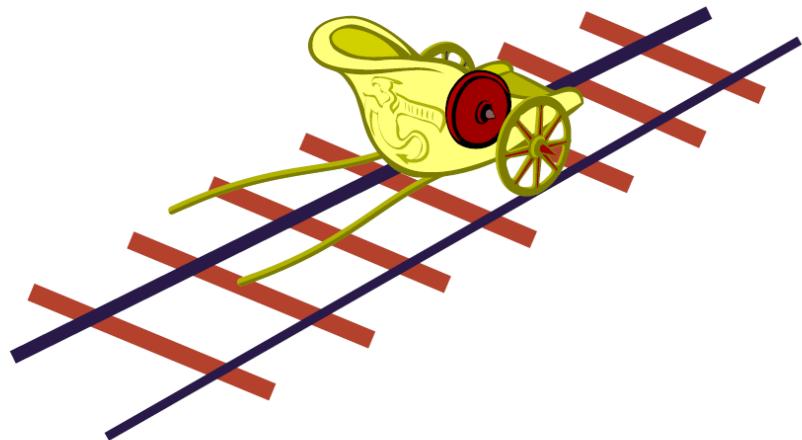


An Initiative to Strengthen Guidance on the Systems Engineering of Systems which are Already in Service: First Progress Report

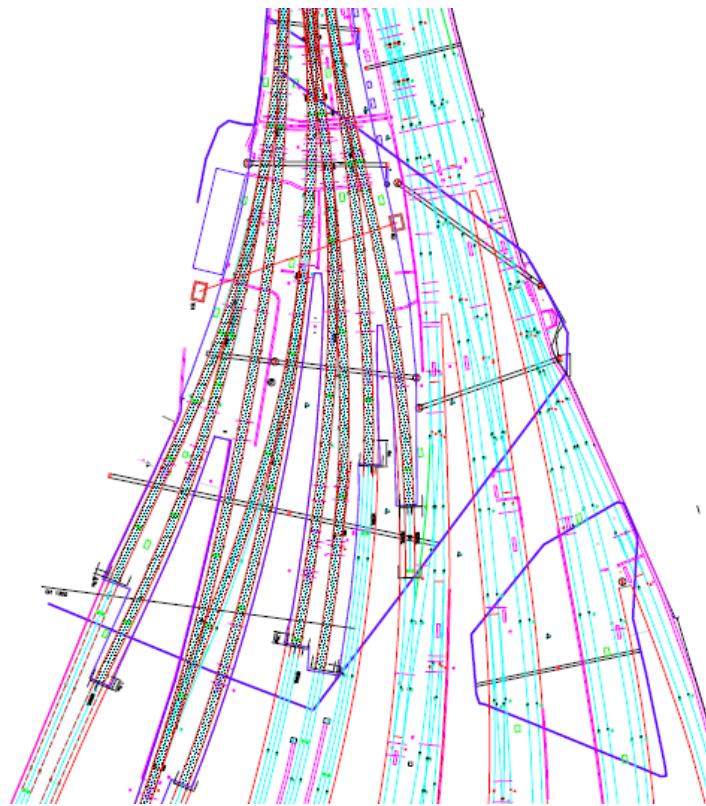

Bruce Elliott
Arbutus Technical Consulting Limited
Glenn Panter
Thales

- Motivation
- Phase 1: Analyzing the Problem
- Phase 2: Thread 1 – Developing Guidance
- Phase 2: Thread 2 – Integrating Guidance
- Conclusions
- Acknowledgements

Did Julius Caesar write this?

- Technical specification for interoperability relating to the infrastructure subsystem of the trans-European high-speed rail system (2002/732/EC)

“Track gauge
the distance between the rails
(gauge) shall be set at the
reference standard value of
1435 mm”


Case Study: Rail Upgrade 1/2

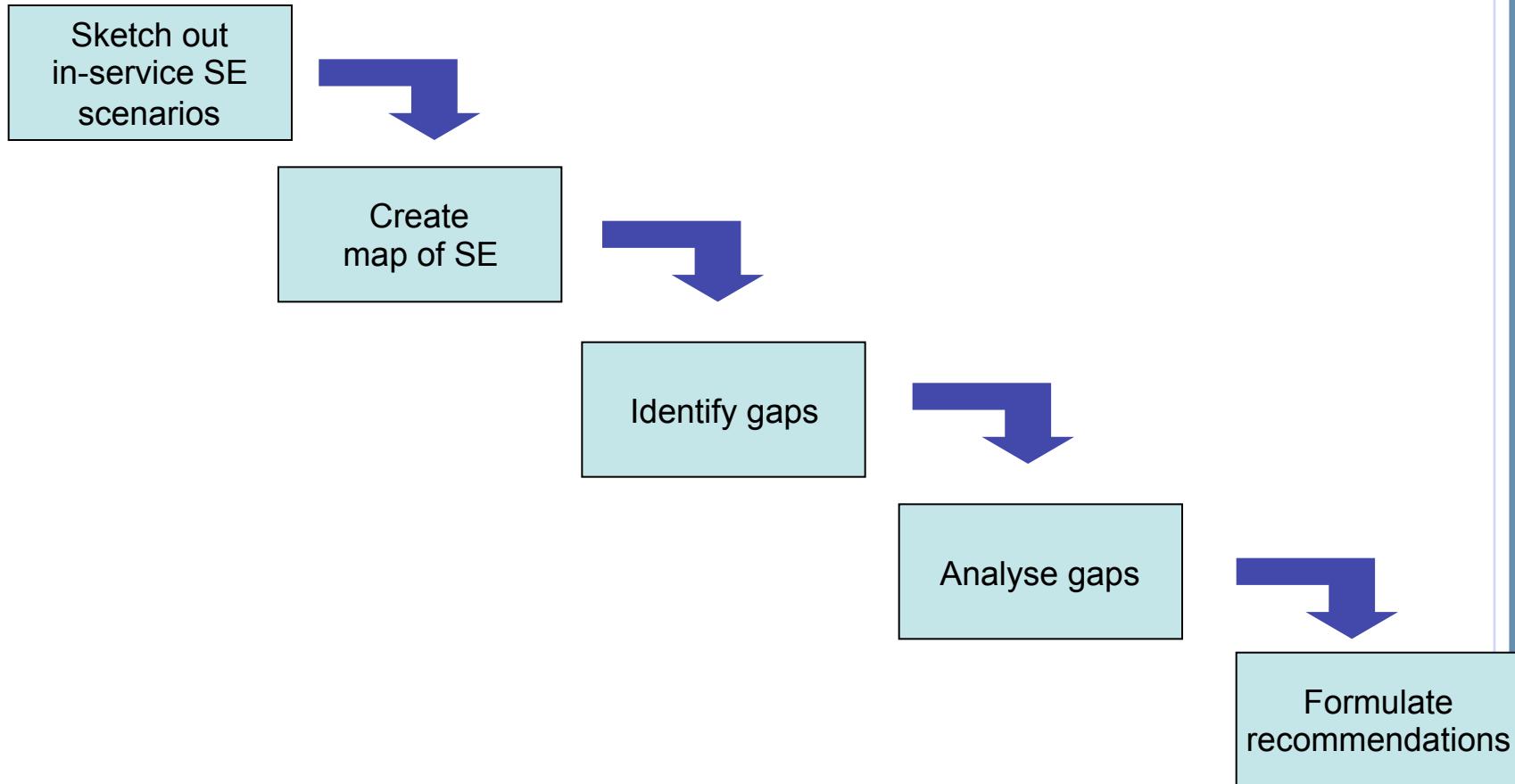
- Replace all switches and crossing within an area marked on a plan
 - to current standards
 - unless otherwise agreed
- All work to be completed within 54 hours
- A lot of cables threaded through plastic pipes under the tracks
 - in contravention of current standards.
- This is a systems problem!

Motivation: Rail Upgrade 2/2

- The requirements seem unsophisticated
 - But the only ambiguities about the defined end state are deliberate
 - The hard part is to define the start state
- SE handbooks and standards move on from requirements to architecture
 - But we are not creating a new architecture
- The transition from the old system to the new one is a first-class part of the problem

None of these issues is specific to rail systems

Pictures: www.boeing.com, www.operations.mod.uk


- Motivation
- Phase 1: Analyzing the Problem
- Phase 2: Thread 1 – Developing Guidance
- Phase 2: Thread 2 – Integrating Guidance
- Conclusions
- Acknowledgements

Phase 1: Analyzing the Problem

- Issue explored at a UK workshop in 2007. Consensus that
 - the principles underpinning SE remain the same across the lifecycle, but that
 - the guidance for in-service systems engineering could be strengthened in some areas
- A UK working group with experience in defense, aerospace, air traffic control and rail was formed to advise on:
 - the difficulties encountered, in practice, in applying authoritative guidance on SE, including the INCOSE SE Handbook, to systems that are in service;
 - best current practice in adapting SE guidance to overcome these difficulties; and
 - additional work that might be initiated to assist its members further in overcoming these difficulties.
- Report delivered in 2008
 - Available from www.incoseonline.org.uk, follow links to In-Service Group

The Approach Taken

The W Lifecycle (adapted from ISO/IEC 15288)

Lifecycle Stage	
	Identify stakeholders' needs; Explore concepts; Propose viable solutions
DEVELOPMENT'	Refine system requirement; Create solution description; Build system; Verify and validate system
CONSTRUCTION'	Produce sub-systems
INTEGRATION'	Integrate sub-systems; Inspect and test [verify]
UTILIZATION/SUPPORT	Operate system to satisfy users' needs; Provide sustained system capability
CONCEPT"	Identify stakeholders' needs for change; Explore concepts; Propose viable solutions
DEVELOPMENT"	Refine change requirement; Create solution description; Build change; V&V change
CONSTRUCTION"	Produce changed sub-systems
INTEGRATION"	Integrate changed sub-systems
	Integrate change with in-service system; Inspect and test
RETIREMENT	Store, archive, or dispose of the system

SE Activities

- Stakeholder Req Definition
- Requirements Analysis
- Requirements Analysis
- Implementation
- Integration
- Functional Design
- Transition
- Implementation
- Validation
- Operation
- Maintenance
- Disposal
- Integration
- Cross-lifecycle activities
- Project Planning
- Project Assessment
- Project Control
- Decision-Making
- Engineering Environment
- Risk and Opportunity Mgt
- Configuration Management
- Information Management
- Systems Analysis

Map of In Service SE

Activity	STAGE										
	Dev't	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret
Stakeholder Req Defn											
Requirements Analysis											
Architectural Design											
Implementation											
Integration											
Verification											
Transition											
Validation											
Operation											
Maintenance											
Disposal											
Project Planning											
Project Assessment											
Project Control											
Decision-Making											
Engineering Environment											
Risk & Opp Mgt											
Configuration Management											
Information Management											
Systems Analysis											

Identification of Gaps

Activity	STAGE											
	Dev't	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret	
Stakeholder Req Defn												
Requirements Analysis												
Architectural Design												
Implementation												
Integration												
Verification												
Transition												
Validation						1						
Operation												
Maintenance												
Disposal												
Project Planning												
Project Assessment												
Project Control												
Decision-Making												
Engineering Environment												
Risk & Opp Mgt												
Configuration Management												
Information Management												
Systems Analysis												

Through-life validation:
Establishing whether the system and the user needs have drifted apart and some action (a new "V") is required

Identification of Gaps

Activity	STAGE										
	Dev't	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret
Stakeholder Req Defn											
Requirements Analysis						2					
Architectural Design											
Implementation											
Integration											
Verification											
Transition											
Validation											
Operation											
Maintenance											
Disposal											
Project Planning											
Project Assessm											
Project Control											
Decision-Making											
Engineering Environment											
Risk & Opp Mgt											
Configuration Management											
Information Management											
Systems Analysis											

Domain Knowledge:

Obtaining relevant facts about the environment of the system to be built is often the larger part of the problem but the guidance is focussed on Requirements

Identification of Gaps

Activity	STAGE											
	Dev't'	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret	
Stakeholder Req Defn												
Requirements Analysis												
Architectural Design							3	3				
Implementation												
Integration												
Verification												
Transition												
Validation												
Operation												
Maintenance												
Disposal												
Project Plan												
Project Asses												
Project Cont												
Decision-Ma												
Engineering												
Risk & Opp Mgt												
Configuration Management												
Information Management												
Systems Analysis												

Architecture Design:

Little guidance on modifying architectures. How much should you change / re-evaluate? How to deal with architectures that are implicit in standards?

Identification of Gaps

Activity	STAGE											
	Dev't'	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret	
Stakeholder Req Defn												
Requirements Analysis												
Architectural Design												
Implementation												
Integration												
Verification												
Transition												
Validation												
Operation												
Maintenance												
Disposal												
Project Planning												
Project Assessment												
Project Control												
Decision-Making												
Engineering Environment												
Risk & Opp Mgt												
Configuration Management												
Information Management												
Systems Analysis												

Incremental Acquisition:
 Planning out an incremental acquisition process that keeps the service going: backward compatibility; logistics

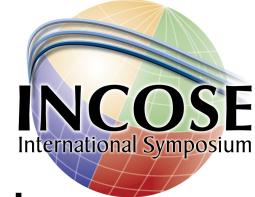
Identification of Gaps

Activity	STAGE										
	Dev't	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret
Stakeholder Req Defn											
Requirements Analysis											
Architectural Design											
Implementation											
Integration											
Verification											
Transition											
Validation											
Operation											
Maintenance											
Disposal											
Project Planning											
Project Assessment											
Project Control											
Decision-Making											
Engineering Environment											
Risk & Opp Mgt											
Configuration Management											
Information Management											
Systems Analysis											

Integration of Project CM with System CM:

Delivery project CM information
must be integrated into the CM
system for the enclosing system

5


Identification of Gaps

Activity	STAGE											
	Dev't'	Constr'	Int'	Concept'	Util/Supp	Concept"	Dev't"	Constr"	Int"	Ins"	Ret	
Stakeholder Req Defn												
Requirements Analysis												
Architectural Design												
Implementation												
Integration												
Verification												
Transition												
Validation												
Operation												
Maintenance												
Disposal												
Project Planning												
Project Assessm												
Project Control												
Decision-Making												
Engineering Environment												
Risk & Opp Mgt												
Configuration Management												
Information Management							6					
Systems Analysis												

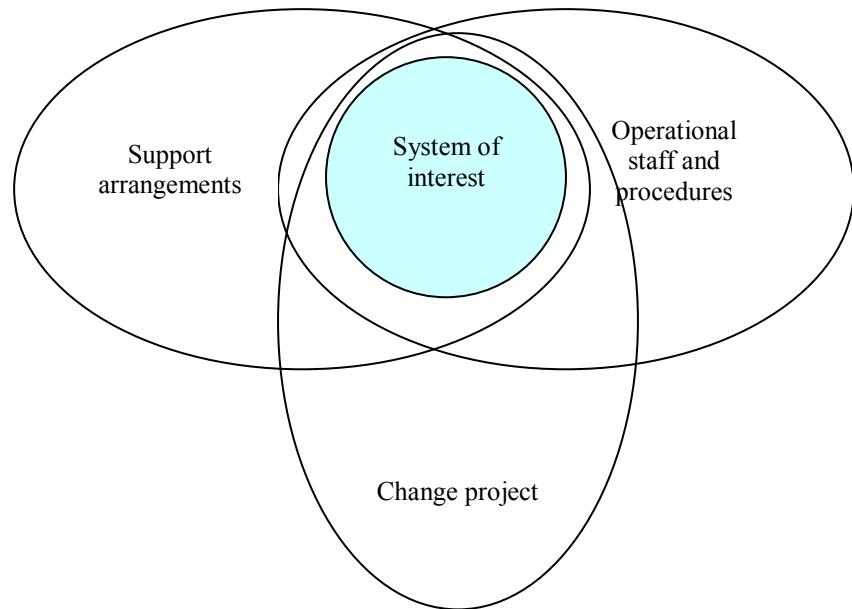
Information Management:
Maintaining accessibility and
modification of information
through life

Recommendations

- To initiate two parallel further threads for the next phase of work:
 - Phase 2: Thread 1: A UK-led working group to develop supplementary guidance to cover the gaps identified.
 - Phase 2: Thread 2: An international working group to improve and extend the work carried out by the UK working group, to achieve a broader consensus on the conclusions and to establish arrangements for integrating additional guidance into existing INCOSE products

- Motivation
- Phase 1: Analyzing the Problem
- Phase 2: Thread 1 – Developing Guidance
- Phase 2: Thread 2 – Integrating Guidance
- Conclusions
- Acknowledgements

Phase 2: Thread 1 – Developing Guidance



- The UK Working Group was reconvened in April 2009
- Supplementary guidance was published in April 2010
 - Available from www.incoselonline.org.uk, follow links to In-Service Group

Four viewpoints and four systems

- Managing the System
 - Maintaining or improving system performance
- Changing the System
 - Updating or upgrading the system in response to changing needs and circumstances
- Delivering the Service
 - Using the system to deliver a service that advances the business objectives of the organisation
- Optimising the Supply Chain
 - Designing the right supply network to deliver effective support to the system in question at an affordable cost

Four process groups

- Requirements, Validation and Verification
 - Gaps 1 and 2
- Architectural Design
 - Gap 3
- Implementation and Transition
 - Gap 4
- Information and Configuration Management
 - Gaps 5 and 6

Summary of Guidance

- If you are modifying the architecture of an existing system then, in additional to the
 - you may need to spend significant effort establishing where you are starting from.
- Architectural Design
 - If you are modifying the ~~architecture of an existing system~~ then, in additional to the traditional, 'forward' architecting suitable for the system. Deciding when to change the architecture and when to work within it is key architecting.
to success.
 - Systems architectural techniques are useful in documenting and ~~optimising the supply chain~~ and when to work within it is key to success.
 - Systems architectural techniques are useful in documenting and optimising the supply chain.
 - whole new dimension to the a system while keeping it in design and planning problem
 - Information and Configuration Management design and planning problem
 - Sustaining real systems too often requires dealing with incomplete and unreliable information.
 - It is not enough for the project and the system owner to follow good practice in configuration management, they also need to co-ordinate their activities.
 - Do not neglect the information held in people's heads

- Phase 2: Thread 2 – Integrating Guidance
 - Conclusions
- Phase 2: Thread 2 – Integrating Guidance
 - Conclusions
 - Acknowledgements

Phase 2: Thread 2 – Integrating Guidance

Phase 2: Thread 2 – Integrating Guidance

- The international In-Service Systems Working Group was chartered
 - The international In-Service Systems Working Group was chartered and held its kick-off meeting on 21st October 2009.
- At the time of writing, it had 17 members from 4 countries
 - Three activities:
 - Considering the guidance produced by the INCOSE UK working group
 - Considering the current channels by which INCOSE publishes advice on good SE practice in order to make recommendations on how additional guidance on performing SE on in-service systems should be integrated into these publications
 - Making recommendations on how best to bring the guidance to the attention of practicing systems engineers who can benefit from it

Guidance

- Phase 2: Thread 1 – Developing Guidance
- Phase 2: Thread 2 – Integrating Guidance
- Conclusions
- Acknowledgements

Conclusions

- The principles of SE seem to remain the same across the lifecycle
- But the application of some of these principles has to be
 - The principles of SE seem to remain the same across the lifecycle
 - But the application of some of these principles has to be adjusted for the in-service phase
- Existing guidance is stronger on the realization of new systems
 - Supplementary guidance exists to remedy this anomaly
 - This is a step in a long process
 - Work is underway to refine this guidance and make

- Motivation
- Motivation Analyzing the Problem
- Phase 2: Thread 1 – Developing
 - Phase 1: Analyzing the Problem
- Phase 2: Thread 1 – Developing Guidance
- Phase 2: Thread 2 – Integrating Guidance

Acknowledgements

➤ The work described in this presentation is a team effort involving many anyone who has been omitted

INCOSE members, including but not limited to the following:

- Werner Altmann
- Brenda Belkin
- Werner Altmann
- Brenda Belkin
- Andrew Bourne
- Lloyd Bridgewater
- Ron Brittain
- Richard Clayton
- Charles Coogan
- Doug Cowper
- Malcolm Currie
- Bruce Elliott
- Andrew Farncombe
- Ryanne Gentry
- Hans Hadderingh
- Michael Krueger
- Michael Krueger
- Stewart Leinster-Evans
- Peter Lister
- Ian McNeil
- Rob Norris
- Glenn Panter
- Steve Randolph
- Paul Schreinemakers
- Colin Smith
- Joe Talik
- Matthew Taylor
- Dave Thawley
- Njideka Umeh
- Marcel van de Ven