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State of the Practice for Systems Development
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Document-centric, not 
data-centric or 
verification-centric

Huge investment in 
planning that doesn’t 
reflect actual project 
execution

Not responsive 
to change

Quality is addressed 
with expensive and 
error-prone manual 
review and update 
processes

Typically results in 
long integration and 
validation cycles

Documents 
(engineering data) 
are difficult to 
manage over the 
long haul

Regulatory standards 
compound the 
problems (e.g. 
DO0178, IEC 62304)

Insufficiently 
addresses system 
dependability 
concerns
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Improve quality through continuous feedback
Verification

Formal analysis
Review
Testing via execution or simulation

Validation: Customer feedback (meet the need)
Correctness
Appropriateness
Usability

Dependability: Analysis of safety, reliability, & security

Efficiency through
Concentrate on high-value tasks
Avoid rework
Paying attention to how you’re doing against 
goals

Project retrospective
Risk management

Planning
Don’t plan beyond the fidelity of the information you have
Plan enough but not more than that
Adjust plans based on “truth on the ground” (metrics)

Key Concepts for Agility

Primarily build executable things
Verify them continuously
This means MODELS

Active and continuous risk mitigation
Monitor project success

Dynamic planning
Responsive to Change
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What does “agile” mean for Systems Engineering?
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Work iteratively 
and 

incrementally

Adjust work 
tasks and 

plans to meet 
business & 

industry needs

Monitor 
progress and 
adjust plans 
dynamically

Verify work 
products 

continuously

Continuously 
assess safety, 

reliability, & 
security

Incrementally 
update 

traceability as 
data stabilizes
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Computable models are essential for Agile MBSE

precis
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accuracy verification
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coverage
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Syntactic 
Verification

Semantic 
Verification

Syntactic Verification
– “well-formed” (compliance in form)

Performed by quality assurance personnel
• Audits – work tasks are performed as per plan 

and guidelines
• Syntactic review – work products conform to 

standard for organization, structure and format

What do we mean by “verification”?

Semantic Verification
• “correct” (compliance in meaning)

Performed by engineering personnel
Three basic techniques

• Testing – requires executability  of work products, 
impossible to fully verify

• Formal methods – strongest but hard to do and 
subject to invariant violation

• Semantic review (subject matter expert & peer) –
most common, weakest means
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Scenario Driven Use Case Construction / Verification

Making it Agile
Loop

Loop
Conceptualize requirement aspect
Incrementally augment model
Verify

Repeat until all requirements added
Repeat for all use cases

< 1 hr
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High Fidelity Models are verifiable
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… and may be built and verified 
incrementally, enabling agility
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Verification may be manually done or via Test Conductor
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Test outcome Test case definition Test case test case result
Test Architecture

(generated)

Test Conductor implements the OMG UML Testing Profile standard
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Determine the degree of verification with model coverage 
analysis
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Functional Analysis via Executable Requirements?
• A functional requirement is a specification of an input-output control or data transformation 

or flow
• A quality of service requirements is a specification of how well a control or data 

transformation is achieved 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall be “real 
good” and “very fast”  and 
“generally awesome”

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

Control surfaces shall be 
updated every 10 ms +/-
2 ms with an accuracy of 
.5 cm and a latency of no 
more than 1 ms

Poor 
requirements

Much better
requirements

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

Cyberattcks shall be 
detected within 10 ms on 
onset and result in active 
security measures 
including incident reports. 
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Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 

Requirement

The system shall perform 
error correct and 
detection during 
initialization and 
operation. 
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Test-Driven Development for MBSE Work Products

§ The principle behind TDD is to develop and apply test cases as you develop a system to 
demonstrate that it is correct

– This is done in parallel with the system development and not ex post facto
– This is about defect avoidance not so much defect identification and repair 

§ TDD applies to the development of complex system use case, architecture and design 
models

12
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Integrated Safety and Reliability Analysis
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§ Fault Tree Analysis 
(FTA) connects 
hazards with logical 
combinations of 
events, conditions, 
errors, and faults

§ Allows you to identify
4Effects of 

combinations of 
conditions and 
events on safety

4Safety measures
4Safety requirements
4 Impacts of 

architectural, 
technological, and 
design choices on 
safety UML FTA 

Profile V2
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Integrated Safety and Reliability Analysis
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Mapping Requirements to Fault Tree Analysis
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Mapping Design to Fault Tree Analysis
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Fault isolation

Fault detection

Fault control measure
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Model-Based Threat Analysis

§ Security Analysis Diagram (SAD) 
is like a Fault Tree Analysis 
(FTA) but for security, rather 
than safety

– It looks for the logical 
relation between assets, 
vulnerabilities, attacks, 
and security violations

– Permits reasoning about 
security

• What kind?
• How much?
• Risk assessments
• Cost of security 

penetration
• Adequacy of 

countermeasures
• Who has access to assets

17
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Auto-generation of summary documentation from models
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Hazard Analysis

Documents are generated automatically from 
engineering work in models

Typical auto-generated documentation includes
§ Traceability matrix
§ Hazard Analysis
§ FMEA / FMECA
§ Cyberphysical threat analysis table
§ Interface Control Document
§ Design Description
§ Architecture Notebook
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Harmony Agile MBSE Delivery Process
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Overall Product Development Workflows: the standard V
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• Easy to plan
• More thorough up-front 

analysis makes it 
applicable for systems 
with high-risk elements 
of long lead times 
(typically HW)

• Plan assumes small 
number of minor defects

• Plan assumes little or no 
change

• Assumes “infinite 
knowledge”
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• Relatively easy to plan
• Has opportunities to adjust 

plans

• Supports incremental 

verification and release

• Has “dead time” because 
different people are 

working on different 

activities

• May be inappropriate for 

high-risk items of long lead 
time (typically hardware)

Overall Product Development Workflows: the fully incremental
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Overall Product Development Workflows: the hybrid agile V
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• Has opportunities to adjust 
plans

• Supports incremental 
verification and release

• Has no “dead time”

• Complex to plan
• Requires work to keep 

work activities coordinated
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Initiate project
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Harmony Process for Agile MBSE
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Harmony Process for Agile MBSE
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Logical Data Schema Modeling
§ A logical data schema identifies the logical properties of important data elements and types and 

the relations among such data elements and their metadata

§ Although the name is “data schema” it includes physical, materiel, and energy flows specification 
as well

26
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Harmony aMBSE: System Requirements Def & Analysis
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Alternative approaches to Build Executable Model of UC
Alternative 1: 

Scenario Based
Alternative 2:
Flow Based

Alternative 3
State Based

Create model 
context

Block Diagram Identify functional 
flow large-scale 
view

Activity diagram Create Model 
Context

Block Diagram

Identify sequences 
of messages 
between system 
use case and 
actors

Sequence Diagram Derive sequences 
from functional flow

Sequence diagram Create executable 
state machine

State Diagram

(optional) cluster 
sequences together 
as flows

Activity Diagram Create model 
context

Block Diagram Identify interfaces Block Diagram

Identify interfaces Block Diagram Identify interfaces Block Diagram Derive sequences 
from functional flow

Sequence diagram

Create executable 
state machine

State Diagram Create executable 
state machine

State Diagram Execute State 
machine

Model execution 
views

Execute State 
machine

Model execution 
views

Execute State 
machine

Model execution 
views

Repeat until all 
requirements and 
sequence variants 
covered

Repeat until all 
requirements and 
sequence variants 
covered

Repeat until all 
requirements and 
sequence variants 
covered

28
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Today’s Example: High Performance Treadmill: SpeedDemon™
§ Biometrics

– Heart rate
– Speed
– Power / VO2 max
– Elapsed time/interval time
– Ground contact time
– Vertical oscillation
– Cadence

§ Programmable protocols (workouts)

§ Performance storage and analytics

§ Music and video playlists

§ Virtual racing (simulated or over-the-
web)

29
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SpeedDemon Use Cases

30
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Allocation of requirements to Control Speed Use Case
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Allocate Requirements to Execute Protocol Use Case
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Showing allocations within a matrix (generated)
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Create context for use case execution model

34
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Creating an activity diagram to show behavioral flows
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Create scenarios from activity diagram

36
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Create Behavioral Model Realizing Requirements for Use Case
§ Notes

– This is after several 
Model-Verify–
Elaborate 
iterations

– Start with 2-4 
states, and add 
more each 
nanocycle 
iteration

§ Questions still remain
– Can the system 

be commanded 
into OFF directly?

– How are timing 
requirements 
verified?

– Reqs for 
degraded 
operation are now 
discovered to be 
inadequate – add 
new reqs!

37
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Verify Requirements Adequacy Through Execution
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Identify gaps – add missing reqs – elaborate model - reexecute
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Add traceability

40

Stakeholder requirements

System requirements

Generated trace matrix
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Generate Logical Interfaces
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Systems Architectural Analysis
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Systems Architectural Analysis
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SysML Parametric Diagram for Trades for SpeedDemon Motor

44

Compute MOEs 
from utility curves

Analyze trades of 
different solutions
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SysML Parametric Diagram for Trades for UI system
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Outputs of the trade analysis
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Architectural Design
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Activity: Allocate Use Cases to Subsystems
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Architecture View for Control Flow (UML & SysML 1.2)
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Standard 
port

Flow port
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Architecture View for Control Flow (SysML 1.3)
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Proxy ports are typed by 
Interface Blocks

Interface Block

Interface Block
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Architectural View – Subsystem Diagram
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Architectural View – Subsystem Detail Structure
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Architecture with (logical) subsystem interfaces
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Architectural Verification via Simulation/Execution
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Subsystem Specification (Control Unit)
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Subsystem Specification (Display Unit)
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Update / Elaborate Data/Flow Schema
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Capturing ICDs in the Model

§ ICDs are not just a list of services but include:
– For each Service

• Functional Description
• Preconditions
• Postconditions
• Invariants
• Performance
• Error handling
• Synchronization type
• For each parameter

Description
Type
Units
Valid subrange
Default value

§ This metadata can be easily added as tags 
defined in stereotypes

58
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Capturing ICDs in the Model
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Use flow ports for continuous value interfaces
Use standard ports for discrete interfaces (events and calls)
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Hand off Workflow
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Hand off elements 
common to 

multiple 
subsystems to the 

shared model

Hand off 
specification 
elements to 
individual 

subsystems

Allocate 
requirements to 

engineering 
disciplines
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Convert Logical to Physical Interfaces
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Logical Interfaces
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SpeedDemon Physical Interfaces (using CAN™ Bus)
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Interface structure specification

Instance specifications for messages
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Subsystem Deployment Architecture (SW-EE-ME)
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Instance Specs for SW-EE Interfaces in Control Unit
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Allocation on Subsystem requirements to engineering 
disciplines
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You’re Agile, but are you Meta-Agile?
Using Agile to Adopt Agile MBSE
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Architect

Plan

Pilot

Enact

Assess

Determine organizational 
objectives

Discover as-is process
Identify issues & problems

Determine goal-as-is gap
Identify future needs
Define to-be process, 
practices, and tools

Define steps to 
incrementally adopt

Specific metrics to 
dynamically measure on-

going success

Enact in a small controlled
project

Measure success
Adapt approach based on 

evidence

Phase deployment 
of plan into the 

enterprise, including 
training, mentoring 

and metrics
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Summary
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MBSE provides
precision and 

verifiability to the SE 
Process Agile methods add 

quality, responsiveness
and adaptability to the 

process

Continuous verification 
allows you to avoid 

costly defects

IBM’s Harmony Process 
defines an agile MBSE 

process with industry best 
practicesIBM’s Rational tooling 

supports MBSE and agile 
methods 

Adopt Agile in an 
incremental, measured 
fashion for best results
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