
www.agilequalitysystems.com & www.jamasoftware.com

Agile Systems Development
In a Medical Environment

Copyright © 2018 by Kelly Weyrauch and Cary Bryczek. Permission granted to INCOSE to publish and use.

www.agilequalitysystems.com & www.jamasoftware.com

Meet Jama

Cary Bryczek
Jama Software

Requirements & Test Management

“Simplify Complex Product
Development”

https://www.jamasoftware.com/

https://www.jamasoftware.com/

www.agilequalitysystems.com & www.jamasoftware.com

Meet Kelly

Kelly Weyrauch
Agile Quality Systems

www.agilequalitysystems.com & www.jamasoftware.com

Agenda (2hrs)
Organizing your Agile Data (1.5 hour)

• Intro
• Mechanisms, Roles, Cadence
• Your System

Agile Reqs (1 hour)
• Taxonomy, Writing Tips, Examples
• Group Exercise – Stories
• Team Review

Transitioning to Agile (1 hour)
• Group Exercise: Transform real examples to Agile
• Team Discussion: Challenges and Barriers

Close and Retrospective (½ hour)

What is Agile?

PROVIDED BY

§ Industry and FDA participation
§ FDA Recognized Consensus Standard

AAMI TIR45:2012 Guidance on the Use of AGILE Practices in the Development of
Medical Device Software

www.agilequalitysystems.com & www.jamasoftware.com

The Agile Manifesto

www.agilequalitysystems.com & www.jamasoftware.com

The Agile Manifesto
We are uncovering better ways of developing software by doing it and

helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

Manifesto for Agile Software Development, www.agilemanifesto.org

www.agilequalitysystems.com & www.jamasoftware.com

Principles behind the Agile Manifesto
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in

development. Agile processes harness change for the
customer's competitive advantage.

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4. Business people and developers must work together
daily throughout the project.

5. Build projects around motivated individuals. Give them
the environment and support they need, and trust
them to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good
design enhances agility.

10. Simplicity--the art of maximizing the amount of work not
done--is essential.

11. The best architectures, requirements, and designs emerge

from self-organizing teams.

12. At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

Manifesto for Agile Software Development, www.agilemanifesto.org

www.agilequalitysystems.com & www.jamasoftware.com

Agile Mechanisms

§Four Levels
§Portfolio-Level Epics
§Large-Solution-Level Capabilities
§Program-Level Features
§Team-Level Stories

§Two Perspectives
§Customer-Facing, Business Value
§Solution-Facing, Enablers

Layers / Kinds of Backlog Items
(as defined by the Scaled Agile Framework, SAFe®)

Epics
(Portfolio)

Capabilities
(Large Solution)

Features
(Program)

Stories
(Team)

Responsible Portfolio

Management

Enterprise

Architect (+PM,

+SE)

Solution Management,

Solution Architect

(+PM, +SE)

Product Management

(+PO, +SE)

Product Owner

(+Team)

Provides

Value to

Customers,

Business

“Who” of the Capability,

Customers,

Enterprise Architect,

The Epic

“Who” of the Feature,

Business Owners,

Solution Architect,

The Capability/Epic

“Who” of the Story,

System Architect,

The Feature

Delivered by N/A, delivered

through

Capabilities &

Features

Agile Teams,

System Team,

Specialty Team?

Agile Teams,

System Team

Agile Teams

Delivered

when

Depends - When

all

Capabilities/Featur

es complete? Only

some?

When all Features

complete (1 or more

Increments)

Each Program Increment Each Sprint

Demoed N/A, Demo done

with lower layers

System Demo,

Validation Studies

System Demo Team’s Sprint Demo

Content Lightweight

Business Case

Description & Benefit,

Acceptance Criteria,

Definition Of Done

Description & Benefit,

Acceptance Criteria,

Definition Of Done

Story Pattern,

Acceptance Criteria,

Definition Of Done

§ SAFe® term: “Enablers”
§Enabling the “Architectural Runway” upon which customer-

facing value can be delivered.

§ Infrastructure (Development, Product)
§ Debt
§ Spikes (Definition, Technical, Decision)
§ System Integration
§ Quality System Satisfaction
§ …

Solution-Facing Backlog Items

PROVIDED BY

www.agilequalitysystems.com & www.jamasoftware.com

Sprint /
Increment

Definition: a fixed time box (e.g. 2 weeks)
where team build an incremental business
or product functionality.

Purpose:
• Delivers value to customers more

quickly
• Allows faster feedback from customers
• Allows teams to incorporate feedback

and adjust priorities and improve
process

www.agilequalitysystems.com & www.jamasoftware.com

Release

Definition: Traditionally, when value is
delivered to a customer. In Agile, a release
could be anytime.

Examples
• After several sprints and demos to

customers, functionality is packaged
and delivered to production

• After each sprint, developed value is
released to customers

• For mature, continuous integration
organizations, release every time code
is checked in!

www.agilequalitysystems.com & www.jamasoftware.com

Source: http://www.scaledagileframework.com/develop-on-cadence-release-any-time/

Scaled Agile Framework® (SAFe®)

www.agilequalitysystems.com & www.jamasoftware.com

Your System?

ISO 15288 System Life Cycle Processes

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design

System Development Processes

System Design Product Realization

Implement

Adapted from: NASA Systems Engineering Handbook, NASA/SP-2007-6105

Technical Management
Processes

Technical Planning

Requirements Management

Interface Management

Risk Management

Configuration Management

Data Management

The Systems
Engineering Engine

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design Implement

Subsystems We
Integrate With

But Don’t Build

Define
Requirements

Architect

Design

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design Implement

Subsystem

System

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design Implement

Subsystem

Define
RequirementsVerify

Design

Components
We Build

Implement

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design Implement

Subsystem

Define
Stakeholder
Expectations

Validate

Define
Requirements Verify

Architect Integrate

Design Implement

Subsystem

Define
Requirements

Design

Components
We Buy / Re-Use

Other
Systems

Users,
Stakeholders

What is the System?
And What are the Activities & Deliverables?

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements

Define
Stakeholder
Expectations

Verify

Validate

Architect

Design

Test the
Integration
Integrate

(Assemble)

System

Define
Requirements Verify

Architect

Define
Stakeholder
Expectations

Validate

Test the
Integration
Integrate

(Assemble)Design

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
Requirements

Define
Stakeholder
Expectations

Verify

Validate

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Device Subsystem Software Subsystem

Hardware Embedded Software Platform Application Software

Code Code

www.agilequalitysystems.com & www.jamasoftware.com

Exercise in Jama

1. Draw a block diagram of your
System.

2. Identify levels of
requirements

3. Identify levels and kinds of
testing

www.agilequalitysystems.com & www.jamasoftware.com

Organizing Information in Jama
Item Type:
• How the types of information that exist in a project are defined and categorized in

Jama (functional requirements, user stories, test cases, etc.)
• Created and/or customized by an Organization Admin

Item:
• A single unit of defined and

organized information a single
functional requirement, non-
functional requirement, or test
case)

www.agilequalitysystems.com & www.jamasoftware.com

Component:
• A structural container used to

organize a project
• Each Component may contain

multiple Sets of items

Set:
• A structural container of like items
• May contain folders, Text Items

www.agilequalitysystems.com & www.jamasoftware.com

Component: Logical subset within a project
May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.
May contain: Components, Sets & Text Items

Set: A grouping of like items
May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set
May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.agilequalitysystems.com & www.jamasoftware.com

Component: Logical subset within a project
May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.
May contain: Components, Sets & Text Items

Set: A grouping of like items
May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set
May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.agilequalitysystems.com & www.jamasoftware.com

Component: Logical subset within a project
May contain: Components, Sets & Text Items

Project: The highest level of organization. A project, product, application, etc.
May contain: Components, Sets & Text Items

Set: A grouping of like items
May contain: Folders, Text Items & Items

Text Item: Provides context

Folder: Logical subset within a set
May contain: Folders, Text Items & Items

Item: An individual artifact with fields

www.agilequalitysystems.com & www.jamasoftware.com

Cadence of Writing Requirements?

www.agilequalitysystems.com & www.jamasoftware.com

Large
System

Reqs Doc

Multiple
Sub-System

Specs
Long Dev
Lifecyle

Long V&V
Cycle

Req

Design

Dev

Test

Multiple
Sub-System

Specs

Multiple
Sub-System

Spec

Req

Design

Dev

Test

Req

Design

Dev

Test

Comprehensive
documentation
(if needed)
grows over time
and complete
after several
iterations

www.agilequalitysystems.com & www.jamasoftware.com

Methods of Eliciting Requirements

Customer Feedback
• Qualitative: regularly scheduled customer interviews and feedback sessions
• Quantitative: “In Product” feedback and NPS surveys

Innovation
• Market Research
• Customer Obsession

Tips
Think in terms of the “problem” rather than the “solution”
Include team members in customer interviews

www.agilequalitysystems.com & www.jamasoftware.com

Anti-Patterns to watch for

• The entire project is spec'd out in great detail before engineering work begins

• Thorough review and iron-clad sign-off from all teams before work even starts

• Designers and developers don't know when requirements have changed

• The product owner writes requirements without the participation of the team

Atlassian: https://www.atlassian.com/agile/requirements

www.agilequalitysystems.com & www.jamasoftware.com

So when you say “requirements”…

www.agilequalitysystems.com & www.jamasoftware.com

Requirements vs Design

Requirements Design

Describes the NEED for something A RESPONSE to the requirements that
describes something that meets the
requirements

www.agilequalitysystems.com & www.jamasoftware.com

Feature

User Story

Code

Product Architecture

Establish a clear hierarchy.

Kelly’s layer

Sys
Sub
Comp

www.agilequalitysystems.com & www.jamasoftware.com

Building Something Complex?

Themes

Epics

System Architecture

Program 2 Feature

Architecture Spec

Program 1 Features

Architecture Spec

User Story TechStory

Code/Des Code/Des

User Story TechStory

Code Design

Product Concept

Backlogs relations

www.agilequalitysystems.com & www.jamasoftware.com

Common Agile
Requirements Taxonomy

www.agilequalitysystems.com & www.jamasoftware.com

Theme

Definition
• High-Level Goal
• Strategic Objective
• Innovation or Differentiator
• May span multiple releases and teams

Examples:
• Lower distribution center costs
• Implement new billing system
• Deliver new upgrades on a more frequent

basis

Related to:
• Epics

www.agilequalitysystems.com & www.jamasoftware.com

Epic

Definition
• Derived from Themes
• Describe business/technical value
• SAFe “Business” or ”Enabler”
• Too big to fit within a sprint

Example:
• For Jama customers in our hosted environment,

the In-Service Update will deliver new features on
a weekly basis and increase our uptime rates
unlike the existing version updates that only occur
monthly and require system downtime on
weekends

Related to:
• Higher-Level Themes
• Lower-Level Features and Stories

www.agilequalitysystems.com & www.jamasoftware.com

Feature

Definition
• Short description of a system feature and benefit
• Easy for business stakeholders to understand
• Higher-level than a User Story – it may span

multiple user roles/user stories
• Used in some methodologies to bridge Epics to

Stories

Example:
• In service software update

– Benefit: Reduces software downtime
– Acceptance Criteria: 1) Choice of Automated or

Manual 2) Rollback option after update 3) support
configuration through GUI

Related to:
• Higher-Level Epics
• Lower-Level Stories

www.agilequalitysystems.com & www.jamasoftware.com

User Story

Definition
• Derived from Epics and Features
• Fits within 1 sprint
• As a <role> I can <activity> so that <business

value>
• Role can be human or system

Example:
• As an administrator I can configure automated

or manual software updates so that I can
deliver new features to my users

– Acceptance Criteria: 1) Pick-List option of
Automated or Manual 2) If Automated, choice of
day/time to pull updates

Related to:
• Higher-Level Features/Epics

www.agilequalitysystems.com & www.jamasoftware.com

Sample Agile Models in Jama - Replace with Customer trace model?

www.agilequalitysystems.com & www.jamasoftware.com

Tips for Writing “Good” Agile Requirements

www.agilequalitysystems.com & www.jamasoftware.com

Requirement Rules?
Examples:
1. An Agile requirement may not

contain the word “and.” An “and”
indicates the presence of two
requirements, which must be
separated.

2. Requirements must be written in
the form of a scrum user story

3. A requirement may not contain
more than 22 words.

Strict rules are not realistic. The “golden
rule” of requirements is:

Clear and effective
communication

among your
stakeholders.

www.agilequalitysystems.com & www.jamasoftware.com

Stories to Choose
Is backlog planning?
Or is backlog the artifacts/req themselves

The output of Stories are requirements (support baselines
and version management) “snapshot that represents the
state of the final product”

www.agilequalitysystems.com & www.jamasoftware.com

Authoring Requirements ACC

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation – Use a Template
User type:
As a [user class or actor name]...

Result type:
... I need to [do something]...

Object:
... [to something].

Qualifier:
…so that I can do [response time
goal or quality objective]

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation – Use Active Voice
Passive: “As a user, I need to change the state of a requirement, so that
it is logged in the event history.”

Whenever possible, recast such requirements in the much clearer active
voice

Active: “As a user, I need to change the state of a requirement, so that I
can see the new state and the time of the state change in the event
history log.”

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation – Be Positive!
Negative
• Feature: The migration

tool will not migrate
users with more than
three accounts

• As a Project Admin, I
should not have ability to
change the web user
accounts.

Positive
• Feature: The migration

tool will migrate only users
with one or two accounts

• As a System Administrator,
I need to change web user
accounts so that I can
change user’s desired
email address and display
name

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation – Avoid “ly” words
Adverbs provide ambiguity:
• …so that I can provide a reasonably predictable end-user

experience.
• …so that I can offer significantly better download times.
• …so that I can optimize upload and download to perform quickly.

It’s hard to test ”quickly” or “reasonably.”

When possible - include a qualifying objective
(acceptance criteria) that is measurable and
testable.

www.agilequalitysystems.com & www.jamasoftware.com

Exercise in Jama

1. Write some User Stories in
Jama and use different
templates

www.agilequalitysystems.com & www.jamasoftware.com

Refining the Requirements

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation - Review and Discuss
The point is a shared understanding of the need.

Taking time up-front to review requirements:
- Gives you feedback and makes you a better author
- Increases shared understanding amongst team
- Helps define acceptance criteria and ensure testability
- Reduces surprises and missed requirements

Methods: Face-to-face conversations, Jama comments, Jama reviews
(collection of requirements).

www.agilequalitysystems.com & www.jamasoftware.com

Recommendation – Build Detail Iteratively
We need details but it can be “negotiated” throughout 3 major phases:
• Initial draft
• Backlog Grooming & Iteration Planning (more detailed)
• Test Development (e.g. for Stories, all acceptance criteria defined)

Too Detailed Just Right
As a team member, I can click a red button
to expand the table to include detail, which
lists all the tasks, with rank, name, estimate,
owner, status so that I understand
development progress

As a team member, I can view the iteration's
stories and their status with main fields so I
understand development progress

<acceptance criteria of specific fields defined
later>

www.agilequalitysystems.com & www.jamasoftware.com

Anti-Patterns to watch for

• The entire project is spec'd out in great detail before engineering work begins

• Thorough review and iron-clad sign-off from all teams before work even starts

• Designers and developers don't know when requirements have changed

• The product owner writes requirements without the participation of the team

Atlassian: https://www.atlassian.com/agile/requirements

www.agilequalitysystems.com & www.jamasoftware.com

Exercise in Jama

1. Create some comments on
items

2. Create a Review

www.agilequalitysystems.com & www.jamasoftware.com

Summary:
Agile

Requirements

• Any hierarchy that describes the “need”
- not the ”how”

• Gathered, prioritized, improved on a
regular cadence

• May be owned by a specific role (e.g.
Product Owner) but is a team effort to
author and refine

• Constructive feedback, co-authoring
with colleagues, and conversations can
help anyone become a better reqs
writer.

www.agilequalitysystems.com & www.jamasoftware.com

BREAK: 10 min

www.agilequalitysystems.com & www.jamasoftware.com

Traceability and V&V

“Traceability” Sounds waterfall but when done right,
enables agility and fast response to change

www.agilequalitysystems.com & www.jamasoftware.com

Solution Traceability
Large and Complex Systems often need to track much more than User Stories

System
Requirements

Sub-System
Reqs Verification

Validation

Standards

Failure Modes
DefectsDesigns

EpicsUser Stories

Risks

User Needs

Test Results

www.agilequalitysystems.com & www.jamasoftware.com

Solution Traceability

www.agilequalitysystems.com & www.jamasoftware.com

Exercise in Jama

1. Establish Requirements
Traces

2. Establish Testing Traces
3. Identify gaps in Traces

www.agilequalitysystems.com & www.jamasoftware.com

System Activities and Deliverables

System Activities (and
deliverables)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements

Define
Stakeholder
Expectations

Verify

Validate

Architect

Design

Test the
Integration
Integrate

(Assemble)

System

Define
Requirements Verify

Architect

Define
Stakeholder
Expectations

Validate

Test the
Integration
Integrate

(Assemble)Design

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
RequirementsVerify

Design & Implement

Define
Requirements

Define
Stakeholder
Expectations

Verify

Validate

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Define
Requirements Verify

Architect

Design

Test the
Integration
Integrate

(Assemble)

Device Subsystem Software Subsystem

Hardware Embedded Software Platform Application Software

Code Code

Synchronization Activities from TIR45:2012
Design Inputs & Design Outputs

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Release)

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design
Output

Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Release)

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Formal
Design

Reviews

Formal
Design

Reviews

Formal
Design

Reviews

Formal
Design

Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Verification
Reviews

Synchronization Activities from TIR45:2012
Verification Reviews & Design Reviews

Synchronization Activities from TIR45:2012
Verification Testing

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Release)

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Continuous
Integration

& Test

Incremental
Verification

Final Formal
Verification

Incremental
Verification

Incremental
Verification

Synchronization Activities from TIR45:2012
Design Validation

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Increment)

Synchronize
Design Inputs &
Design Outputs
(Release)

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Story

Design Output
Activities

Design Input
Activities

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Customer
Role

Demo
User

Acceptance
Testing

Demo Demo

§ TIR45:2012 describes how documentation is produced in an Agile
model, using a “Sum Of The Parts” concept

Documentation in the Agile Model

Assemble
the Document

Revision Control
the Document

Approve
the Document

At synchronization
points, generate the
complete Documents
that are needed

Repository
of Parts

Document
Versions

Within each Story,
create the part
relevant
to that Story

Create
the Part

Revision Control
the Part

Approve
the Part

www.agilequalitysystems.com & www.jamasoftware.com

Recap

www.agilequalitysystems.com & www.jamasoftware.com

Discussion
What are the challenges or barriers to using Agile
Requirements?

What challenges to you see in satisfying regulatory
expectations?

What changes would be necessary to overcome the
challenges?

§ Cary Bryczek
§ cbryczek@jamasoftware.com
§ 202-236-2227

§ www.jamasoftware.com

§ Connect with me on LinkedIn

Contact Information
§ Kelly Weyrauch
§ Kelly@AgileQualitySystems.com
§ 763-688-0980

§ www.AgileQualitySystems.com

§ Connect with me on LinkedIn

mailto:cbryczek@jamasoftware.com
http://www.jamasoftware.com/
mailto:Kelly@AgileQualitySystems.com
http://www.agilequalitysystems.com/

www.jamasoftware.com | 1.800.679.3058

Appendix (if needed)

www.agilequalitysystems.com & www.jamasoftware.com

3 Challenges at Scale

• Documentation – for some, documentation will
still exist. How do we make it “just enough?”

• Prioritization & Alignment – what should we work
on next, how do we align multiple teams?

• Traceability – being agile in a more
complex/regulated environment still requires
complex traceability

www.agilequalitysystems.com & www.jamasoftware.com

Documentation:

more important at scale, how to balance “just
enough?”

www.agilequalitysystems.com & www.jamasoftware.com

Documentation

Large systems may still require documentation (e.g. traceability matrices,
documented specifications, regulatory compliance).

Traditionally, documentation done “up-front” before beginning design &
development.

Lean and Agile principles recommend keeping design options open – and
finalizing documentation at the end.

www.agilequalitysystems.com & www.jamasoftware.com

Economic Prioritization

Feature / Req 1

Biz Value: High (5)
LOE: Med (3)
Priority Score 15

Business Value Job Size

High (5) High (1)

Med (3) Med (3)

Low (1) Low (5)

Light-weight, relative ranking
that considers both business
value and LOE

Feature / Req 2

Biz Value: High (5)
LOE: Low (5)
Priority Score 25

www.agilequalitysystems.com & www.jamasoftware.com

Weighted Shortest Job First (WSJF)

Reinertsen, Donald (2008). Principles of
Product Development Flow: Second
Generation Lean Product Development.

The jobs (Features, Epics, Reqs) get weighted with the cost of delay
so that the most costly jobs get done sooner.

www.agilequalitysystems.com & www.jamasoftware.com

Economic Prioritization:

At Scale, consider economics when
prioritizing.

Understand the cost of delay.

