
Polymorphic	System	Architecture	

By	Jeff	Bryson	
So6ware	Engineer	Staff	

Lockheed	Mar?n	Simula?on,	Training,	&	Support	

04/09/17	 1	Lockheed	Mar?n	Simula?on,	Training,	&	Support	
jeffery.e.bryson@lmco.com	



What	is	a	PSA	
•  PSA	is	based	on	the	so6ware	concept	of	Run-
Time	Polymorphism	applied	to	systems	
architecture	
–  Abstrac?on	
–  Inheritance	
–  Shared	Aggrega?on	

•  Based	on	the	Strategy	&	Composite	Design	
PaTern	

•  Applied	to	so6ware	and	non-so6ware	system	
architecture	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 2	

Object	1	 Object	2	

Object	4	 Object	6	Object	5	Object	3	

Controller	

theStrategy[20]:MyAbstrac?on;	

sortStrategies():void;	
executeStrategies():void;	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

strategy2Opera?on1():void;	

Strategy1	

strategyATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Shared
	Aggre

ga*on
	

Inheri
tance	

Abstra
c*on	



What	is	a	PSA	
•  PSA	is	based	on	the	so6ware	concept	of	Run-
Time	Polymorphism	applied	to	systems	
architecture	
–  Abstrac?on	
–  Inheritance	
–  Shared	Aggrega?on	

•  Based	on	the	Strategy	&	Composite	Design	
PaTerns	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 3	



What	is	a	PSA	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 4	

Controller	

theStrategy[20]:MyAbstrac?on;	

sortStrategies():void;	
executeStrategies():void;	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
Strategy1Opera?on2():void;	



What	is	a	PSA	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 5	

Object	1	 Object	2	

Object	4	 Object	6	Object	5	Object	3	

Controller	

theStrategy[20]:MyAbstrac?on;	

sortStrategies():void;	
executeStrategies():void;	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

strategy2Opera?on1():void;	

Strategy1	

strategyATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Shared
	Aggre

ga*on
	

Inheri
tance	

Abstra
c*on	



Purpose	
•  Sa?sfy	func?onality	
with	the	system	
Architecture	
– Dynamic	
Reconfigura?on	of	
System	Func?onality	

–  Plug-N-Play	
–  Extendability	
–  System	Redundancy	
–  System	Reuse	
–  Systems	of	Systems	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 6	

•  Simplify	Reduce	the	
complexity	of	the	
solu?on	
–  Requires	governances	for	
the	abstrac?on	

–  Requires	a	polymorphic	
mediator	

–  Requires	architecture	to	
be	more	than	
decomposi?on	



How	does	this	provide	extension	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 7	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

Strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Object	4	 Object	6	Object	5	Object	3	

Object	8	Object	7	

Strategy3	

strategy3Opera?on1():void;	

Object	
10	Object	9	



How	does	this	provide	extension	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 8	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

Strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Object	4	 Object	6	Object	5	Object	3	



How	does	this	provide	extension	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 9	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

Strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Object	4	 Object	6	Object	5	Object	3	



How	does	this	provide	extension	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 10	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

Strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Object	4	 Object	6	Object	5	Object	3	

Object	8	Object	7	



How	does	this	provide	extension	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 Lockheed	Mar?n	Simula?on,	Training,	&	11	

ControllerStrategy	
theStrategy	[20]:	
theStrategy	[20]:	
MyAbstrac?on
sortStrategies():void;	
executeStrategiessortStrategies

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	
parentATribute1	:	int;	
parentATribute2	:	float;	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy2	

strategy2ATribute1	:	float;	

Strategy2Opera?on1():void;	

Strategy1	

strategy1ATribute1	:	int;	

strategy1Opera?on1():void;	
strategy1Opera?on2():void;	

Object	4	 Object	6	Object	5	Object	3	

Object	8	Object	7	

Strategy3	

strategy3Opera?on1():void;	

Object	
10	Object	9	



How	does	the	architecture	mature	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 12	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
theStrategy

sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy1	

strategy1Opera?on1():void;	
	

Object	4	Object	3	

Strategy2	

strategy2Opera?on1():void;	
	

Object	6	Object	5	

Strategy3	

strategy3Opera?on1():void;	
	

Object	
10	Object	9	

<<Abstract>>	

My2ndAbstrac?on	
	
	
level2Opera?onXYZ():void;	
	strategy1Opera?onXYZ():void;	

	
strategy2Opera?onXYZ():void;	
	



How	does	the	architecture	mature	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 13	

ControllerStrategy	
theStrategy	[20]:	
MyAbstrac?on;	
	
sortStrategies():void;	
executeStrategies():void;	

Object	1	 Object	2	

<<Abstract>>	

MyAbstrac?on	

parentOpera?on1():void;	
parentOpera?on2():void;	

Strategy1	

strategy1Opera?on1():void;	
	

Object	4	Object	3	

Strategy2	

strategy2Opera?on1():void;	
	

Object	6	Object	5	

Strategy3	

strategy3Opera?on1():void;	
	

Object	
10	Object	9	

<<Abstract>>	

My2ndAbstrac?on	
	
	
level2Opera?onXYZ():void;	
	



How	do	we	apply	polymorphic	behavior	

•  Polymorphic	Logic	
–  The	‘value’	translates	to	the	
abstract	interface	reference.	

–  Each	enumerated	value	(red,	
blue,	and	green)	becomes	a	
child	classes	derived	from	the	
abstract	interface.	

–  Each	child	develops	its	own	
implementa?on	of	
‘doSomething’.	

anObject	=	value	
Each	enum	=	a	derived	class	
anObject.doSomething();	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 14	

•  Structured	Logic	
Case	value	is	
	when	red	=>	
				doSomething();	
when	blue	=>	
				doSomethingElse();	
when	green	=>	
				doAnotherthing();	
end	case;	



Metrics	

•  At	this	?me	there	are	only	metrics	to	iden?fy	
if	these	paTerns	are	being	used.	
– Coun?ng	the	rela?onships	of:	

•  Shared	aggrega?on	to	
•  Defined	abstrac?on	with	
•  Inheritance	

•  Opportuni?es	for	using	these	paTerns	can	
also	be	iden?fied	
– Number	of	Case	statement	type	logic	in	the	
system	can	be	iden?fied	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 15	



Value	Added	
•  Extendable/Reusable	System	Designs	
•  Dynamic	reconfigura?on	
•  Sa?sfy	Requirements	with	the	System	
Architecture	

•  An	architecture	that	matures	over	?me	
instead	of	becoming	obsolete	

04/09/17	 16	Lockheed	Mar?n	Simula?on,	Training,	&	Support	
jeffery.e.bryson@lmco.com	



Take	Away	

•  Polymorphism	can	be	applied	to	both	
so6ware	and	non-so6ware	aspects	of	the	
system	

•  This	architecture	allows	for	specific	types	of	
requirements	to	be	sa?sfied	at	the	system	
level	
– The	most	valuable	of	these	is	the	ability	to	create	
a	reusable	system	that	can	mature	with	age.	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 17	



Ques?ons/Comments	

•  ?	

04/09/17	 Lockheed	Mar?n	Simula?on,	Training,	&	
Support	jeffery.e.bryson@lmco.com	 18	


