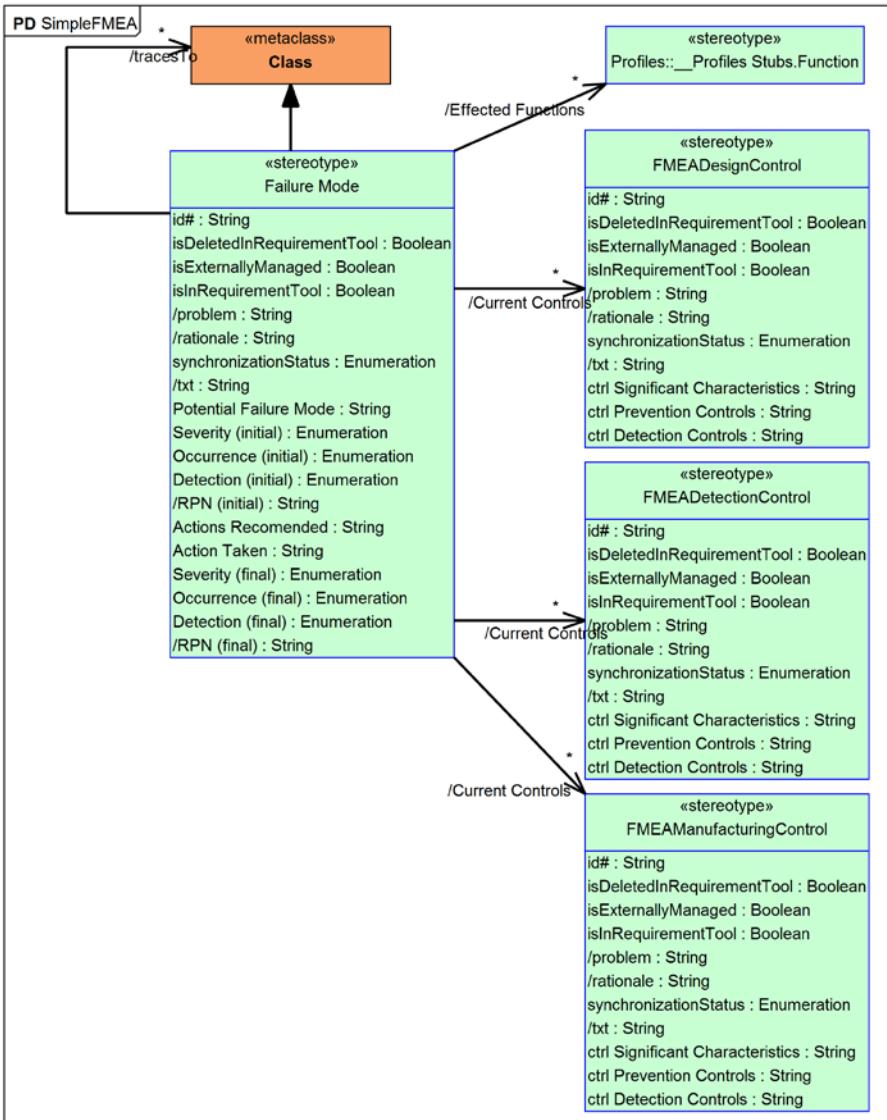
FAILURE MODE AND EFFECTS ANALYSIS (DESIGN FMEA)												FMEA Number:	1234				
Print #	01 03 Body	Rev	A	Design Responsibility:	Body Engineering				Prepared by:	J. Ford-Assembly Ops							
System/SubSystem/Component	SubSystem	Key Date	9/3/04				Date (Orig.)	8/3/04				Date (Rev)	8/22/04				
Team:	T. Fender- Car Prod. Dev., Childers- Man., J. Ford-Assembly Ops																
10																	
11																	
12	Item#	Potential Failure Mode	Potential Effect(s) of Failure	S	I	Potential Cause(s) of Failure	O	C	Current	R	Recommended Actions	Responsibility	Action Results				
13	Function			5	1	Mechanism(s) of Failure	9	1	Design	P. N.	S Target Date	Action Taken	S O D R				
14				V	Y	Failure	U	1	Control	C	Actual Date	T C M					
15																	
16	Front L/H	Corroded interior lower door panels	Undesirable factory appearance due to rust	5	N	Upper Edge of protective wax was application specified	2	Vehicle general durability test No. T-118 T-109 T-301	8	60	Add laboratory accelerated testing	A. Tete-Body Eng. 8 Assembly	Based on test results upper	4	2	3	24
17						Insufficient wax thickness specified	4	Vehicle general durability testing as above	6	160	Added laboratory	Combine w/test for	Test results (Test No. 1481)	4	1	2	8
18						Inappropriate wax formulation specified	2	Physical and chemical lab test report No. 1265	2	20	None			3	1	4	12
19						Entrapped air prevents wax from entering	5	Design and investigation using non-functioning spray	8	200	Add lab evaluation	Body Eng. & Assembly	Based on test, 3 additional vent	7	2	2	28
20						Wax application plugs door drain holes	3	Laboratory test using "worst case" wax	1	15	None			7	2	2	28
21						Insufficient room between canister for spray head	4	Drawing evaluation of spray head access	5	100	Add lab evaluation	Body Eng. & Assembly	Based on test, 3 additional vent	7	3	2	42
22	Front R/H	Corroded interior lower door panels	Undesirable factory appearance due to rust	4	N	Upper Edge of protective wax was application specified	5	Vehicle general durability test No. T-118 T-109 T-301	8	160	Add laboratory accelerated testing	A. Tete-Body Eng. 8 Assembly	Based on test results upper	3	2	3	18
23						Insufficient wax thickness specified	4	Vehicle general durability testing as above	3	48	None	Combine w/test for	Test results (Test No. 1481)	7	1	4	28
24						Inappropriate wax formulation specified	2	Physical and chemical lab test report No. 1265	4	160	None			7	6	3	52
25						Entrapped air prevents wax from entering	5	Design and investigation using non-functioning spray	1	100	Add lab evaluation	Body Eng. & Assembly	Based on test, 3 additional vent	7	4	1	28
26						Wax application plugs door drain holes	3	Laboratory test using "worst case" wax	1	12	None			7	4	2	56
27						Insufficient room between canister for spray head	4	Drawing evaluation of spray head access	9	96	Add lab evaluation	Body Eng. & Assembly	Based on test, 3 additional vent	7	3	2	42

Solutions Descriptions

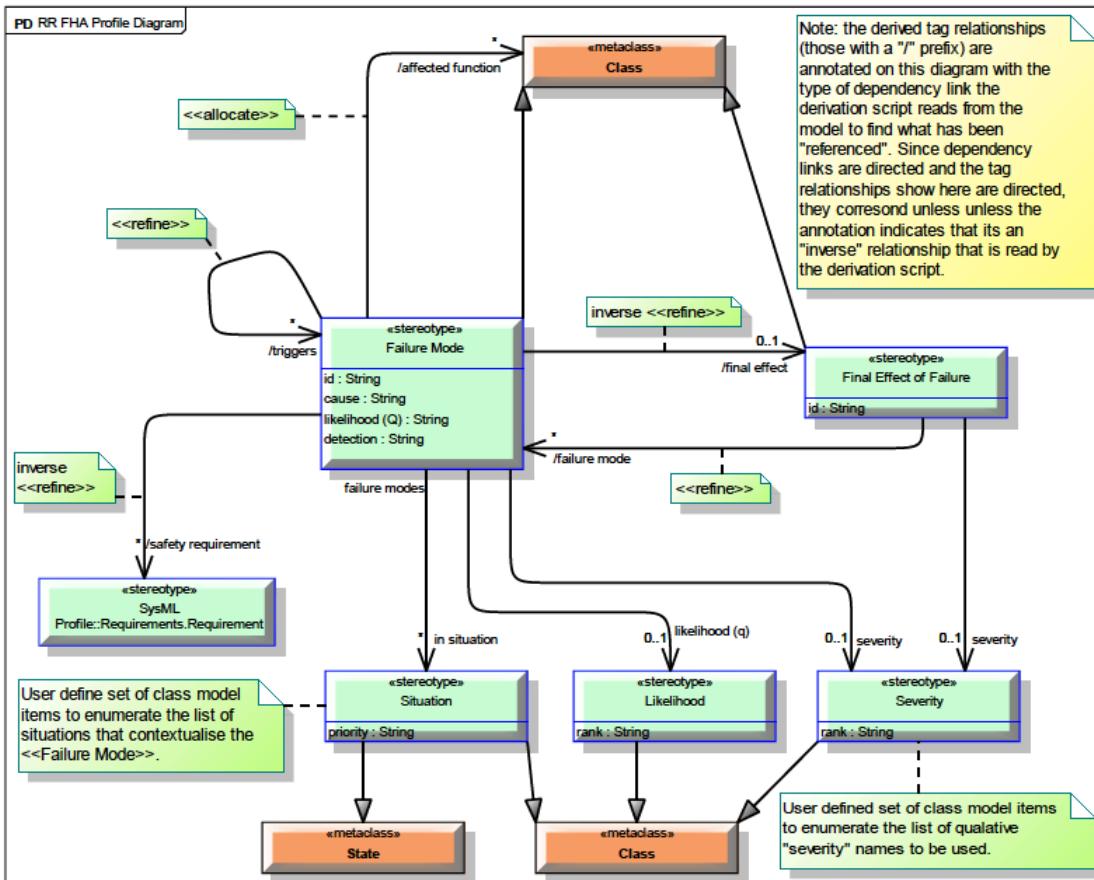


- MBSE Solutions Meta Structure
- Rolls-Royce FHA
- OMG What's happening.


MBSE.Solutions Meta Structure

MBSE.Solutions FMEA Meta Profile continued

MBSE.Solutions Meta FMEA Profile



- Tie Failure modes to anything in the model to identify the failing part.
- Or Tie it directly to your Function that is failing because of the form that is allocated to this. (Functional Decomposition/Allocation – see website for ideas.)
- Design Controls point to new requirements, new design elements.
- Detection Control will point to how you identify the failure to the user outputs, or flag errors and let user see them during maintenance
- Manufacturing Controls will point to manufacturing processes or design/behavior you identify in your modeling to help with manufacturability of your system.

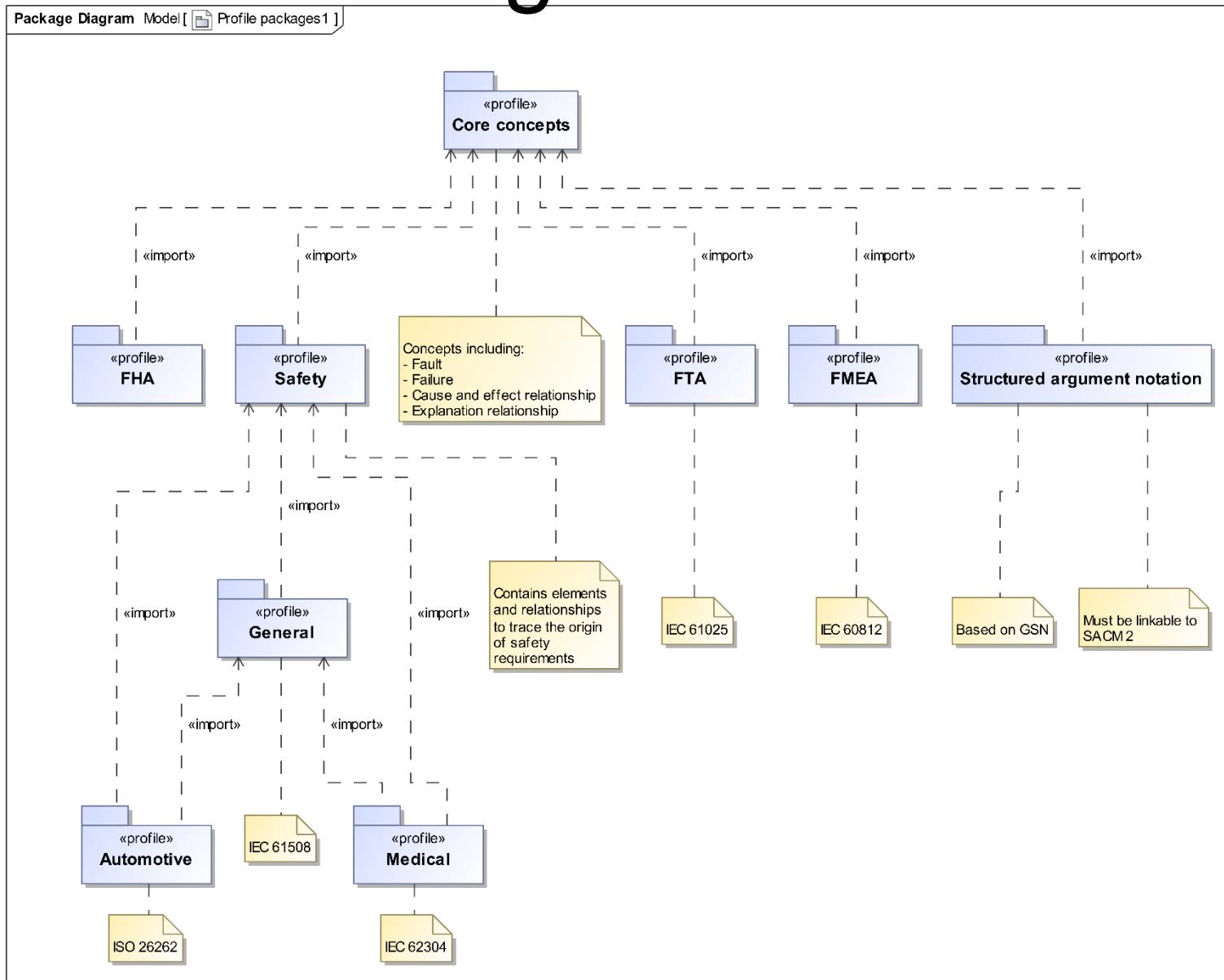
Other Meta FMEA models (Rolls-Royce)

This profile diagram shows the FHA stereotypes, their value tags, and their reference tag relationships (Dave Banham Global Software Capability Group – Controls SCU Rolls-Royce)

- There are a number of relationships that need to be established between «Failure Mode» and «Final Effect» model items that require the use of «allocate» and «refine» dependency relationships
- These are noted on the affected reference tag connectors on this diagram
- As the reference tag connectors are directed (there is an arrowhead) and as the «allocate» and «refine» dependency relationships are directed, the intent is that the direction of use follows the direction between the stereotypes on the profile diagram, unless otherwise indicated by the use of the word "inverse"

What's happening at the OMG.

- **Background**
- **Structure**
- **Mandatory Requirements**
- **Non-mandatory Requirements**


Material is from OMG Briefing (06/25/2017)

Chair: Geoffrey Biggs, National Institute of Advanced Industrial Science and Technology, Japan

Background

- RFP requests a UML profile for use with SysML
- Profile must provide for modelling:
 - Safety
 - Reliability (FTA, FMEA, fault modelling)
 - Structured assurance case argument visualisation
- Enable the above as an integrated part of a system model
- Enable automation of common tasks that are currently performed manually
- RFP issued in March 2017 meeting

Package structure

Mandatory Requirements

Requirement - General	Status
Profile to extend SysML with safety and reliability features	In progress
Be compatible with ReqIF and don't break SysML's compatibility	Not started
Support traceability between system, safety and reliability	Supported
Be extensible to additional domains	Not started
Suitable diagrams for displaying safety and reliability information	Supported
Tabular views	Supported
Support model transforms	Supported
Model properties such as probabilities and severities	Supported

Most **supported** features are nevertheless incomplete and subject to change

Mandatory Requirements

Requirement – Safety information	Status
Provide support for one or more domains from aerospace automotive, medical, railways	Supported
Comply with existing safety standards in relevant domains	Supported
Support the assignment of integrity levels	In progress

Requirement – Reliability information	Status
Support modelling Fault Tree Analysis in compliance with IEC 61025	In progress
Provide a method to mark an FTA as complete or incomplete	Not started
Support modelling FMEA/FMECA in compliance with IEC 60812	Supported
Provide a method to mark an FMEA/FMECA as complete or incomplete	Not started

Most **supported** features are nevertheless incomplete and subject to change

Mandatory Requirements

Requirement – Model transformations	Status
APIs supporting the extraction of safety/reliability information from a combined system/safety/reliability model	Not started
Support for the reverse of the above	Not started
Make the above deterministic and repeatable	Not started

Requirement – Argument specification	Status
Support specifying safety assurance case arguments	Supported
Represent the above in a visual manner	Not started
Integration with the system model	Supported
Support for showing the derivation of a safety goal in a single diagram	Supported
Support modular safety assurance case arguments	Not started

Most **supported** features are nevertheless incomplete and subject to change

Mandatory Requirements

Requirement – Fault modelling	Status
Support modelling faults in system elements	Not started
Allow modelling the propagation of faults	Not started
Integrate fault modelling features with FTA and FMEA/FMECA	Not started
Support modelling the context in which a fault occurs	Not started
Support modelling the connection between faults and their results	Not started
Support modelling the connection between faults and their counter-measures	Not started

Most **supported** features are nevertheless incomplete and subject to change

Non-mandatory features

Feature	Status
Allow use with pure UML models	Will not support
Provide direct support for additional safety/reliability analysis methods	Supported (FHA)
Provide support for additional domains	None as yet
Structure profile so that concepts useful outside safety are usable by other profiles	Will support
Provide a mapping from structured argument models to SACM 2	Intend to support
Use SACM 2 to provide structured argument modelling support	Will not support

Next Steps?

- **FMEA should be a team effort**
 - ❖ Members should be experts of every aspect affecting the process.
 - ❖ Every member should be able to establish the scope, boundaries and goal of the study
- **Better scoring system to ensure objectivity**
 - ❖ Tools rely on objectivity and eliminates the qualifying characteristics of variables
 - ❖ Scoring are only based on educated projections and arriving at the RPN is by multiplying the scores, slight variation will effectively double the RPN score.

