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What	is	a	PSA	
•  PSA	is	based	on	the	so6ware	concept	of	Run-
Time	Polymorphism	applied	to	systems	
architecture	
–  Abstrac?on	
–  Inheritance	
–  Shared	Aggrega?on	

•  Based	on	the	Strategy	&	Composite	Design	
PaTern	

•  Applied	to	so6ware	and	non-so6ware	system	
architecture	
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Controller	

theStrategy[20]:MyAbstrac?on;	

sortStrategies():void;	
executeStrategies():void;	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

strategy2Opera?on1():void;	

Strategy1	

strategyATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	
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Purpose	
•  Sa?sfy	func?onality	
with	the	system	
Architecture	
– Dynamic	
Reconfigura?on	of	
System	Func?onality	

–  Plug-N-Play	
–  Extendability	
–  System	Redundancy	
–  System	Reuse	
–  Systems	of	Systems	
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•  Simplify	Reduce	the	
complexity	of	the	
solu?on	
–  Requires	governances	for	
the	abstrac?on	

–  Requires	a	polymorphic	
mediator	

–  Requires	architecture	to	
be	more	than	
decomposi?on	



How	does	this	provide	extension	
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How	do	we	apply	polymorphic	behavior	

•  Polymorphic	Logic	
–  The	‘value’	translates	to	the	
abstract	interface	reference.	

–  Each	enumerated	value	(red,	
blue,	and	green)	becomes	a	
child	classes	derived	from	the	
abstract	interface.	

–  Each	child	develops	its	own	
implementa?on	of	
‘doSomething’.	

anObject	=	value	
Each	enum	=	a	derived	class	
anObject.doSomething();	
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•  Structured	Logic	
Case	value	is	
	when	red	=>	
				doSomething();	
when	blue	=>	
				doSomethingElse();	
when	green	=>	
				doAnotherthing();	
end	case;	



Metrics	

•  At	this	?me	there	are	only	metrics	to	iden?fy	
if	these	paTerns	are	being	used.	
– Coun?ng	the	rela?onships	of:	

•  Shared	aggrega?on	to	
•  Defined	abstrac?on	with	
•  Inheritance	

•  Opportuni?es	for	using	these	paTerns	can	
also	be	iden?fied	
– Number	of	Case	statement	type	logic	in	the	
system	can	be	iden?fied	
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Value	Added	
•  Extendable/Reusable	System	Designs	
•  Dynamic	reconfigura?on	
•  Sa?sfy	Requirements	with	the	System	
Architecture	

•  An	architecture	that	matures	over	?me	
instead	of	becoming	obsolete	
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Take	Away	

•  Polymorphism	can	be	applied	to	both	
so6ware	and	non-so6ware	aspects	of	the	
system	

•  This	architecture	allows	for	specific	types	of	
requirements	to	be	sa?sfied	at	the	system	
level	
– The	most	valuable	of	these	is	the	ability	to	create	
a	reusable	system	that	can	mature	with	age.	
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Ques?ons/Comments	

•  ?	
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