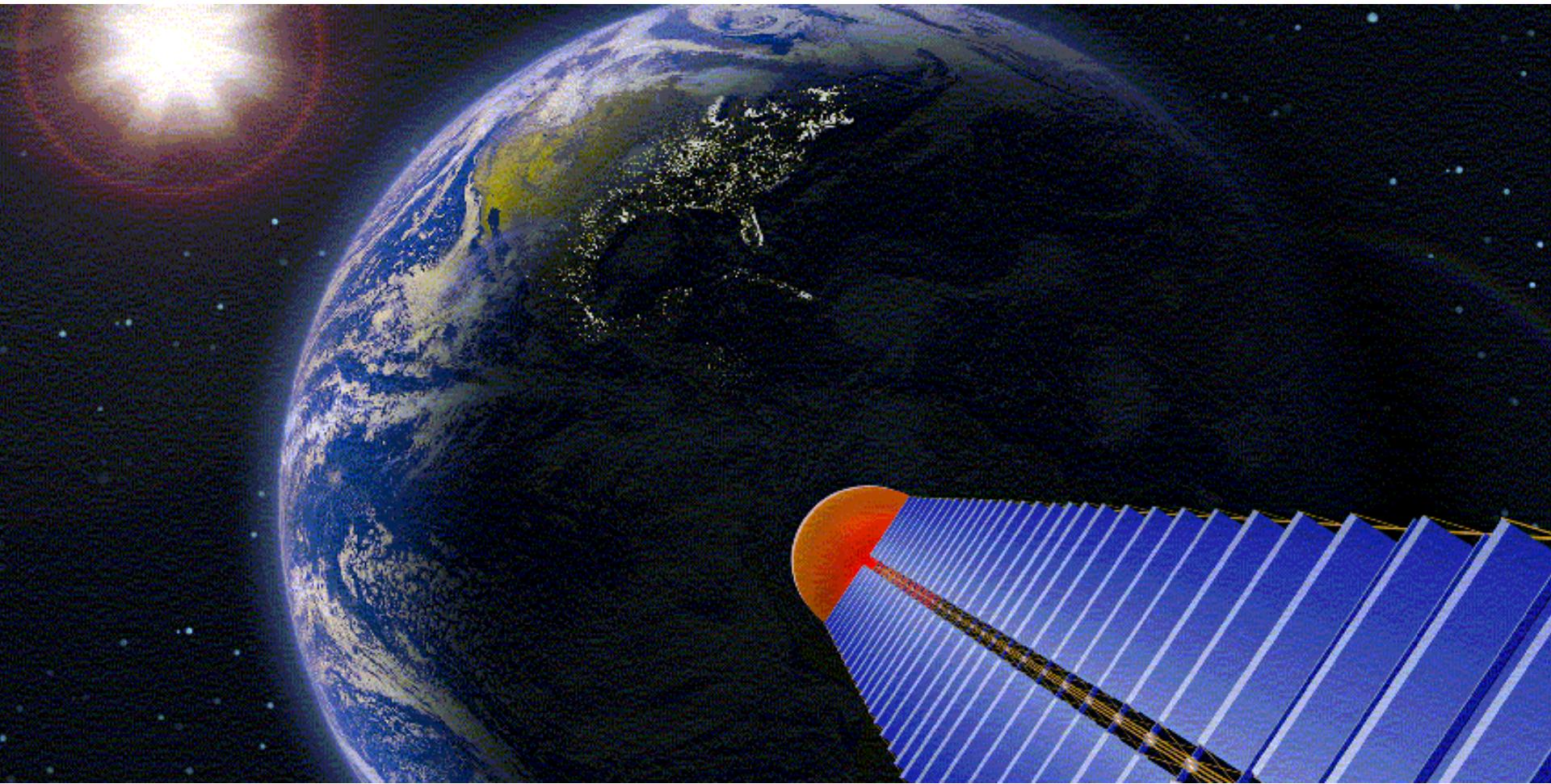


Analysis, Modeling, Simulation and Experimentation

Systems Engineering for Space Solar Power Architectures

Martin Bayer, Andrew Born, Dean Davis, David McCormick, Seth Potter
The Boeing Company, El Segundo and Huntington Beach, CA

2010 INCOSE Symposium
Chicago, Illinois
12-15 July, 2010


Historical Background

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Deploy large solar arrays in Earth orbit (typically geostationary) and beam power to receiver arrays on the ground**
 - Microwave beams most extensively studied, but there is an increasing interest in lasers
- **Concept proposed by Dr. Peter Glaser of Arthur D. Little Corp. in 1968 and studied by NASA and US Department of Energy during the 1970s**
 - Contractors included Boeing, Rockwell International, and Spectrolab
- **NASA and industry have studied the concept intermittently during the 1990s and early 2000s**
- **System sizes are huge (solar arrays several thousand meters across; power levels of thousands of megawatts)**
 - Due to the divergence of the microwave beam, a large amount of power must be collected to achieve an economically recoverable power density at the receiver array

Sun Tower Solar Power Satellite

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

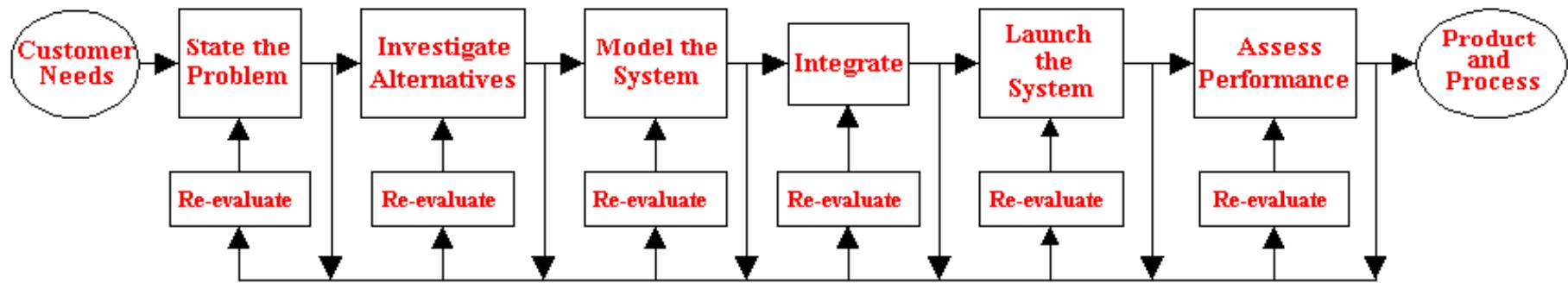
The Sun Tower is modular and scalable.

Space Solar Power Advantages

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Lower environmental footprint compared to fossil fuels**
- **Lower land use per unit power compared to other renewables**
- **Synergy with other energy sources**
 - Space solar power microwave rectennas can be designed to let light pass through, so the same land area can be used for conventional solar power – or possibly agriculture
 - Solar power satellites using laser power transmission may be able to supply extra illumination to already-existing conventional solar power plants
- **Synergy with space exploration and development**
 - SSP can use resources from space, particularly the Moon
 - Near-term space missions can test and demonstrate SSP technology and prospect for non-terrestrial resources to be used for SSP in a manner consistent with the current plans for Project Constellation
- **SSP may be an economic driver for commercial space development**

Space Solar Power Challenges

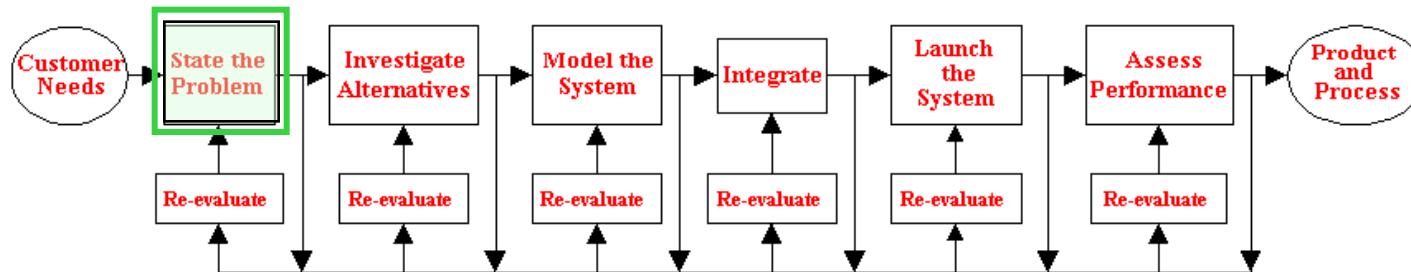

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **High launch costs**
- **High non-recurring engineering costs**
- **Space industrialization and operations challenges, including low TRL for construction of extremely large structures in space**
- **Earth industrial challenges; e.g., a single 2-GW SPS may require world's entire present annual PV cell production**
- **Microwave beam divergence drives up system size, making graceful growth difficult**
 - Increasing competition for spectrum may also become an issue
- **Laser beams diverge much less, allowing for more flexibility in system size, but have other challenges:**
 - Attenuation by clouds and rain
 - Perception of weapons application
 - Current state-of-the-art efficiencies may be lower than for microwaves
 - Ground-based PV arrays can do “double duty” as laser SSP receivers, but may need to be designed for this at the outset

Systems Engineering Process Overview

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

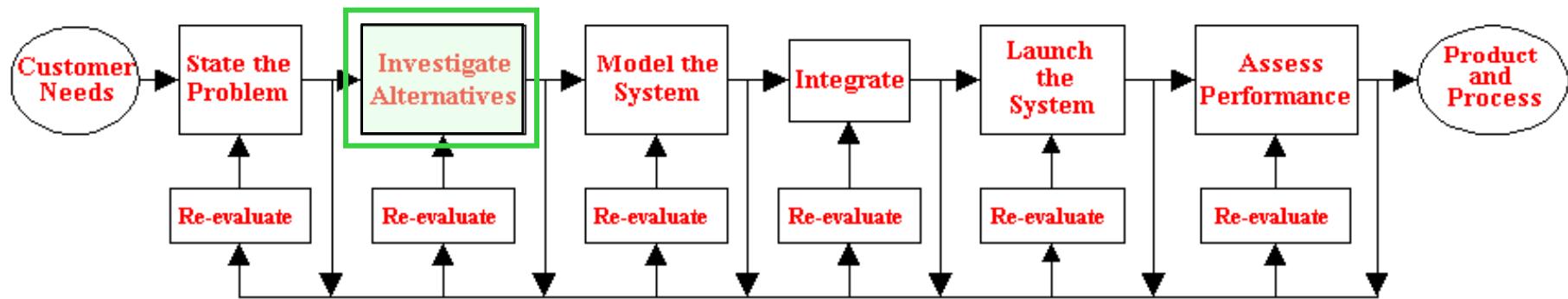
The Systems Engineering Process



Disciplined process leads to well-focused solutions

Problem Statement

Advanced Systems | Analysis, Modeling, Simulation and Experimentation


- **Most existing renewable energy solutions are periodic in their availability**
- **Remote/dangerous locations can extremely high fully-burdened costs of energy**
- **Given Space Solar Power as a potential solution to these, what are the issues with using the technology to:**
 - Generate large-scale power as a utility?
 - Deliver small-scale power to remote locations where competing energy sources are expensive and/or dangerous?

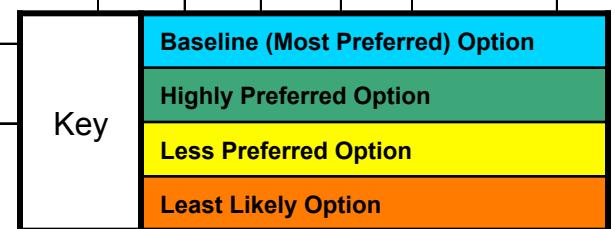
Investigate Alternatives

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

The Systems Engineering Process

Trade Studies: Assessment Criteria

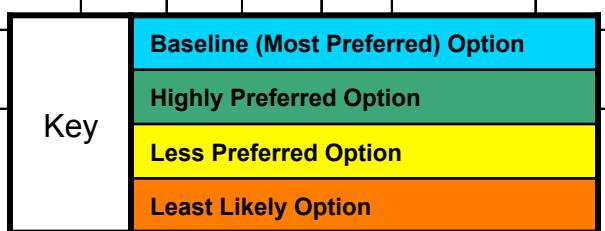
Advanced Systems | Analysis, Modeling, Simulation and Experimentation


Trade Categories		Assessment Criteria														
Raw Materials Source	Accessibility (distance and required delta v)	Resource extractability (complexity of mining and refining operations)	Resource quality (concentration and purity)	Resource availability (mass)	Resource variety (type)	Space environment										
Manufacturing and Integration Location (may be separate)	Accessibility (distance and required delta v)	Space environment	Available in space infrastructure													
Deployment Location	Accessibility (distance and required delta v)	Possibility for permanent stationary terrestrial reception	Visibility from receiving location	Distance to Earth	Potential interference with other space systems	Potential synergy/collocation with other space systems/missions	Space environment	Duration of blackout periods	Insolation	Need for active pointing/orientation						
Space Transportation	Launch reliability	Payload mass per launch to destination	Achievable launch rate	Transfer time to destination	Total launch cost per payload mass	Available payload volume	Payload loads and accelerations	Required infrastructure	Scalability	Return capability	Technology maturation	Safety	Environmental impact	Propellant demand	Required power	
Energy Conversion	Conversion efficiency	Power conversion capacity per mass	Reliability	Operational life	Degradation	Total life cycle cost per mass	Need for terrestrial materials	Technology maturation								
Energy Transmission	Transmission efficiency	Power transmission capacity per mass	Transmission accuracy and interference risk	Transmission intensity and ground safety	Required ground infrastructure and area	Total life cycle cost per mass	Need for terrestrial materials	Degradation	Reliability	Operational life	Technology maturation					
Energy Storage	Storage efficiency	Energy storage capacity per mass	Energy storage and release rate per mass	Reliability	Operational life	Degradation	Total life cycle cost per mass	Need for terrestrial materials	Technology maturation							
Electronic Components	Memory sizes	Data rates	Reliability	Required power	Total life cycle cost per mass	Operational life	Degradation	Installed mass	Need for terrestrial materials	Technology maturation						
Electronics Architecture	Redundancy	Resilience	Reliability	Required power	Total life cycle cost per mass	Operational life	Degradation	Installed mass	Technology maturation							
Command and Control Data Links	Bandwidth	Transmission range	Reliability	Required power	Transmission security and risk of interference	Installed mass	Operational life	Degradation	Total life cycle cost per mass	Need for terrestrial materials	Technology maturation					
Attitude and Orbit Control	Mass fraction	Need for and type and mass of reactants/propellants	Required power	Passive stability	Reliability	Operational life	Degradation	Scalability	Total life cycle cost per mass	Need for terrestrial materials	Technology maturation					
Structural Concept	Mass fraction	Operational life	Reliability	Degradation	Need for terrestrial materials	Scalability	Element size and mass	Modularity	Stability	Technology maturation						
Thermal Management	Heat rejection capability per mass	Operational life	Reliability	Degradation	Installed mass	Required power	Total life cycle cost per mass	Need for terrestrial materials	Technology maturation							
Concentrators	Mass fraction	Operational life	Reliability	Degradation	Need for terrestrial materials	Scalability	Modularity	Shape complexity	Technology maturation							
Element Connection	Mass fraction	Operational life	Reliability	Degradation	Required power	Total life cycle cost per mass	Need for terrestrial materials	Scalability	Stability	Technology maturation						
System Configuration	Redundancy	Resilience	Reliability	Mass fraction	Required power	Total life cycle cost per mass	Element size and mass	Scalability	Technology maturation							
Manufacturing, Assembly and Maintenance Operations	Number of needed crew per installed power capability	Number of needed robots per installed power capability	Logistics and support requirements	Reliability	Total life cycle cost per installed power capability	Required infrastructure	Crew safety (mission risks and need for EVAs)	Number of different operational locations	Size, mass and complexity of robots	Mission duration for human crew	Technology maturation	Resilience	Deployed architecture mass			

Boeing Trade Studies: Ratings of Options

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Trade Categories	Trade Options													
Raw Materials Source	Earth	Moon	Near Earth Objects	Phobos/ Deimos										
Manufacturing and Integration Location (may be separate)	Low Earth Orbit (LEO)	Sun Synchronous Orbit (SSO)	Medium Earth Orbit (MEO)	High Earth Orbit (HEO)	Geostationary Earth Orbit (GEO)	Molniya Earth Orbit	Earth-Moon Libration points and halo orbits	Earth-Sun Libration points and halo orbits	Lunar surface	Earth surface	Mars orbit			
Deployment Location	Low Earth Orbit (LEO)	Sun Synchronous Orbit (SSO)	Medium Earth Orbit (MEO)	High Earth Orbit (HEO)	Geostationary Earth Orbit (GEO)	Molniya Earth Orbit	Earth-Moon Libration points and halo orbits	Earth-Sun Libration points and halo orbits	Lunar surface					
Space Transportation	Launch vehicles and spacecraft with chemical propulsion (expendable and reusable)	Spacecraft with solar electric (electrostatic/electrothermal/electromagnetic) propulsion (in space only)	Spacecraft with solar thermal propulsion (in space only)	Solar/electric/magnetic sails (in space only)	Tethers (mechanical/electrodynamic) (in space/upper atmosphere only)	Electromagnetic mass drivers/rail guns and catchers	Lofstrom launch loop/space cable	Launch ring/slingatron	External laser/microwave propulsion	Light gas guns	Space elevator/orbital ring	Space fountain/orbital tower	Spacecraft with nuclear fission propulsion (thermal/electric/pulsed detonation)	Spacecraft with fusion/antimatter propulsion
Energy Conversion	Photovoltaic	Solar dynamic/thermodynamic/magnetohydrodynamic	Thermionic/thermoelectric	Solar pumped laser/maser	Signal processing solutions	Nanofabricated rectenna	Optical rectenna	Rapidly ionizing plasma	Optical resonators	Shocked photonic crystals	None (reflection only)			
Energy Transmission	Laser (visible/infrared)	Microwave/maser	Physical transfer of energy storage media	Cable (in GEO only)	Focused reflection	Relay satellites/mirrors								
Energy Storage	Supercapacitors	Superconducting magnetic	Reversible fuel cells	Batteries	Thermal storage/phase change material	High energy density matter	Flywheels	None (real time power transmission only)						
Electronic Components	Standard space qualified	Nanotechnology	Radiofrequency connections	Commercial off the shelf	Superconductors	Optical								
Electronics Architecture	Distributed	Centralized												
Command and Control Data Links	Radiofrequency	Laser (visible/infrared)												
Attitude and Orbit Control	Reaction control systems	Electromagnetic torque coils/rods	Electromagnetic tethers	Permanent magnets	Gyros/momentum wheels	Radiometer spin/solar sails	Gravity gradient	Spin stabilization						
Structural Concept	Solid members	Rigidized inflatables	Tethers											
Thermal Management	Passive cooling	Active cooling	None											
Concentrators	Reflective	Diffractive	Refractive	None										
Element Connection	Rigid attachments	Articulated joints	Free flying elements											
System Configuration	Functionally integrated identical modules	Monolithic elements with separate functions	Distributed elements with separate functions											
Manufacturing, Assembly and Maintenance Operations	Purely Human	Human/robotic cooperation	Human tended robotic	Purely robotic with local human supervision	Purely robotic with remote human supervision	Self replicating intelligent autonomous robots								

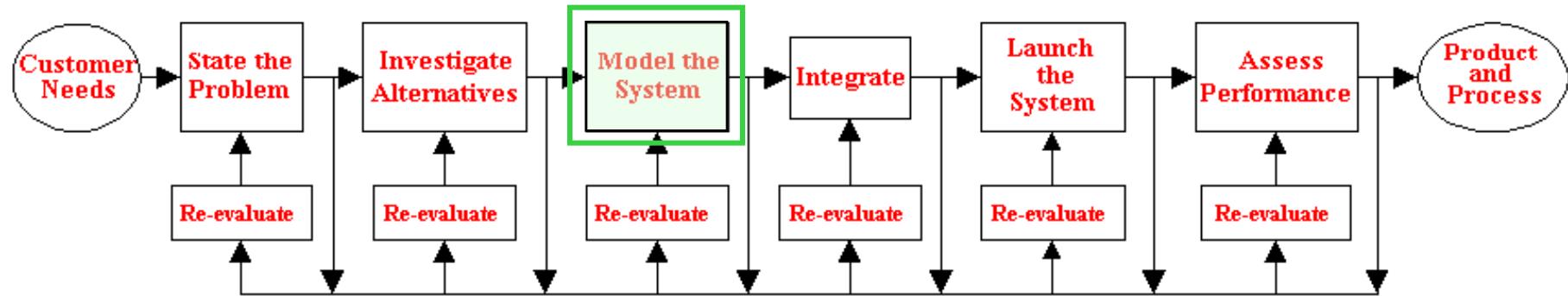


Each trade will be assessed in terms of performance and cost

Boeing Trade Studies: Ratings of Options

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

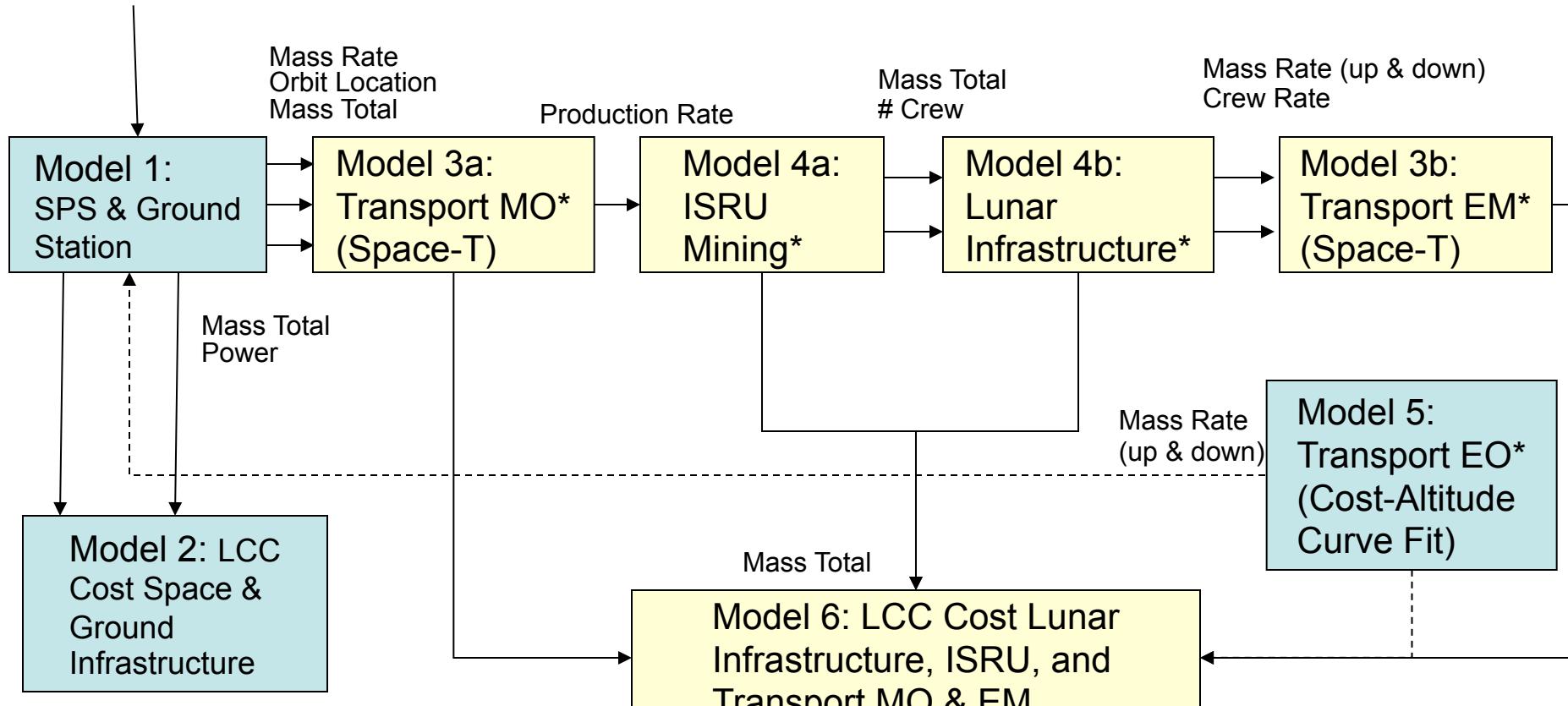
Trade Categories	Trade Options													
	Earth	Moon	Near Earth Objects	Phobos/Deimos										
Raw Materials Source	Earth	Moon	Near Earth Objects	Phobos/Deimos										
Manufacturing and Integration Location (may be separate)	Low Earth Orbit (LEO)	Sun Synchronous Orbit (SSO)	Medium Earth Orbit (MEO)	High Earth Orbit (HEO)	Geostationary Earth Orbit (GEO)	Molniya Earth Orbit	Earth-Moon Libration points and halo orbits	Earth-Sun Libration points and halo orbits	Lunar surface	Earth surface	Mars orbit			
Deployment Location	Low Earth Orbit (LEO)	Sun Synchronous Orbit (SSO)	Medium Earth Orbit (MEO)	High Earth Orbit (HEO)	Geostationary Earth Orbit (GEO)	Molniya Earth Orbit	Earth-Moon Libration points and halo orbits	Earth-Sun Libration points and halo orbits	Lunar surface					
Space Transportation	Launch vehicles and spacecraft with chemical propulsion (expendable and reusable)	Spacecraft with solar electric (electrostatic/electrothermal/electromagnetic) propulsion (in space only)	Spacecraft with solar thermal propulsion (in space only)	Solar/electric/magnetic sails (in space only)	Tethers (mechanical/electrodynamic) (in space/upper atmosphere only)	Electromagnetic mass drivers/rail guns and catchers	Lofstrom launch loop/space cable	Launch ring/slingatron	External laser/microwave propulsion	Light gas guns	Space elevator/orbital ring	Space fountain/orbital tower	Spacecraft with nuclear fission propulsion (thermal/electric/pulsed detonation)	Spacecraft with fusion/antimatter propulsion
Energy Conversion	Photovoltaic	Solar dynamic/thermodynamic/magnetohydrodynamic	Thermionic/thermoelectric	Solar pumped laser/maser	Signal processing solutions	Nanofabricated rectenna	Optical rectenna	Rapidly ionizing plasma	Optical resonators	Shocked photonic crystals	None (reflection only)			
Energy Transmission	Laser (visible/infrared)	Microwave/maser	Physical transfer of energy storage media	Cable (in GEO only)	Focused reflection	Relay satellites/mirrors								
Energy Storage	Supercapacitors	Superconducting magnetic	Reversible fuel cells	Batteries	Thermal storage/phase change material	High energy density matter	Flywheels	None (real time power transmission only)						
Electronic Components	Standard space qualified	Nanotechnology	Radiofrequency connections	Commercial off the shelf	Superconductors	Optical								
Electronics Architecture	Distributed	Centralized												
Command and Control Data Links	Radiofrequency	Laser (visible/infrared)												
Attitude and Orbit Control	Reaction control systems	Electromagnetic torque coils/rods	Electromagnetic tethers	Permanent magnets	Gyros/momentum wheels	Radiometer spin/solar sails	Gravity gradient	Spin stabilization						
Structural Concept	Solid members	Rigidized inflatables	Tethers											
Thermal Management	Passive cooling	Active cooling	None											
Concentrators	Reflective	Diffractive	Refractive	None										
Element Connection	Rigid attachments	Articulated joints	Free flying elements											
System Configuration	Functionally integrated identical modules	Monolithic elements with separate functions	Distributed elements with separate functions											
Manufacturing, Assembly and Maintenance Operations	Purely Human	Human/robotic cooperation	Human tended robotic	Purely robotic with local human supervision	Purely robotic with remote human supervision	Self replicating intelligent autonomous robots								



Initial focus is on major drivers of system design and cost

Model the System

Advanced Systems | Analysis, Modeling, Simulation and Experimentation


The Systems Engineering Process

Model Architecture for Space Solar Power & Lunar Colonization

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Ground Station Location
Power Req.

= Colonization domain

= SPS domain

*models are sizing/performance

Transport MO: Moon <-> Orbit
Transport EM: Earth <-> Moon
Transport EO: Earth <-> Orbit

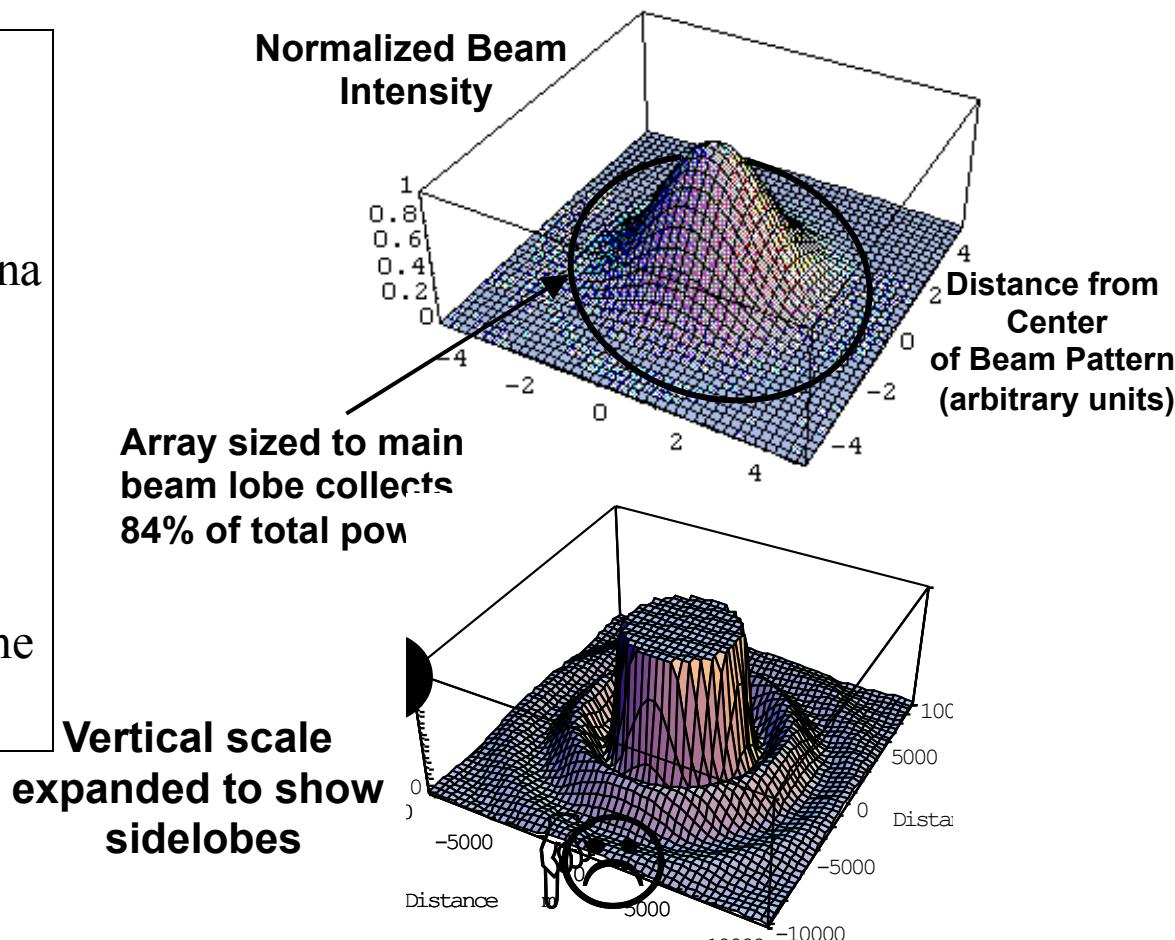
Model 1: Size of Receiver Array

$$\frac{D_t D_r}{\lambda x} = 2.44$$

where

D_t = diameter of transmitting antenna

D_r = diameter of receiving antenna


λ = wavelength of beam

x = distance between antennas

(determined by orbit)

Note : parameters must be in the same

units ; e.g., all in meters.

For a given beam wavelength, transmitting antenna size, and distance to receiver, beam diameter at the receiver is independent of amount of power transmitted.

Model 1: Calculation of Beam Intensity

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

$$I_0 = \frac{\pi P_t}{4} \left\{ \frac{D_t}{\lambda x} \right\}^2$$

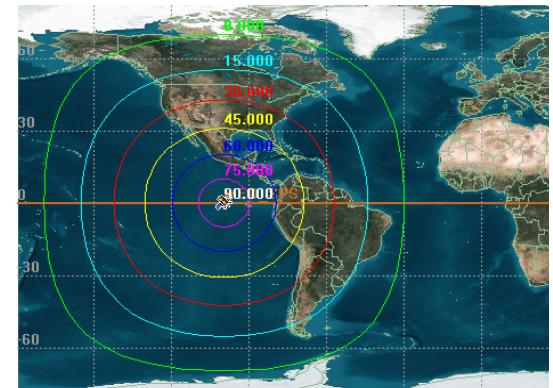
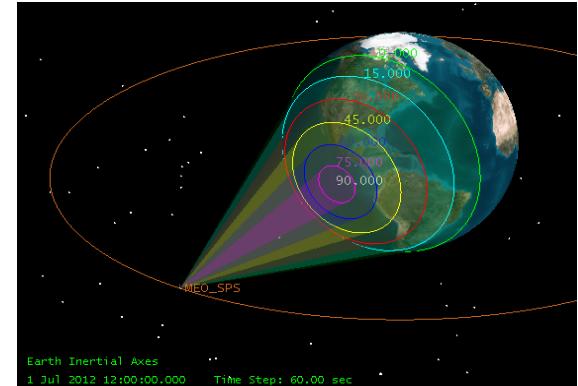
where

I_0 = peak beam intensity

P_t = transmitted power

D_t = diameter of transmitting antenna

λ = wavelength



x = distance between antennas

Typically, beam intensity will be a requirement determined by physical and environmental constraints, and the transmitting antenna will be sized to focus the energy to this intensity.

Model 1: Energy Inputs

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Solar_flux** – W/m² incident at 1 AU in space
- **Transmitting_Period** – Time between beaming events
- **Storage_Power_Constant** – W/kg output of the on-orbit storage medium
- **Eff_SolarCell** – Energy efficiency of the solar cells
- **Eff_Storing** – Energy efficiency of on-orbit storage
- **Eff_StorageOutput** – Energy efficiency of on-orbit storage discharge
- **Eff_Storing_onGround** – Energy efficiency of ground storage
- **Eff_StorageOutput_onGround** – Energy efficiency of ground storage discharge
- **Eff_Transmitting** – Power efficiency of the transmitter
- **Eff_receiving** – Power efficiency of the rectenna
- **fraction_visible** – fraction of the Transmitting period that the SSPS is beaming power
- **fraction_storing** – fraction of the non-beaming period that the SSPS is storing power on-orbit
- **fraction_covered** – fraction of the beam patch that the rectenna covers
- **SP_unit_wt** – kg/m² of the solar panel
- **Storage_unit_wt** – kg/Wh of the on-orbit storage
- **Transmitter_unit_wt** – kg/m² of the transmitter
- **Bus_wt_factor** – factor applied to the above to get the remainder of the satellite

Model 2: Cost Model Process Flow Overview

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Design Sheet mass outputs, architecture structure, and model inputs are used to determine element costs.

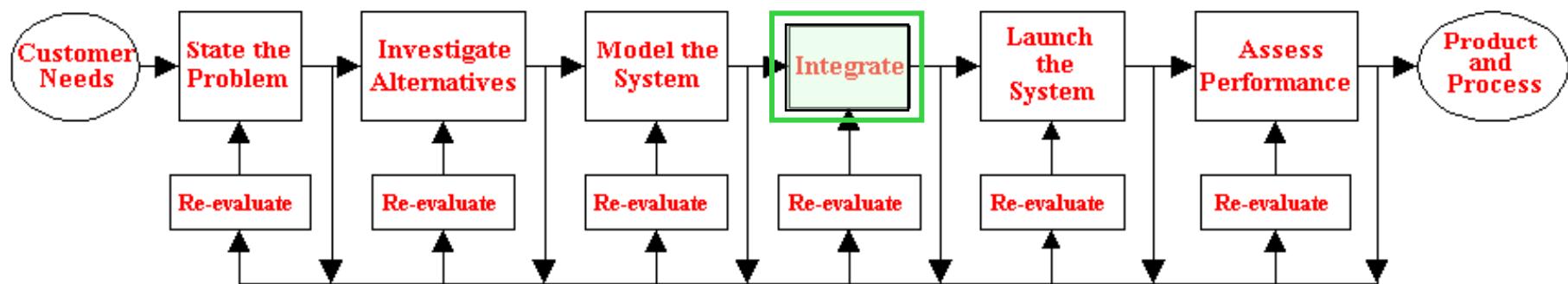
Model 2: Notional SSP Cost Modeling Assumptions

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Level 0 Analysis
- Constant year dollars 2008
- Technology assumed to be mature to 2028
- 97% learning curve for production
- 30 Year mean mission duration (MMD) for each satellite
- Mass in kg
- Estimate includes Spacecraft, Rectenna, Systems Engineering (SE), Program Management (PM), Assembly Integration & Test (AI&T), Operations & Support (O&S) and ground battery
- Baseline design includes microwave technology for transmitter
- O&S Includes spares and support on ground for 1 year
- If launched from Moon or Earth, infrastructure, materials, factory for production already in place
- On-base support provided for ground base
- Initial spares 10% factor per space vehicle production
- 12 Robonauts included in production cost for maintenance to be launched with satellite
- Sustaining Engineering 10% of yearly SE dollars

Model 5: Earth-to-Orbit Transportation

Advanced Systems | Analysis, Modeling, Simulation and Experimentation


- The SSPS model for launch costs uses a baseline \$/kg to LEO, then scales that up depending on the target orbit input by the user.
 - Meant as a feasibility study tool for SSP satellites
 - Launch cost model was designed to be as independent as possible of the launch method
 - Still captures extra launch cost associated with higher energy orbit locations
- Simple table lookup for various orbit locations
- $\text{Launch_Factor} = t_{\text{factor}}(\text{Launch_Satellite_Location})$
- $\text{Launch_\$perKg_atLocation} = \text{Launch_LEO_\$perKg} / \text{Launch_Factor}$

:Table	t_Trajectories
t_Location >	t_factor
LEO	1
Molniya	0.45
MEO	0.4
GPS	0.27
GEO	0.2

Integrate / Exercise the Models

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

The Systems Engineering Process

Military Mission Needs: Recent Developments

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **From the NSSO Report:**

Recommendation: *The SBSP Study Group recommends that the U.S. Government should sponsor a formally funded, follow-on architecture study with industry and international partners that could lead to a competition for an orbital demonstration of the key underlying technologies and systems needed for an initial 5-50 MWe continuous SBSP system.*

- Discussions at the NSSO SBSP meeting in 9/07 emphasized power levels of 5-15 MW at forward military bases having available land parcels of ~1000 meters in width to support a rectenna array

Civil Government Installation: Example – Amundsen-Scott South Pole Station

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

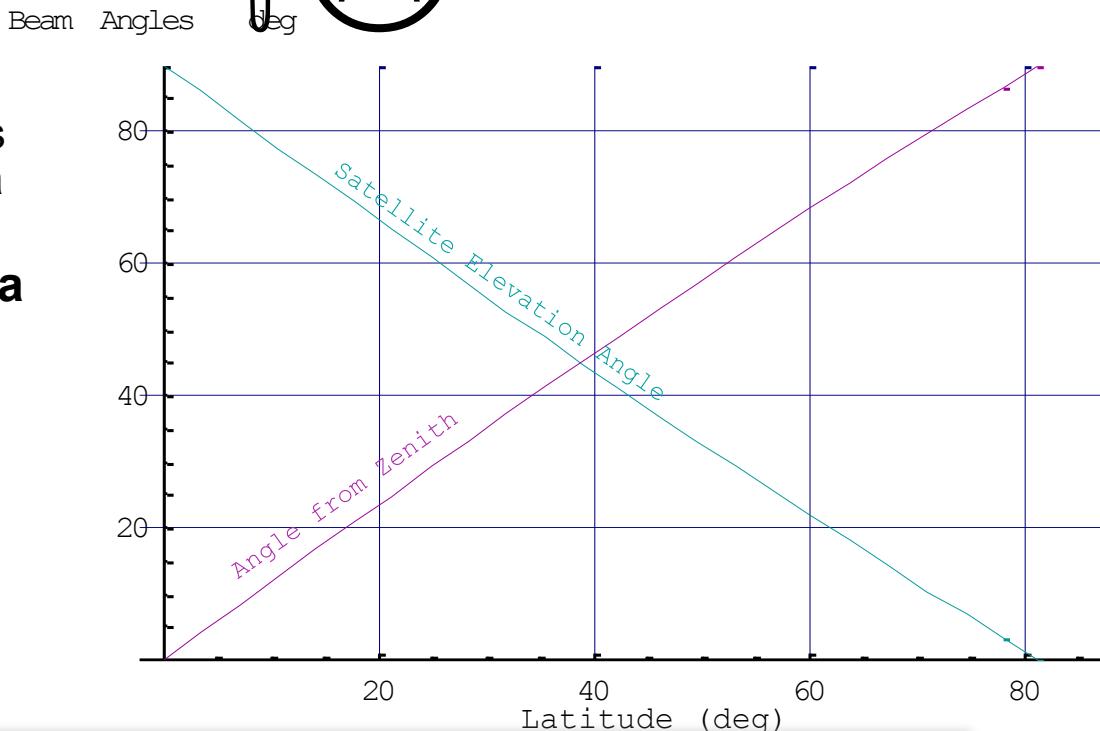
■ Characteristics (Source:

<http://www.nsf.gov/od/opp/support/southp.jsp>):

- Diurnal cycle is annual, i.e., 6 months of daylight, 6 months of darkness
- Elevation: 2,835 meters (9,306 feet)
- Temperature range: -13.6° C to -82.8° C. Annual mean is -49° C; monthly means vary from -28° C in December to -60° C in July. Average wind is 10.7 knots (12.3 miles per hour); peak gust recorded was 48 knots (55 miles per hour) in August 1989.
- Snow accumulation is about 20 centimeters (6-8 centimeters water equivalent) per year, with very low humidity.

■ Population of Station:

- Summer: 150 people
- Winter: 50 people


■ Power consumption scaled from military bases at 3 kW/person

- Summer: 150 people x 3 kW/person = 450 kW
- Winter: 50 people x 3 kW/person = 150 kW

Is SSP Feasible for a South Pole Base?

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **GEO satellites are not visible at the poles, and are below the horizon for any latitude poleward of $\pm 81^\circ$**
 - LEO and MEO satellites will not be visible at the poles for low orbital inclinations
- **Molniya orbits have been used for communications access to high latitudes**
 - Highly elliptical with apogee over a pole
 - Our analysis suggests that access times from a Molniya satellite to a polar station would be good
- **Microwave transmitting antenna would be impractically large, for the amount of power delivered**
- **Laser power beaming would have to be used.**

The power requirements of a polar research facility can be met by a small solar power satellite in a Molniya orbit using laser power transmission.

SSP May Have Near-Term Utility for Military Bases

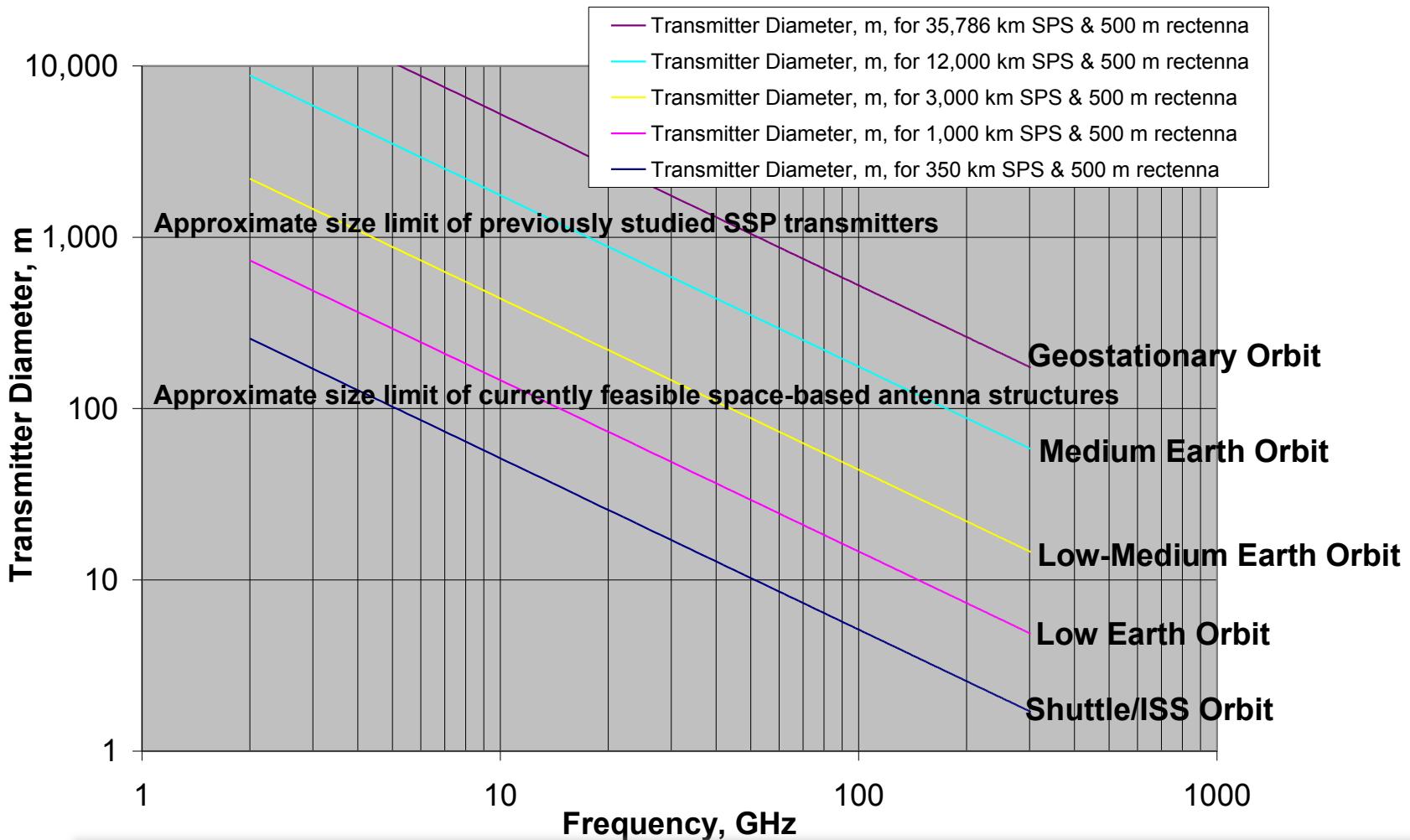
Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Much of the cost in lives and dollars of operating a military base in a war environment is due to the delivery of fuel**
- **Cost of delivery of gasoline under such circumstances is about \$100/gallon, which contains 130 megajoules of energy = 36 kWh**
- **At this rate, 40 remote military bases (each using 5 MW) will require 40 bases x 5 MW/base x 24 hours/day x 30 days/month = 144,000 MWh/month**
- **This is equivalent to 4,000,000 gallons of fuel per month or \$400 million per month for fuel.**
 - Conversion from thermal to electrical energy not accounted for. Actual fuel usage will be higher.
- **These bases, using a total of 200 MW could instead be supplied by just 20% of the power beamed from a single 1 GW power satellite**
- **Graceful growth toward this market may be achievable by considering a constellation of smaller (5 to 10 MW) satellites.**

SSP can be competitive with other energy sources in highly stressed environments.

Military Mission Needs: Feasibility

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

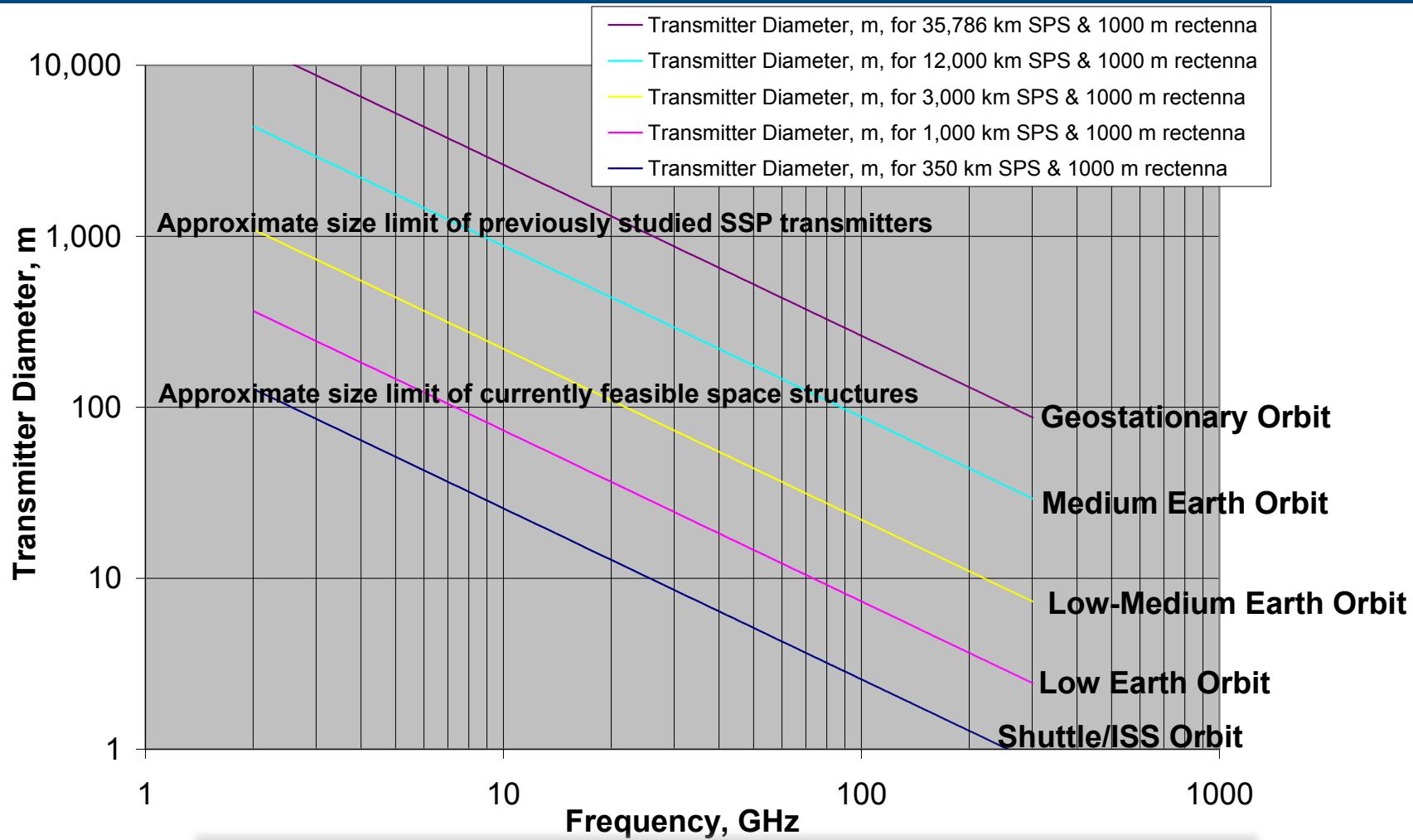

- Will the beam fit into the ground site as it spreads out?
- Forward military bases will probably have no more than about 1000-meter-wide parcels of land to receive the beam
- Focusing it more narrowly may need a huge antenna, and may make the beam too intense
- Our study looked at a range of options to see if this is feasible
- With an appropriate choice of frequency and orbit, it can work

SSP ground segment requirements are compatible with military base capabilities.

Near-Term Market: Military Bases

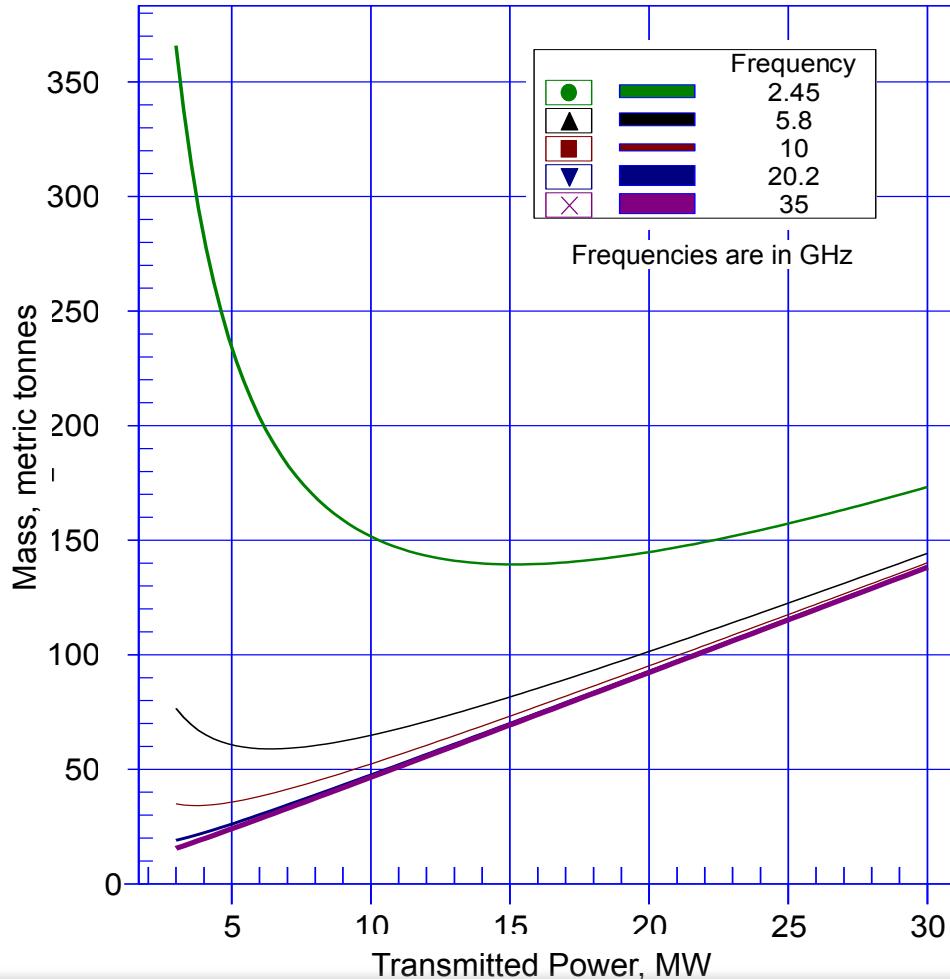
Case 1: 500-meter rectenna – can receive up to 10 MW at power densities comparable to earlier studies (~22 mW/cm² peak)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation



Transmitting antennas for low frequencies must be extremely large to focus power into a military base.

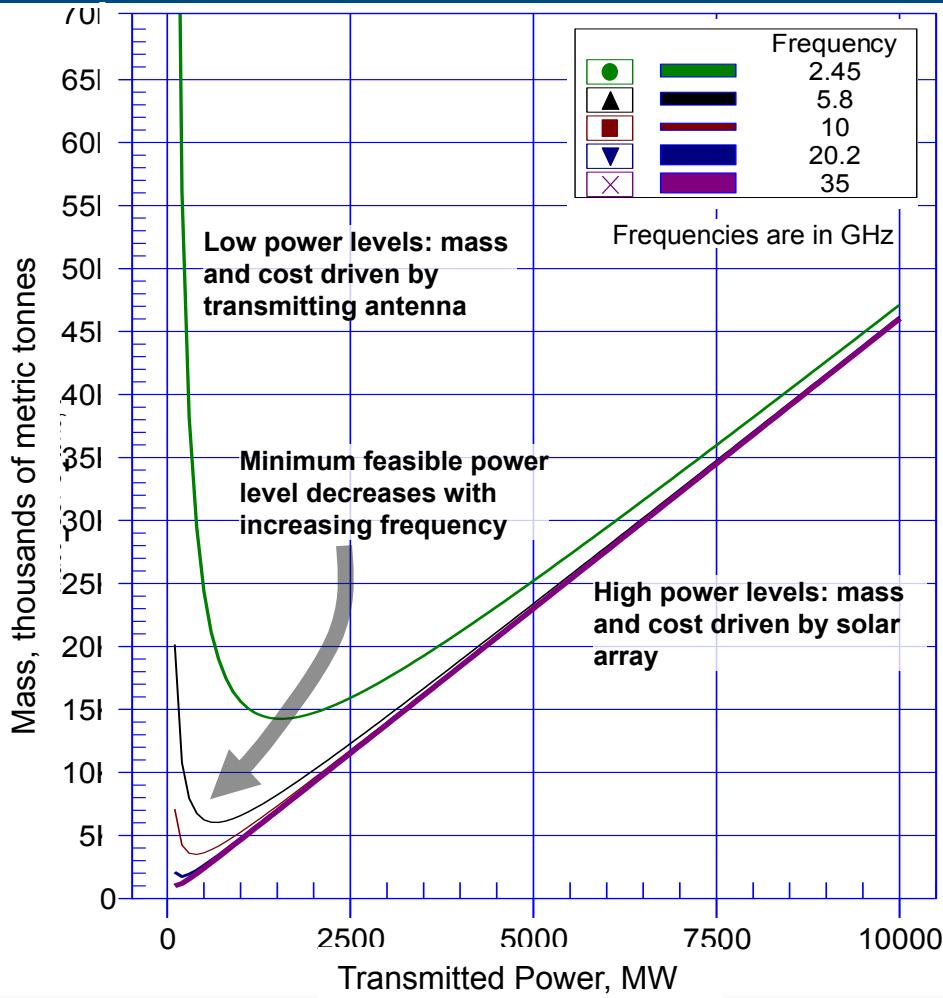
Near-Term Market: Military Bases


Case 2: 1000-meter rectenna – can receive up to 40 MW at power densities comparable to earlier studies (~22 mW/cm² peak)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

SSPS System for Forward Military Base (LEO, 5-30 MW)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation



- **Low Earth orbit solar power satellites will be used most effectively if there are several satellites serving several ground stations**
- **With beam handoffs, each satellite and ground station can be used for many hours each day**

An SPS using higher microwave frequencies will have a lower mass than one using 2.45 GHz, because the transmitting antenna will be proportionately smaller.

Geostationary Solar Power Satellites

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- A geostationary satellite can beam power to a ground station continuously, but with today's launch systems, the cost will still be too high to be competitive with other energy sources for baseload commercial power
- System size is too large for small niche markets; size could be reduced with laser power transmission

A single solar power satellite in geostationary orbit can supply several thousand MW of power to the Earth. Many such satellites can supply a significant portion of the world's electricity needs.

How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

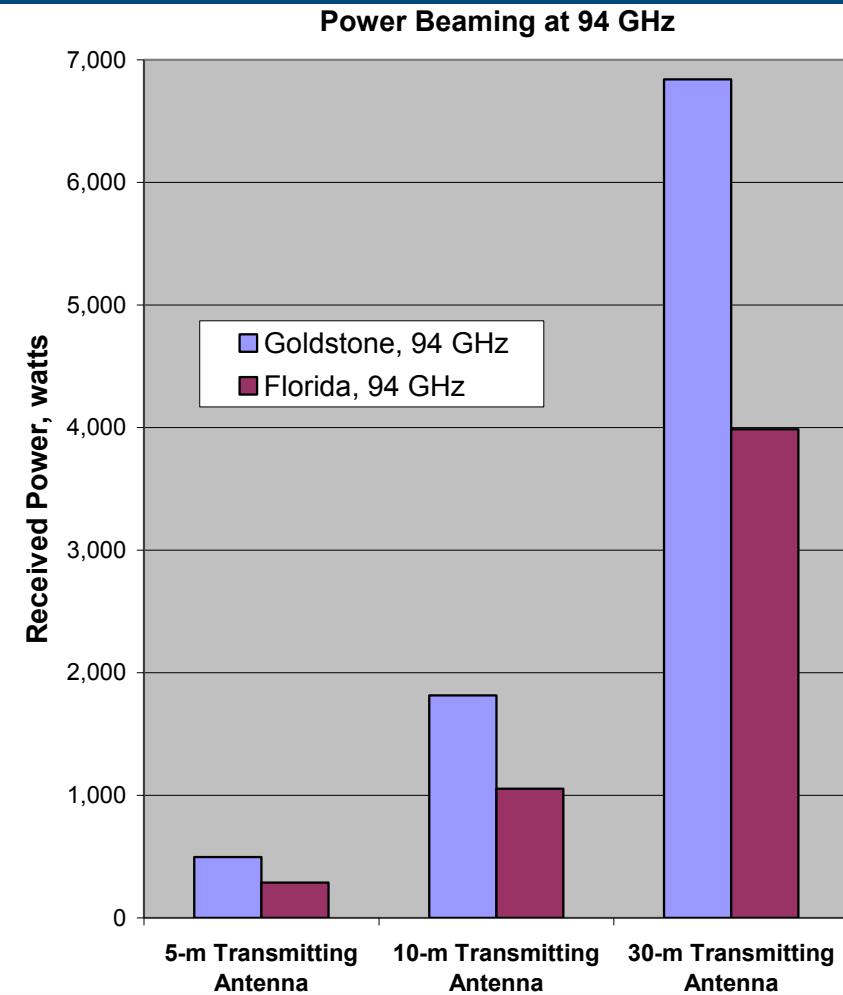
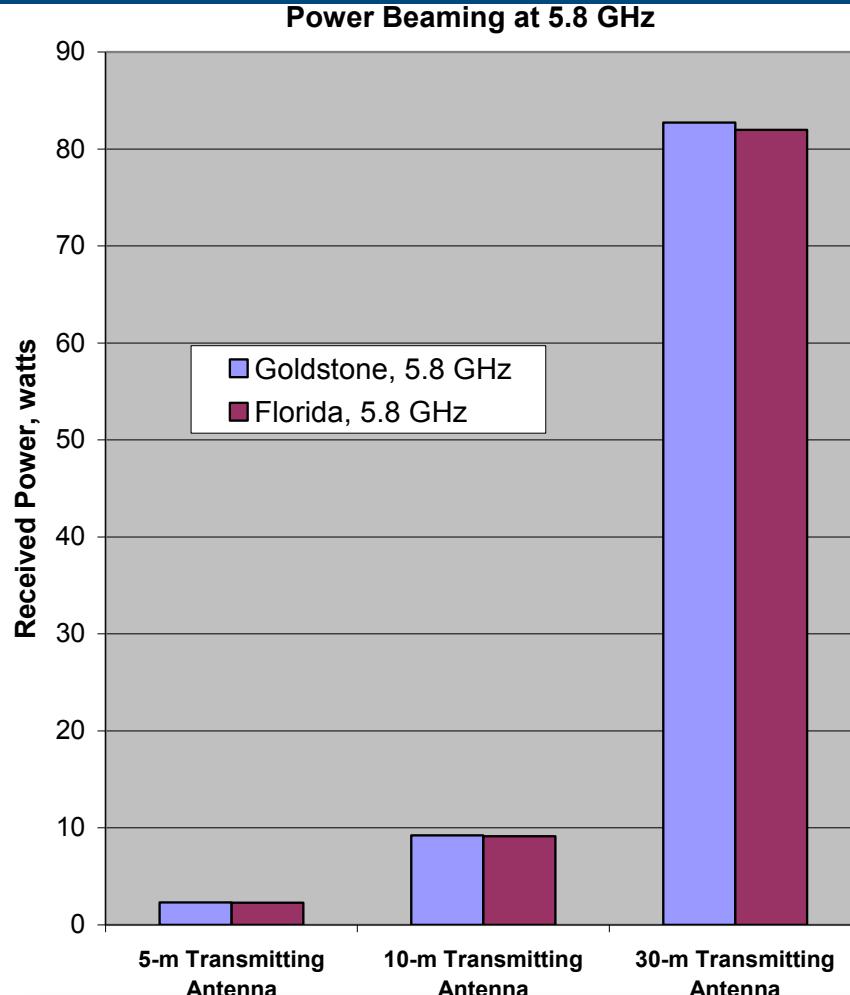
- **Do at least one of the following three things:**
 1. Decrease the wavelength
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - Dwell times over ground site get shorter, so need more satellites or energy storage
 3. Leave heavier components on the ground
 - Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system
- **There are at least two ways to accomplish #3:**
 - 3a. Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector
 - b. Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector

How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Do at least one of the following three things:
 1. **Decrease the wavelength**
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - Dwell times over ground site get shorter, so need more satellites or energy storage
 3. Leave heavier components on the ground
 - Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system
- There are at least two ways to accomplish #3:
 - 3a. Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector
 - b. Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector

Power Beaming Demo: Wavelength Trade Study



Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Frequency = 5.8 GHz and 94 GHz**
- **Beaming distance = 350 km (e.g., ISS directly overhead)**
- **Total power transmitted = 10 kW**
- **Transmitting antenna diameters = 5 meters, 10 meters, 30 meters**
- **Receiving locations**
 - Goldstone, CA
 - Atmosphere: dry
 - Receiver altitude: 970 meters
 - Receiving antenna diameter: 70 meters
 - Florida
 - Atmosphere: cloudy
 - Receiver altitude: sea level
 - Receiving antenna diameter: assume 70 meters for consistent comparison

The Boeing-funded trade study considered two very different receiving station environments.

Summary of Boeing Demo Study Results: 10 kW Transmitted from ISS to Ground

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

At 94 GHz, much more power can be focused on the 70-m receiver than at 5.8 GHz. However, 94 GHz is significantly attenuated by clouds.

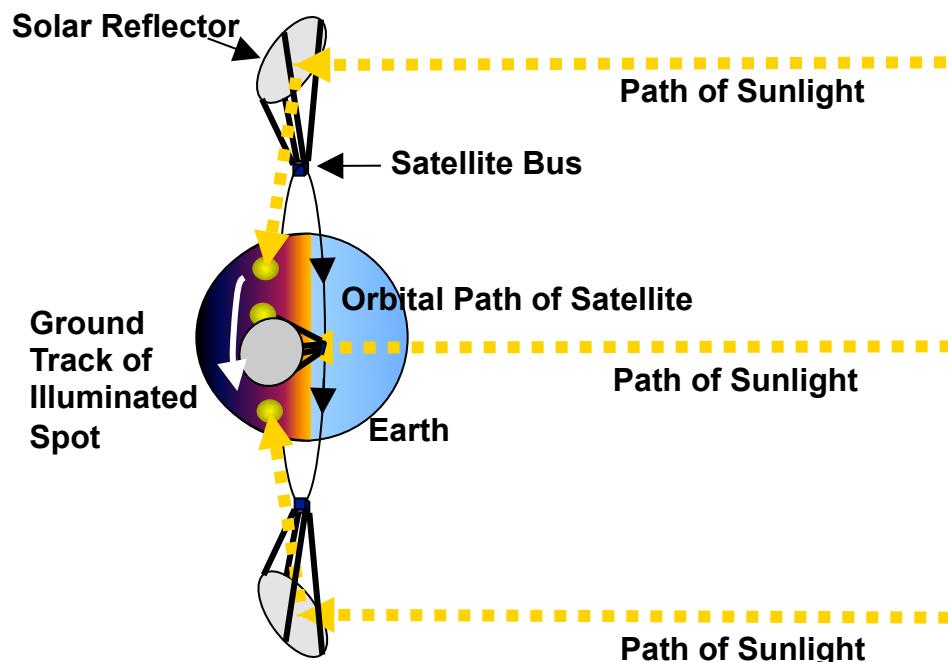
How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Do at least one of the following three things:
 1. Decrease the wavelength
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - **Dwell times over ground site get shorter, so need more satellites or energy storage**
 3. Leave heavier components on the ground
 - Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system
- There are at least two ways to accomplish #3:
 - 3a. Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector
 - b. Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector

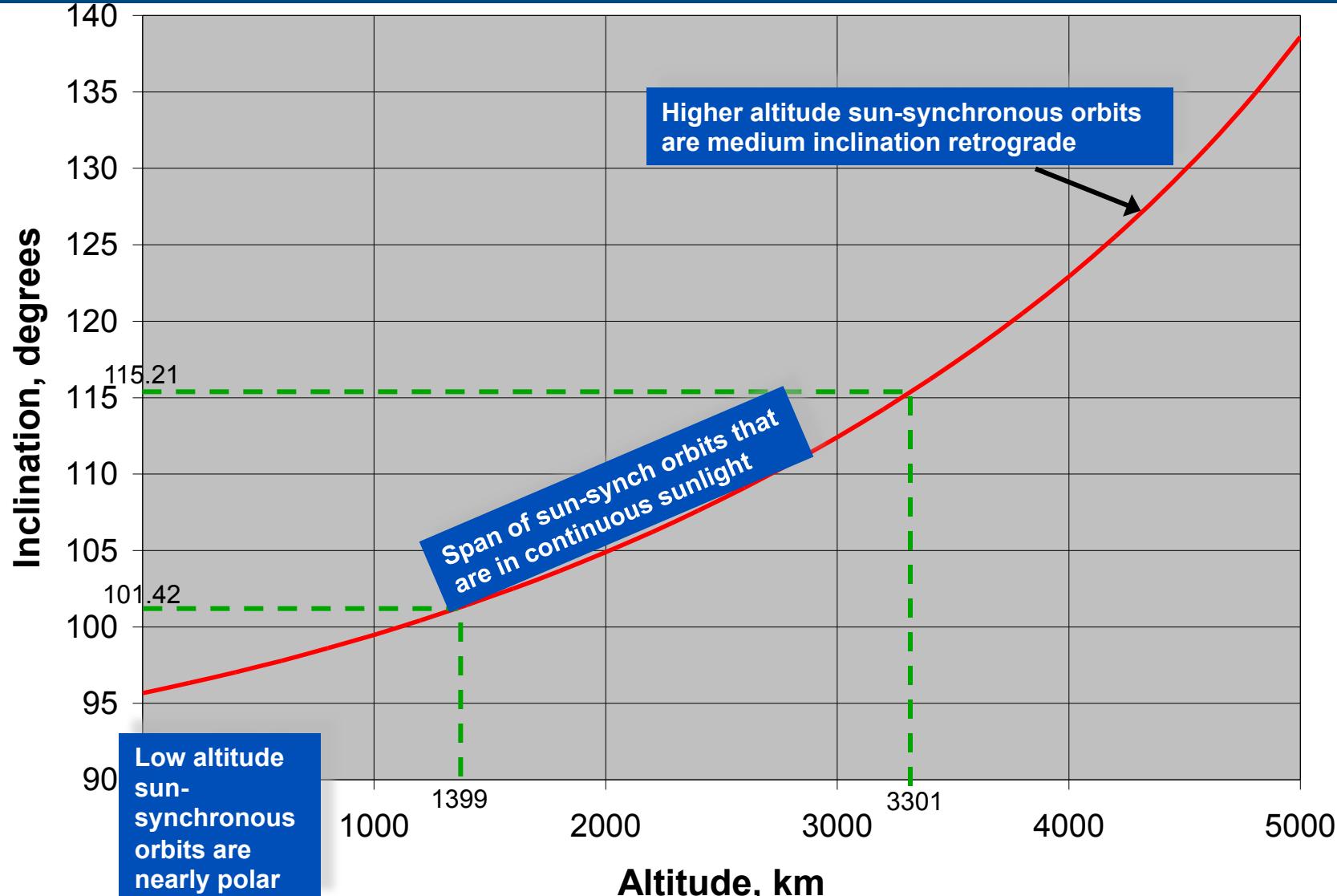
Sun Synchronous Orbits

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

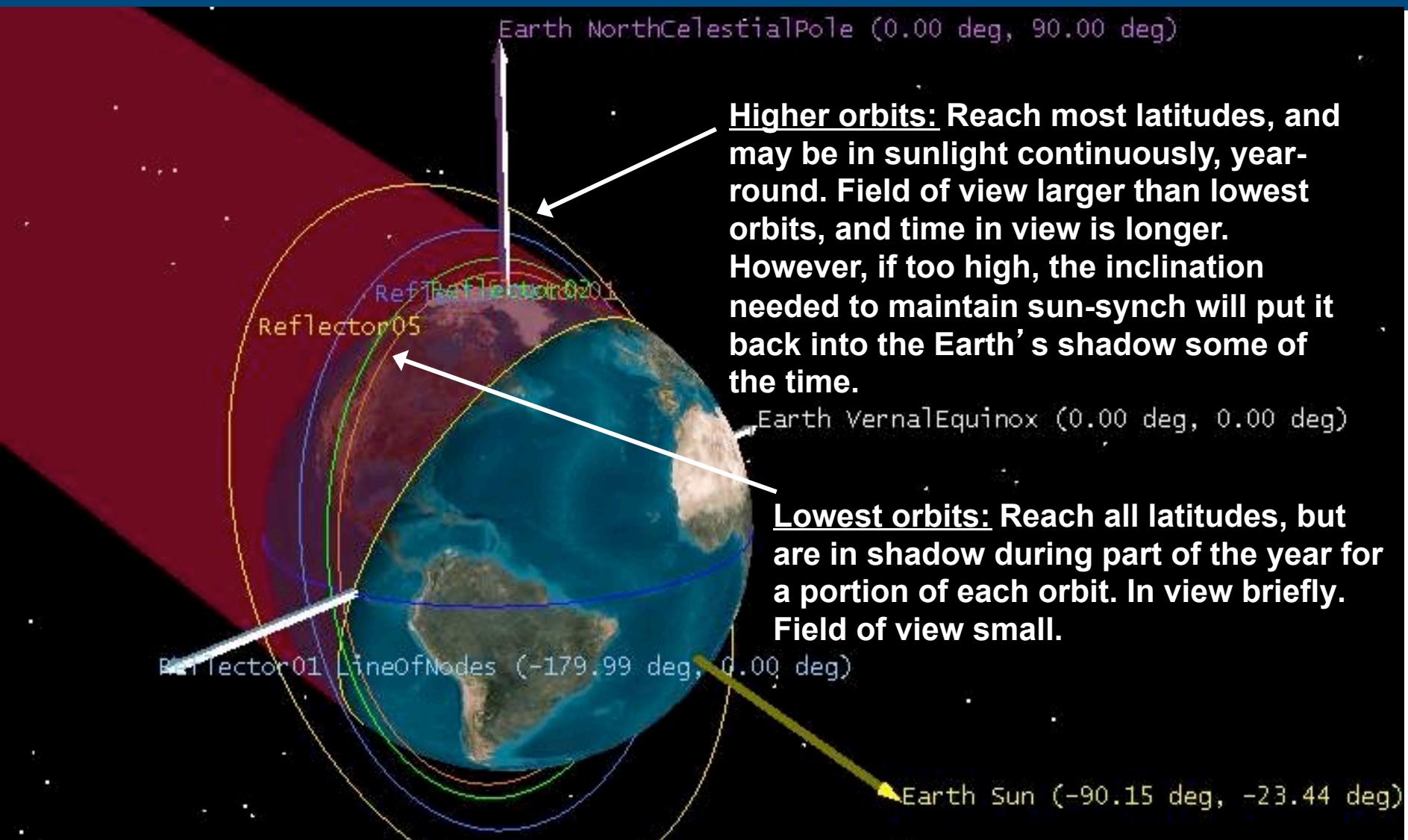

- A satellite in a sun-synchronous orbit around the line separating Earth's day and night sides will nearly always be in sunlight and will require only minimal steering

- Low orbit

- Nearly polar
 - Reflector size relatively small
 - However, may not be able to reach deep into the night side of the Earth


- High LEO / Low MEO

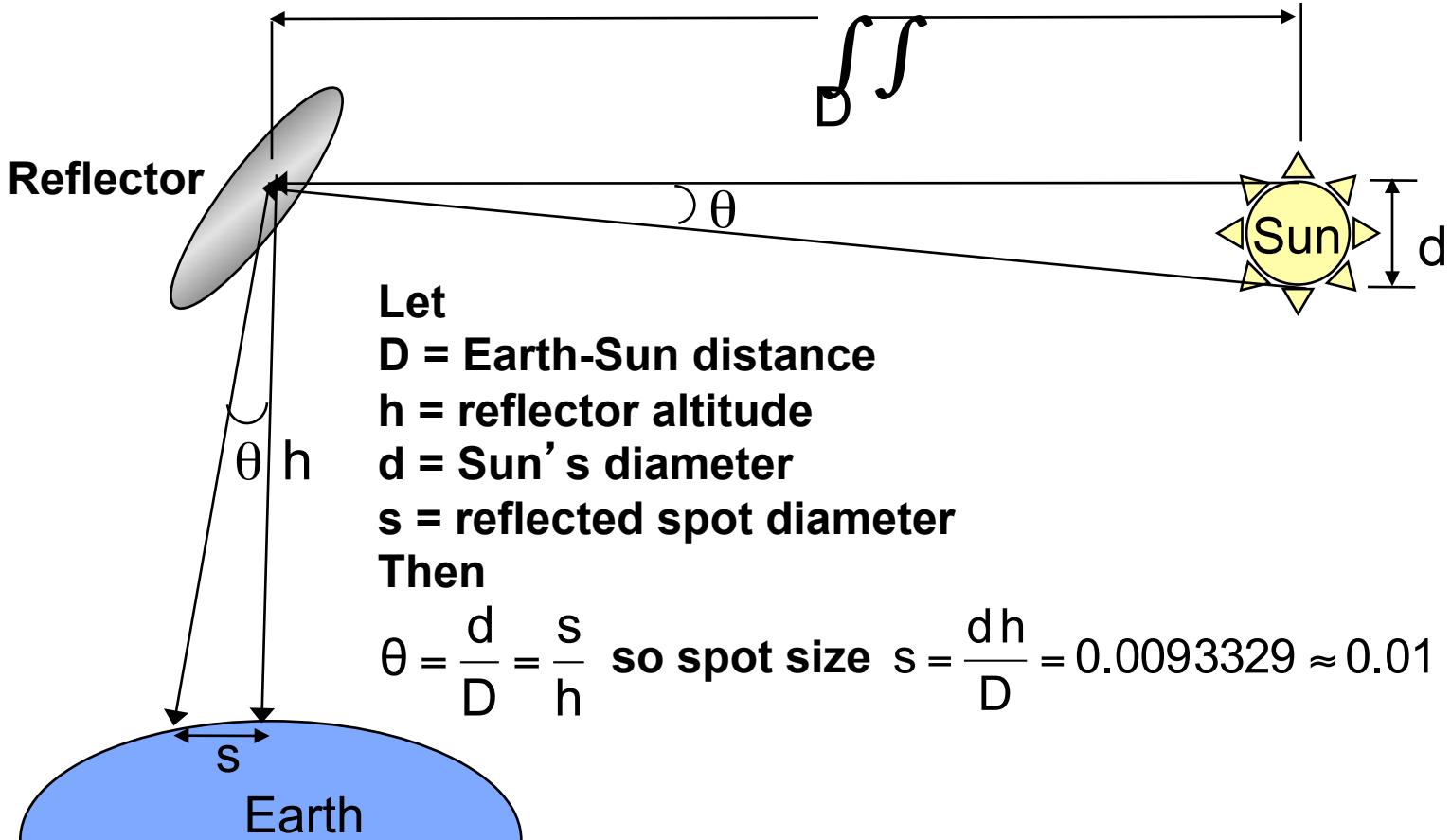
- Somewhat off polar, so could be in Earth's shadow during part of each orbit around the solstices
 - Could reach deeper into Earth's night side
 - Reflector size is larger
 - At higher altitudes, sun-synchronicity may not be achievable


Circular Sun-Synchronous Orbit: Inclination Depends on Altitude

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Sun-Synchronous Orbit Altitude: Too High or Too Low Will Cause Shadowing

Advanced Systems | Analysis, Modeling, Simulation and Experimentation


How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

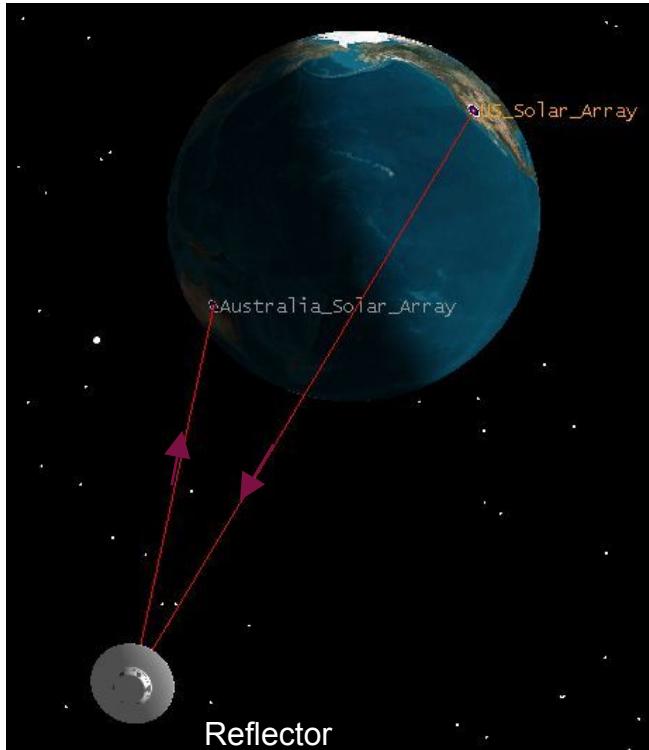
Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Do at least one of the following three things:
 1. Decrease the wavelength
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - Dwell times over ground site get shorter, so need more satellites or energy storage
 3. Leave heavier components on the ground
 - Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system
- There are at least two ways to accomplish #3:
 - 3a. Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector
 - 3b. Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector

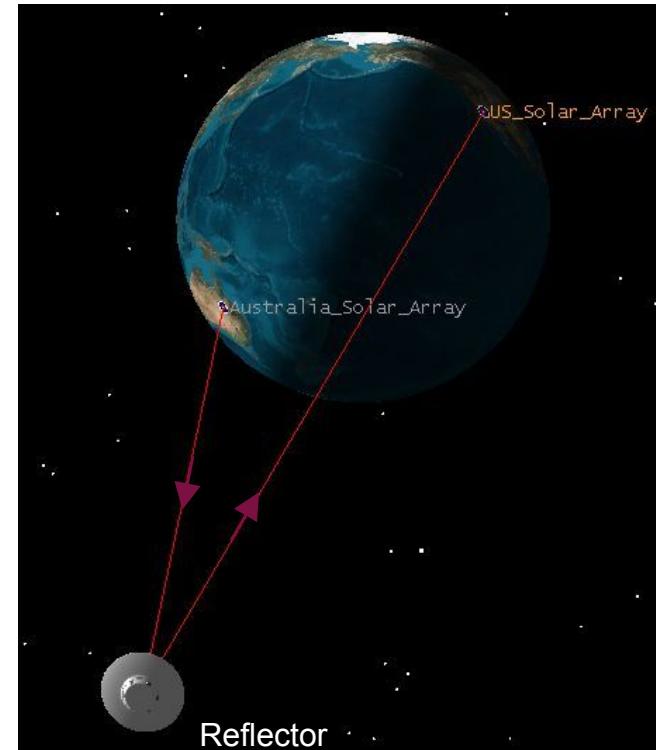
Solar Reflector Geometry

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Spot size is independent of reflector size. Reflector size does, however, determine spot brightness.


How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation


- Do at least one of the following three things:
 1. Decrease the wavelength
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - Dwell times over ground site get shorter, so need more satellites or energy storage
 3. Leave heavier components on the ground
 - **Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system**
- There are at least two ways to accomplish #3:
 - 3a. **Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector**
 - 3b. Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector

Orbital Reflectors Can Enable Growth Toward a Global Power Grid

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

During daylight hours, a photovoltaic array in the US powers the local grid and places excess power into a laser which is relayed to an array in Australia.

If the array in Australia also has a laser, then twelve hours later, the process can be reversed.

An orbiting reflector can send beamed power around the world, so that solar arrays can be used at night.

How to Make the SSP Satellite Smaller (In space, we usually mean lighter)

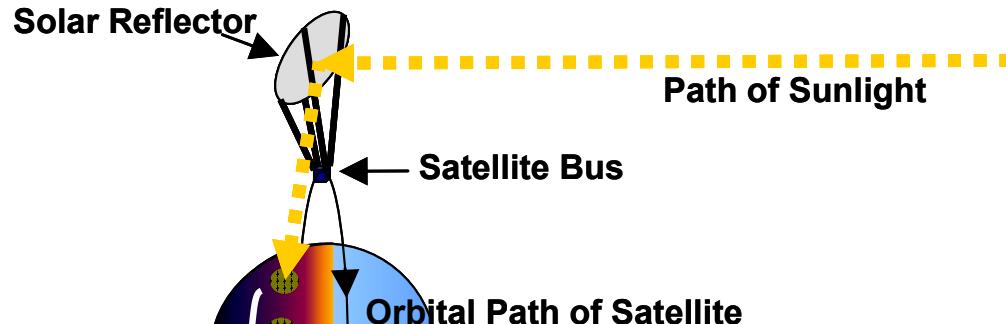
Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Do at least one of the following three things:**
 1. Decrease the wavelength
 - Power transmission efficiency may decrease
 - Weather outages may increase
 2. Lower the orbit
 - Dwell times over ground site get shorter, so need more satellites or energy storage
 3. Leave heavier components on the ground
 - **Much of the mass of a solar power satellite consists of the power transmission apparatus and the power management and distribution (PMAD) system**
- **There are at least two ways to accomplish #3:**
 - 3a. Generate power using a solar collector on the day side of the Earth and relay power to a solar array on the night side with an orbiting reflector
 - 3b. **Redirect sunlight to a solar array on the night side of the Earth using an orbiting reflector**

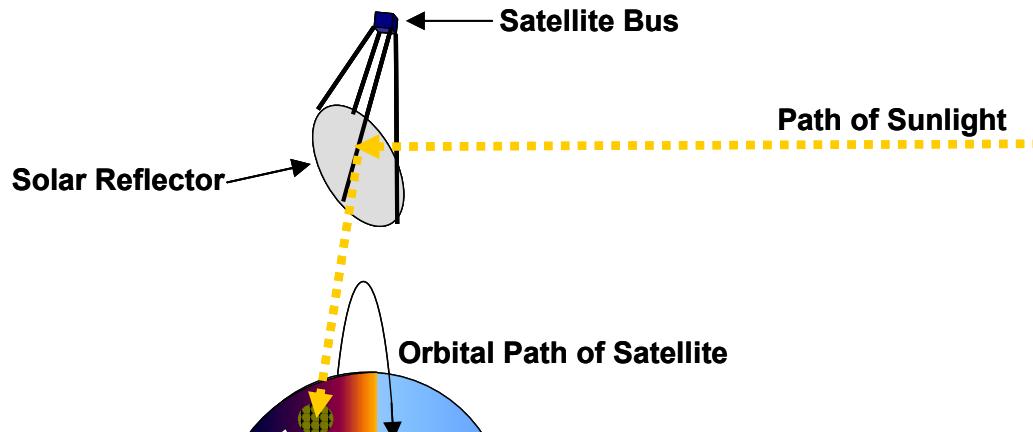
Questions that Drive Reflector System Design

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **How large should a solar reflector be?**
 - For reflected sunlight, size is determined by altitude (higher means larger for equivalent brightness) and desired spot brightness (brighter means larger for a given altitude)
- **How many reflectors are required for continuous power?**
 - Only one, if in equatorial GEO, but reflector (or set of reflectors aimed at a common ground area) will be huge
 - For lower orbits, depends on time each one is in view, which is determined by altitude
- **What orbit should the reflector be in?**
 - GEO: simplest architecture, but satellite will be huge
 - Very low Earth orbit (“LEO”, like Space Shuttle or International Space Station): satellites small, but need lots of them to get continuous power
 - Somewhat higher LEO, such as the sun-synchronous orbits mentioned earlier: may be an effective compromise


Possible Configurations for Solar Reflector

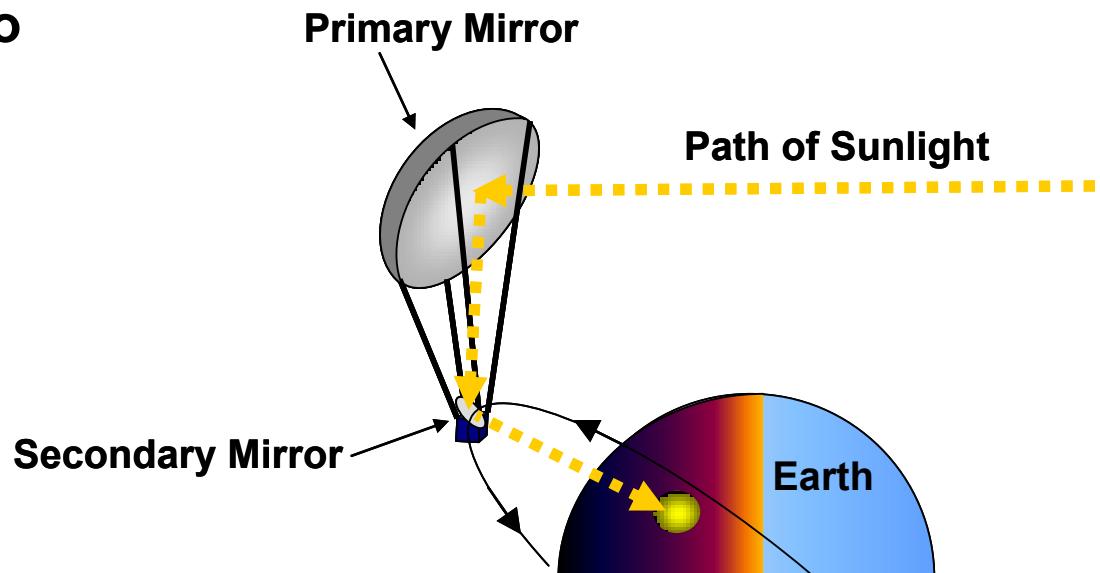
Example 1: Sun-Synchronous Gravity Gradient


Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Satellite is in near-polar sun-synchronous orbit – can be oriented to orbit around the Earth's day/night division
- Gravity gradient stabilized
- Orientation of reflector fixed over the course of a day, but will have to be slowly steered seasonably
 - Can be steered by adjusting tension on wires or length of "spokes"
- Two configuration options – choice depends on distribution of mass

Example 1a: Bus hangs below reflector, as seen earlier

Example 1b: Reflector hangs below bus

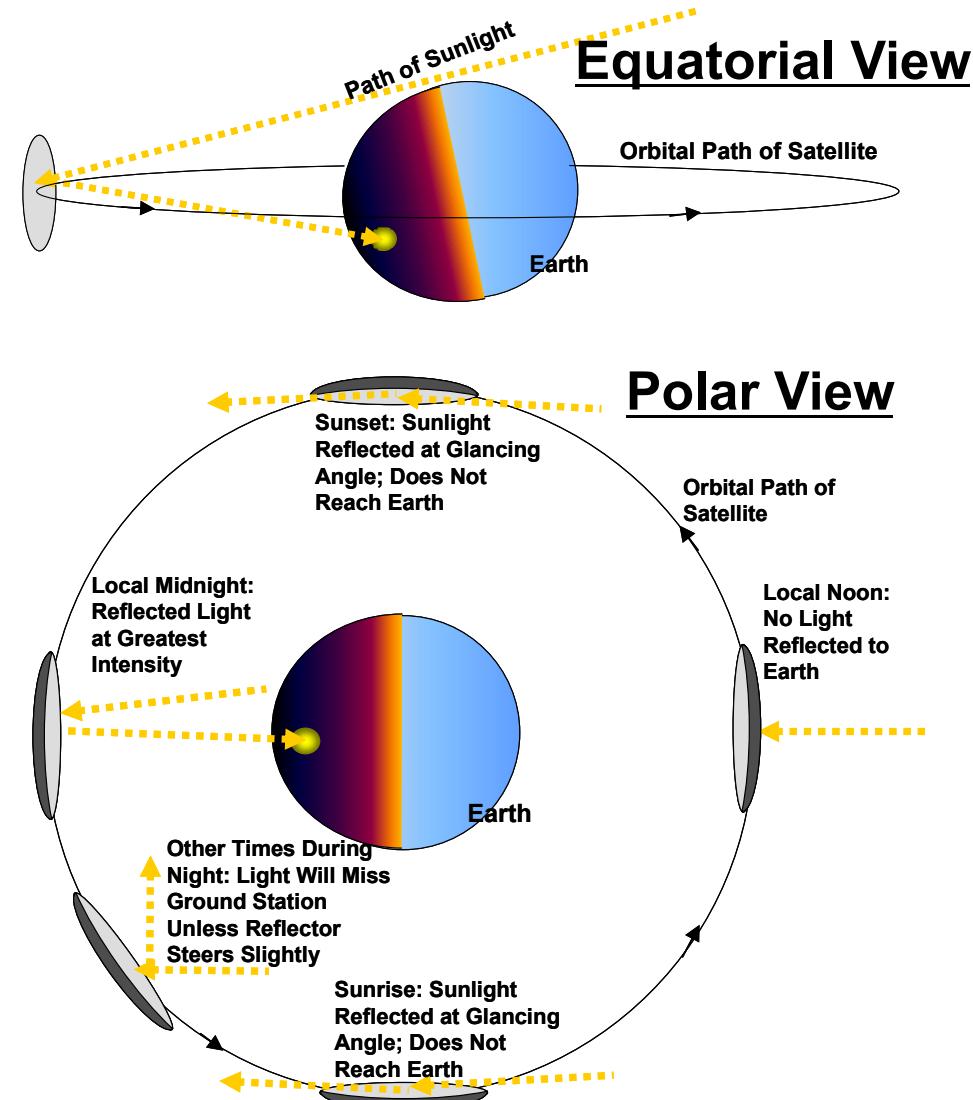


Possible Configurations for Solar Reflector

Example 2: Two-Mirror Concept

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- **Primary mirror tracks sun**
 - May be parabolic to concentrate light onto secondary mirror
- **Secondary mirror steers to track ground station**
- **May be useful for inclined orbits and/or low orbits, where rapid steering is necessary**



Possible Configurations for Solar Reflector

Example 3: Geostationary Perpendicular to Orbital Plane

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Satellite is a simple monolithic structure that orbits roughly perpendicular to the orbital plane
- Provides power to the ground at night
- Must be slightly off-perpendicular by an amount that depends on time of year and location of ground station – some north-south steering is necessary
- Some east-west steering necessary during the night part of each orbit to maintain illumination incident on ground station

Conclusions

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Near-term use of SSP technology can provide risk burn-down, as well as practical utility
- Mass to be deployed on orbit for early initial operating condition can be minimized by judicious choice of power transmission wavelength, orbit, and system architecture
- Reflector demos may be functionally and structurally traceable to orbiting solar reflectors, orbiting (laser) power relays, and reflector concentrator SPSs
- These can form the backbone of a network-centric power-on-demand system

A Possible Path to SSP

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- The DoD may wish to reduce the logistics chain to forward military bases by displacing diesel fuel with renewable energy
- A first step could be using terrestrial photovoltaics within a base to capture sunlight and partially displace the diesel fuel
- Demo-scale SPS's in low Earth orbit can be brought on line and beam power to the PV arrays at night or at forward locations replacing disposable battery portage
- By use of beam handoffs, the duty cycle of both the space and ground segments can increase as the number of satellites increases
- Eventually, the power beaming concept of operations can be simplified by use of geostationary SPS's

