
© 2016 IBM Corporation
Usage & reproduction
rights granted to INCOSE

Bruce Powel Douglass, Ph.D.
Chief Evangelist, Global Technology Ambassador
IBM IoT
Bruce.Douglass@us.ibm.com
Twitter: @BruceDouglass
IBM: www-01.ibm.com/software/rational/leadership/thought/BruceDouglass.html

Agile Model-Based Systems
Engineering (aMBSE)

mailto:Bruce.Douglass@us.ibm.com

© 2016 IBM Corporation

State of the Practice for Systems Development

2

Document-centric, not
data-centric or
verification-centric

Huge investment in
planning that doesn’t
reflect actual project
execution

Not responsive
to change

Quality is addressed
with expensive and
error-prone manual
review and update
processes

Typically results in
long integration and
validation cycles

Documents
(engineering data)
are difficult to
manage over the
long haul

Regulatory standards
compound the
problems (e.g.
DO0178, IEC 62304)

Insufficiently
addresses system
dependability
concerns

© 2016 IBM Corporation

Improve quality through continuous feedback
Verification

Formal analysis
Review
Testing via execution or simulation

Validation: Customer feedback (meet the need)
Correctness
Appropriateness
Usability

Dependability: Analysis of safety, reliability, & security

Efficiency through
Concentrate on high-value tasks
Avoid rework
Paying attention to how you’re doing against
goals

Project retrospective
Risk management

Planning
Don’t plan beyond the fidelity of the information you have
Plan enough but not more than that
Adjust plans based on “truth on the ground” (metrics)

Key Concepts for Agility

Primarily build executable things
Verify them continuously
This means MODELS

Active and continuous risk mitigation
Monitor project success

Dynamic planning
Responsive to Change

3

© 2016 IBM Corporation

What does “agile” mean for Systems Engineering?

4

Work iteratively
and

incrementally

Adjust work
tasks and

plans to meet
business &

industry needs

Monitor
progress and
adjust plans
dynamically

Verify work
products

continuously

Continuously
assess safety,

reliability, &
security

Incrementally
update

traceability as
data stabilizes

© 2016 IBM Corporation5

Computable models are essential for Agile MBSE

precis
ion

accuracy verification

validation
coverage

co
ns

iste
nc

y

© 2016 IBM Corporation

Syntactic
Verification

Semantic
Verification

Syntactic Verification
– “well-formed” (compliance in form)

Performed by quality assurance personnel
• Audits – work tasks are performed as per plan

and guidelines
• Syntactic review – work products conform to

standard for organization, structure and format

What do we mean by “verification”?

Semantic Verification
• “correct” (compliance in meaning)

Performed by engineering personnel
Three basic techniques

• Testing – requires executability of work products,
impossible to fully verify

• Formal methods – strongest but hard to do and
subject to invariant violation

• Semantic review (subject matter expert & peer) –
most common, weakest means

6

© 2016 IBM Corporation7

Scenario Driven Use Case Construction / Verification

Making it Agile
Loop

Loop
Conceptualize requirement aspect
Incrementally augment model
Verify

Repeat until all requirements added
Repeat for all use cases

< 1 hr

© 2016 IBM Corporation

High Fidelity Models are verifiable

8

… and may be built and verified
incrementally, enabling agility

© 2016 IBM Corporation

Verification may be manually done or via Test Conductor

9

Test outcome Test case definition Test case test case result
Test Architecture

(generated)

Test Conductor implements the OMG UML Testing Profile standard

© 2016 IBM Corporation

Determine the degree of verification with model coverage
analysis

10

© 2016 IBM Corporation

Functional Analysis via Executable Requirements?
• A functional requirement is a specification of an input-output control or data transformation

or flow
• A quality of service requirements is a specification of how well a control or data

transformation is achieved

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall be “real
good” and “very fast” and
“generally awesome”

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

Control surfaces shall be
updated every 10 ms +/-
2 ms with an accuracy of
.5 cm and a latency of no
more than 1 ms

Poor
requirements

Much better
requirements

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

Cyberattcks shall be
detected within 10 ms on
onset and result in active
security measures
including incident reports.

11

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

Requirement

The system shall perform
error correct and
detection during
initialization and
operation.

© 2016 IBM Corporation

Test-Driven Development for MBSE Work Products

§ The principle behind TDD is to develop and apply test cases as you develop a system to
demonstrate that it is correct

– This is done in parallel with the system development and not ex post facto
– This is about defect avoidance not so much defect identification and repair

§ TDD applies to the development of complex system use case, architecture and design
models

12

© 2016 IBM Corporation

Integrated Safety and Reliability Analysis

13

§ Fault Tree Analysis
(FTA) connects
hazards with logical
combinations of
events, conditions,
errors, and faults

§ Allows you to identify
4Effects of

combinations of
conditions and
events on safety

4Safety measures
4Safety requirements
4 Impacts of

architectural,
technological, and
design choices on
safety UML FTA

Profile V2

© 2016 IBM Corporation

Integrated Safety and Reliability Analysis

14

© 2016 IBM Corporation

Mapping Requirements to Fault Tree Analysis

15

© 2016 IBM Corporation

Mapping Design to Fault Tree Analysis

16

Fault isolation

Fault detection

Fault control measure

© 2016 IBM Corporation

Model-Based Threat Analysis

§ Security Analysis Diagram (SAD)
is like a Fault Tree Analysis
(FTA) but for security, rather
than safety

– It looks for the logical
relation between assets,
vulnerabilities, attacks,
and security violations

– Permits reasoning about
security

• What kind?
• How much?
• Risk assessments
• Cost of security

penetration
• Adequacy of

countermeasures
• Who has access to assets

17

© 2016 IBM Corporation

Auto-generation of summary documentation from models

18

Hazard Analysis

Documents are generated automatically from
engineering work in models

Typical auto-generated documentation includes
§ Traceability matrix
§ Hazard Analysis
§ FMEA / FMECA
§ Cyberphysical threat analysis table
§ Interface Control Document
§ Design Description
§ Architecture Notebook

© 2016 IBM Corporation

Harmony Agile MBSE Delivery Process

19

© 2016 IBM Corporation

Overall Product Development Workflows: the standard V

20

• Easy to plan
• More thorough up-front

analysis makes it
applicable for systems
with high-risk elements
of long lead times
(typically HW)

• Plan assumes small
number of minor defects

• Plan assumes little or no
change

• Assumes “infinite
knowledge”

© 2016 IBM Corporation21

• Relatively easy to plan
• Has opportunities to adjust

plans

• Supports incremental

verification and release

• Has “dead time” because
different people are

working on different

activities

• May be inappropriate for

high-risk items of long lead
time (typically hardware)

Overall Product Development Workflows: the fully incremental

© 2016 IBM Corporation

Overall Product Development Workflows: the hybrid agile V

22

• Has opportunities to adjust
plans

• Supports incremental
verification and release

• Has no “dead time”

• Complex to plan
• Requires work to keep

work activities coordinated

© 2016 IBM Corporation

Initiate project

23

© 2016 IBM Corporation

Harmony Process for Agile MBSE

24

© 2016 IBM Corporation

Harmony Process for Agile MBSE

25

© 2016 IBM Corporation

Logical Data Schema Modeling
§ A logical data schema identifies the logical properties of important data elements and types and

the relations among such data elements and their metadata

§ Although the name is “data schema” it includes physical, materiel, and energy flows specification
as well

26

© 2016 IBM Corporation

Harmony aMBSE: System Requirements Def & Analysis

27

© 2016 IBM Corporation

Alternative approaches to Build Executable Model of UC
Alternative 1:

Scenario Based
Alternative 2:
Flow Based

Alternative 3
State Based

Create model
context

Block Diagram Identify functional
flow large-scale
view

Activity diagram Create Model
Context

Block Diagram

Identify sequences
of messages
between system
use case and
actors

Sequence Diagram Derive sequences
from functional flow

Sequence diagram Create executable
state machine

State Diagram

(optional) cluster
sequences together
as flows

Activity Diagram Create model
context

Block Diagram Identify interfaces Block Diagram

Identify interfaces Block Diagram Identify interfaces Block Diagram Derive sequences
from functional flow

Sequence diagram

Create executable
state machine

State Diagram Create executable
state machine

State Diagram Execute State
machine

Model execution
views

Execute State
machine

Model execution
views

Execute State
machine

Model execution
views

Repeat until all
requirements and
sequence variants
covered

Repeat until all
requirements and
sequence variants
covered

Repeat until all
requirements and
sequence variants
covered

28

© 2016 IBM Corporation

Today’s Example: High Performance Treadmill: SpeedDemon™
§ Biometrics

– Heart rate
– Speed
– Power / VO2 max
– Elapsed time/interval time
– Ground contact time
– Vertical oscillation
– Cadence

§ Programmable protocols (workouts)

§ Performance storage and analytics

§ Music and video playlists

§ Virtual racing (simulated or over-the-
web)

29

© 2016 IBM Corporation

SpeedDemon Use Cases

30

© 2016 IBM Corporation

Allocation of requirements to Control Speed Use Case

31

© 2016 IBM Corporation

Allocate Requirements to Execute Protocol Use Case

32

© 2016 IBM Corporation

Showing allocations within a matrix (generated)

33

© 2016 IBM Corporation

Create context for use case execution model

34

© 2016 IBM Corporation

Creating an activity diagram to show behavioral flows

35

© 2016 IBM Corporation

Create scenarios from activity diagram

36

© 2016 IBM Corporation

Create Behavioral Model Realizing Requirements for Use Case
§ Notes

– This is after several
Model-Verify–
Elaborate
iterations

– Start with 2-4
states, and add
more each
nanocycle
iteration

§ Questions still remain
– Can the system

be commanded
into OFF directly?

– How are timing
requirements
verified?

– Reqs for
degraded
operation are now
discovered to be
inadequate – add
new reqs!

37

© 2016 IBM Corporation

Verify Requirements Adequacy Through Execution

38

© 2016 IBM Corporation

Identify gaps – add missing reqs – elaborate model - reexecute

39

© 2016 IBM Corporation

Add traceability

40

Stakeholder requirements

System requirements

Generated trace matrix

© 2016 IBM Corporation

Generate Logical Interfaces

41

© 2016 IBM Corporation

Systems Architectural Analysis

42

© 2016 IBM Corporation

Systems Architectural Analysis

43

© 2016 IBM Corporation

SysML Parametric Diagram for Trades for SpeedDemon Motor

44

Compute MOEs
from utility curves

Analyze trades of
different solutions

© 2016 IBM Corporation

SysML Parametric Diagram for Trades for UI system

45

© 2016 IBM Corporation

Outputs of the trade analysis

46

© 2016 IBM Corporation

Architectural Design

47

© 2016 IBM Corporation

Activity: Allocate Use Cases to Subsystems

48

© 2016 IBM Corporation

Architecture View for Control Flow (UML & SysML 1.2)

49

Standard
port

Flow port

© 2016 IBM Corporation

Architecture View for Control Flow (SysML 1.3)

50

Proxy ports are typed by
Interface Blocks

Interface Block

Interface Block

© 2016 IBM Corporation

Architectural View – Subsystem Diagram

51

© 2016 IBM Corporation

Architectural View – Subsystem Detail Structure

52

© 2016 IBM Corporation

Architecture with (logical) subsystem interfaces

53

© 2016 IBM Corporation

Architectural Verification via Simulation/Execution

54

© 2016 IBM Corporation

Subsystem Specification (Control Unit)

55

© 2016 IBM Corporation

Subsystem Specification (Display Unit)

56

© 2016 IBM Corporation

Update / Elaborate Data/Flow Schema

57

© 2016 IBM Corporation

Capturing ICDs in the Model

§ ICDs are not just a list of services but include:
– For each Service

• Functional Description
• Preconditions
• Postconditions
• Invariants
• Performance
• Error handling
• Synchronization type
• For each parameter

Description
Type
Units
Valid subrange
Default value

§ This metadata can be easily added as tags
defined in stereotypes

58

© 2016 IBM Corporation

Capturing ICDs in the Model

59

Use flow ports for continuous value interfaces
Use standard ports for discrete interfaces (events and calls)

© 2016 IBM Corporation

Hand off Workflow

60

Hand off elements
common to

multiple
subsystems to the

shared model

Hand off
specification
elements to
individual

subsystems

Allocate
requirements to

engineering
disciplines

© 2016 IBM Corporation

Convert Logical to Physical Interfaces

61

Logical Interfaces

© 2016 IBM Corporation

SpeedDemon Physical Interfaces (using CAN™ Bus)

62

Interface structure specification

Instance specifications for messages

© 2016 IBM Corporation

Subsystem Deployment Architecture (SW-EE-ME)

63

© 2016 IBM Corporation

Instance Specs for SW-EE Interfaces in Control Unit

64

© 2016 IBM Corporation

Allocation on Subsystem requirements to engineering
disciplines

65

© 2016 IBM Corporation

You’re Agile, but are you Meta-Agile?
Using Agile to Adopt Agile MBSE

66

Architect

Plan

Pilot

Enact

Assess

Determine organizational
objectives

Discover as-is process
Identify issues & problems

Determine goal-as-is gap
Identify future needs
Define to-be process,
practices, and tools

Define steps to
incrementally adopt

Specific metrics to
dynamically measure on-

going success

Enact in a small controlled
project

Measure success
Adapt approach based on

evidence

Phase deployment
of plan into the

enterprise, including
training, mentoring

and metrics

© 2016 IBM Corporation

Summary

67

MBSE provides
precision and

verifiability to the SE
Process Agile methods add

quality, responsiveness
and adaptability to the

process

Continuous verification
allows you to avoid

costly defects

IBM’s Harmony Process
defines an agile MBSE

process with industry best
practicesIBM’s Rational tooling

supports MBSE and agile
methods

Adopt Agile in an
incremental, measured
fashion for best results

© 2016 IBM Corporation

References

68

