

Understanding the Implementation of System Architectures in the Context of Distributed Cognition

Paper 495

Authored by:

Chris Watkins & Dr. Cihan Dagli

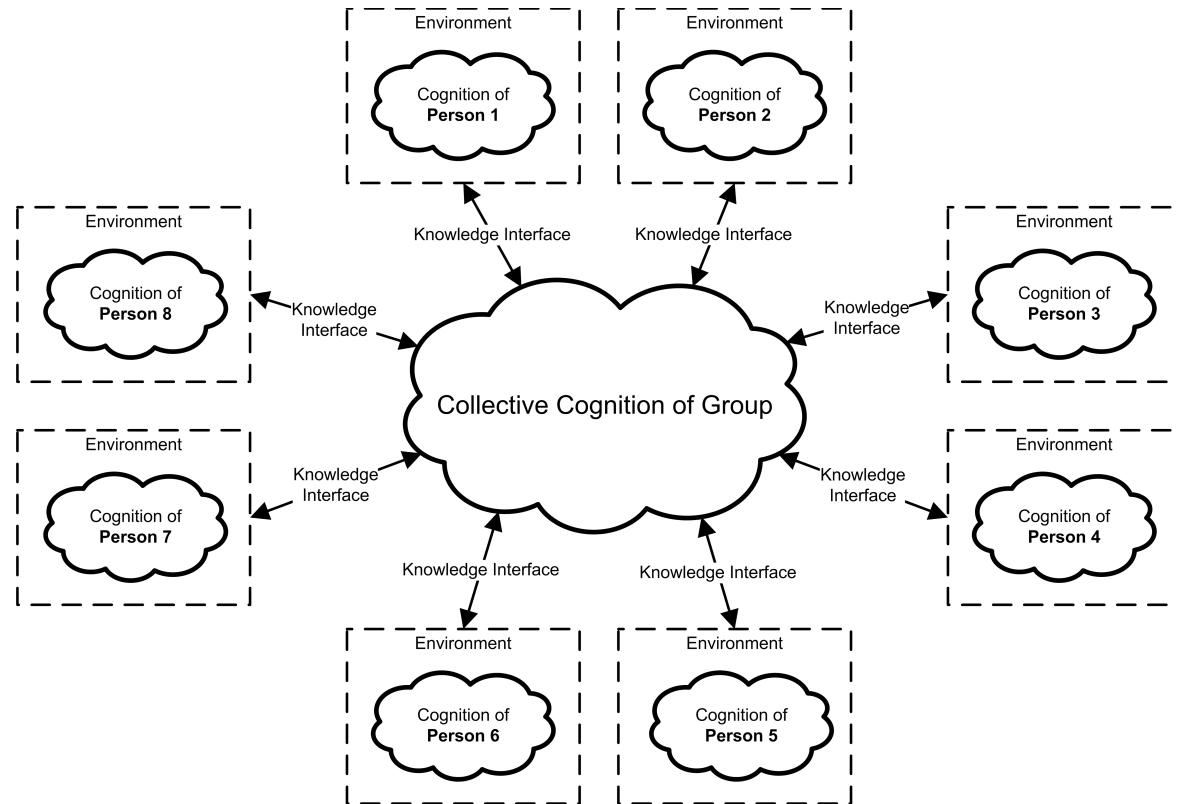
- System Architectures attributed to System Architect(s)
- Problem Statement
 - System Architects don't understand entire architecture
 - Architecture diverges from vision of system architects
- Root Cause
 - Distributed Cognition
- Apply Systems Thinking
 - Manage Systems of Knowledge

Objective: Increase probability of success that architecture will meet needs in problem space

➤ Psychological Theory

- Thinking extends beyond the individual and is distributed among a collective group
- Behavior of individual and group may diverge
- Edwin Hutchins credited for work in mid-1980's
 - “Cognition in the Wild” 1995
 - Uncoordinated system of Navy ships at port

How does “Group Think” influence problem solving behaviors?


Application of Systems Thinking

- Systems of Knowledge
 - Individual's Knowledge interfaces to other knowledge in a group
 - Knowledge system interfaces defined by mental and physical artifacts

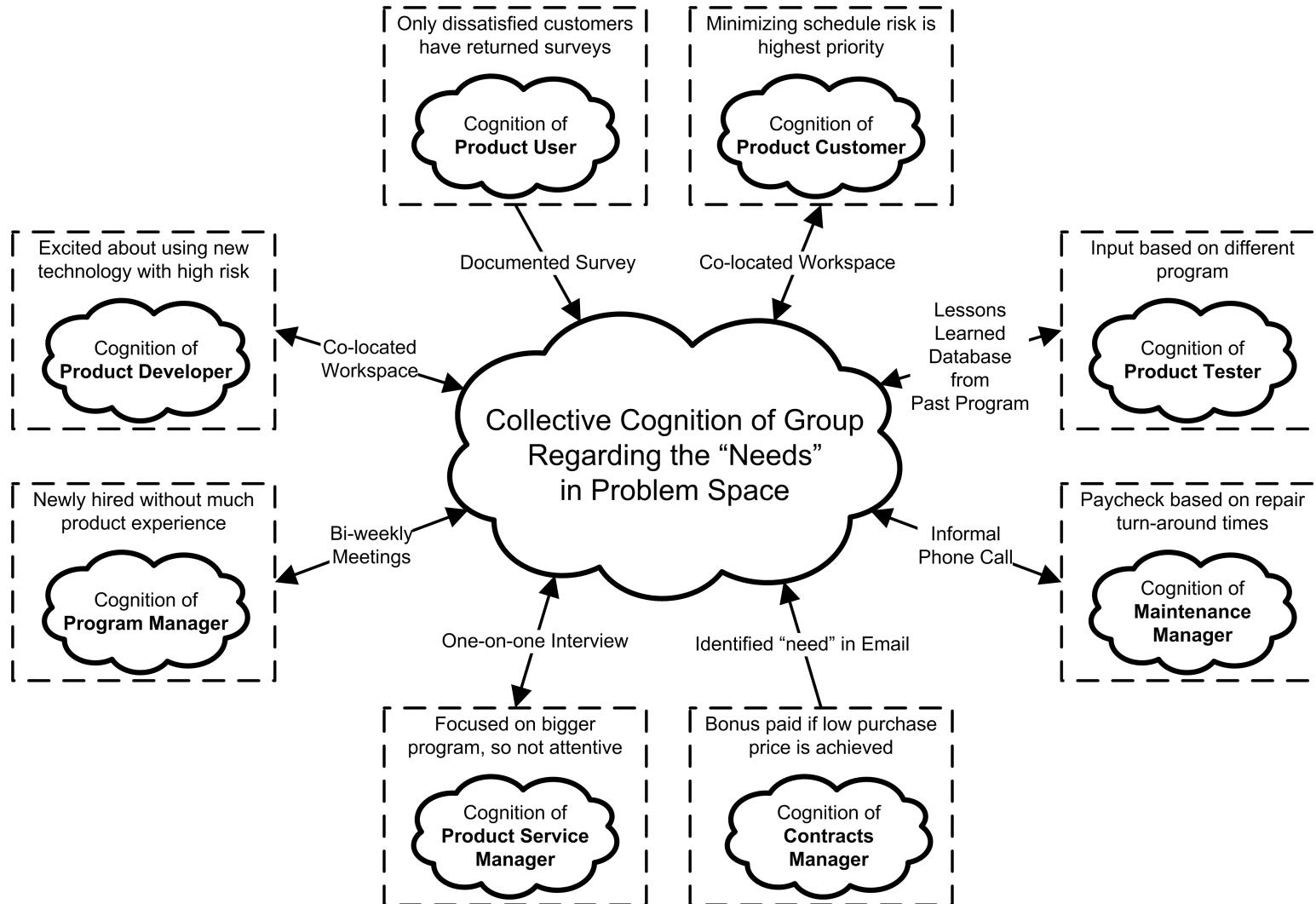
Main elements:
Individual Knowledge
Interface
Environment

2 Knowledge
Systems:
Problem Space
Solution Space

Recent Study about Group Thinking (Gureckis and Goldstone 2006)

- Authors draw conclusions about conditions under which the behavior of individual agents self-organize into adaptive problem-solving group structures
- Case Studies
 - Group path formation
 - Guess a number between 0 and 100
 - “Pacman” with invisible food
- Lessons learned (aka Heuristics)
 - People are a large part of people’s environments
 - Divide and conquer: Exploration and exploitation in groups
 - More information isn’t always better
 - Influencing groups by bottom-up pressures rather than top-down rules

Application within Systems Engineering


- Implemented architecture is result of collective understanding of everyone that can affect architecture
- Who can affect a system architecture?
 - System Architects
 - System Designers
 - System Implementers
- Is distributed cognition beneficial or destructive?
 - Depends on how it is managed
 - Knowledge systems can be unintentional (wild) or intentional
- Requirements decomposition is not a sufficient knowledge system
- Recognizing the cost of a knowledge system
 - System costs increase proportionally to the increase in system complexity

Distributed Cognition in Problem Space

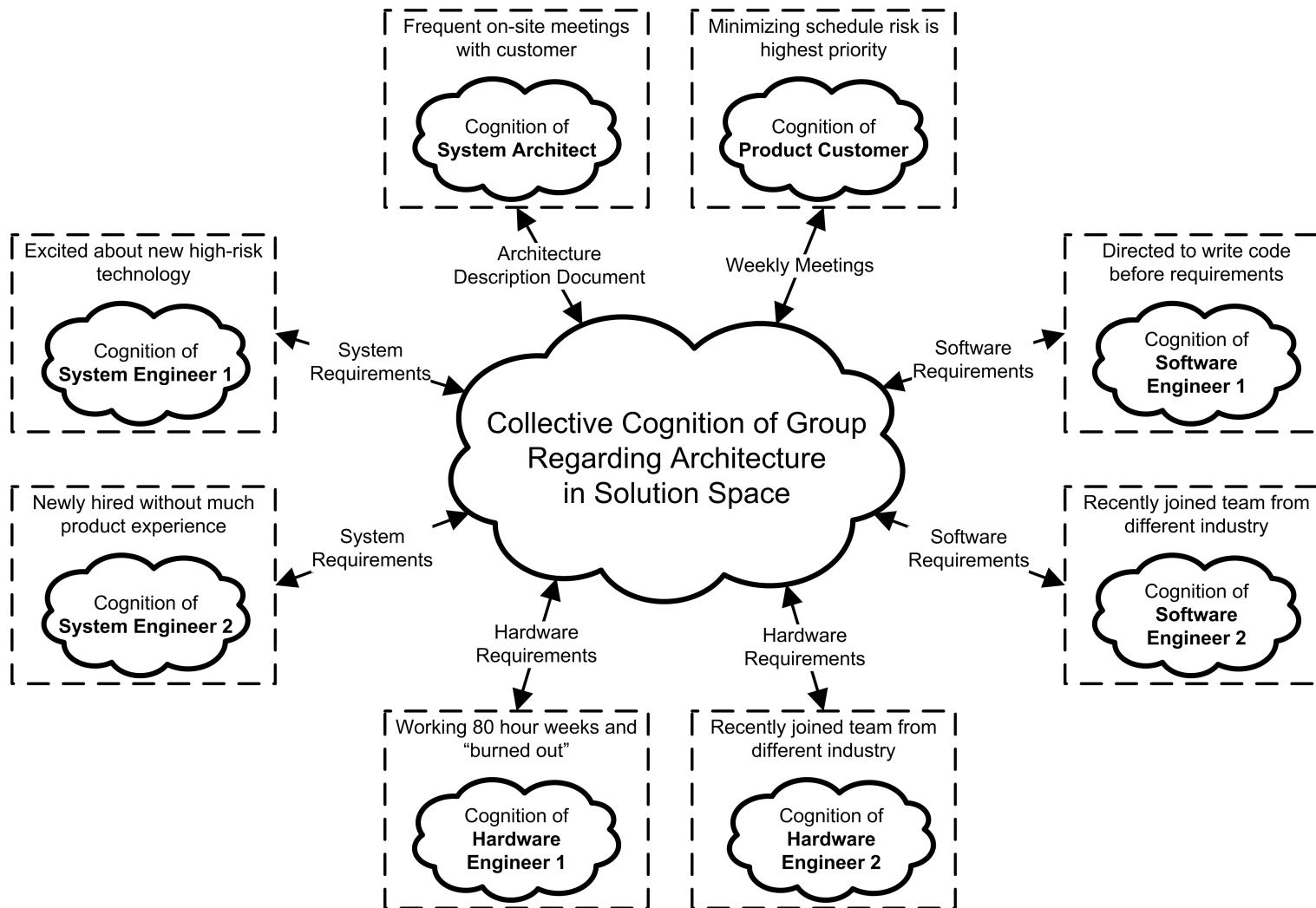
- (Saunders 2007) Biggest value in systems engineering is to sufficiently characterize the problem space
 - SCARIT process model
- (Trainor and Parnell 2007) Initial problem statement is rarely the full statement of the problem
- Distributed Cognition:
Problem not fully understood by any single person
 - System of Knowledge

System of Knowledge: Problem Space

Example

- Proposal submitted to geographically separated, cross-cultural customer
 - RFP issued (no RFI)
 - RFP assumed to fully document problem space
 - Virtually no communication about RFP
 - Proposal Rejected
- Proposal submitted to co-located customer
 - Recognized that neither supplier, nor customer were fully cognizant of entire need in problem space
 - Co-wrote RFI
 - Responded to RFP
 - Proposal successfully met needs of customer

Architecting Systems in the Problem Space


- Heuristic #1: People are a large part of people's environment
 - Shared environment for stakeholders fosters better understanding
- Heuristic #2: People divide and conquer. As a group they explore the unknown while exploiting the known.
 - Shared environment for stakeholders fosters additional contributions
- Heuristic #3: More information isn't always better
 - Drowning stakeholders in information will give false sense that problem space is already fully explored and can lead to less contributions
- Heuristic #4: Groups are best influenced by bottom-up pressures rather than top-down rules
 - Personal benefit of solving problem should be clearly defined for each stakeholder up-front so that they are motivated to contribute
- Heuristic #5: System cost increases proportionally to the increase in system complexity
 - Interface with minimum number of people from each stakeholder group as necessary to capture stakeholder needs

Distributed Cognition in Solution Space

- Important to manage knowledge system in the solution space
- (Dagli, Miller and Abbott 2007) Practical techniques for managing knowledge interfaces in a geographically separated development environment
 - Two-way video over internet
 - Shared information databases
 - Affect positive group behaviors through joint venture business model

Distributed Cognition in Solution Space

Example

- Toyota's “Big Room” concept
 - Leverages communication interfaces
 - Closed offices and cubicles replaced with large open spaces
 - Team leaders located in center of the room
 - Outer wall hosts visuals that support development process

Toyota's development process is **4x shorter** than typical North American Company (Cleveland 2006)

Architecting Systems in the Solution Space

- Heuristic #1: People are a large part of people's environment
 - Share working environment with development team
- Heuristic #2: People divide and conquer. As a group they explore the unknown while exploiting the known.
 - Don't separate teams in the same sub-solution space
 - Avoid work duplication by communicating what people are working on between teams of sub-solution spaces
- Heuristic #3: More information isn't always better
 - Architects should not stifle creativity by micro-managing implementation team
 - Recognize that implementation team can positively affect architecture
- Heuristic #4: Groups are best influenced by bottom-up pressures rather than top-down rules
 - Evaluate individual/team performance based on how their dependent's are able to use their work product
- Heuristic #5: System cost increases proportionally to the increase in system complexity
 - Minimize complexity of the knowledge system by minimizing the number of people required to implement the architecture

Conclusions: Don't Neglect Your Knowledge Systems

- Document knowledge systems along with architecture
 - Problem Space Knowledge System validates that problem space was thoroughly searched
 - Solution Space Knowledge System used to manage and explain architecture development in solution space
 - Example: 80-hour work weeks
- Document changes to knowledge systems throughout project lifecycle
 - Helps explains why changes are made to systems during development
 - Identify (and agree) if change was positive or negative
 - Identify (and agree) if change should be repeated in future projects based on same architecture

Knowledge Systems: How to Get Started

- Heuristic #6: It is better to design how a system will fail as opposed to invent how it will perform or operate.
(David Stanislaw, FAA DER)
 - Identify failure conditions before designing a knowledge system
 - Knowledge System design should address how it will work in midst of failure
 - We don't live in a utopia
 - Be prepared for high risk failures

References

- Brooks, F. P., Jr. 1995. *The Mythical Man-Month: Essays on Software Engineering*. Reading, MA: Addison-Wesley.
- Cleveland, John. 2006. The Toyota Product Development System's Implementation Challenges. *Field Guide to Automotive Technology*. Website accessed on 20 March 2010: <http://www.autofieldguide.com/columns/0506insight.html>
- Dagli, Dr., Dr. Ann Miller, and Russell Abbott. 2007. An Approach to a Network Centric Product Development System. In *Proceedings of the 17th Annual International Symposium of the International Council on Systems Engineering* (San Diego, CA). Seattle: INCOSE.
- Gureckis, Todd M., and Robert L. Goldstone. 2006. Thinking in Groups. *Pragmatics & Cognition*. 14:2:293-311. Amsterdam: John Benjamins Publishing Company.
- Hutchins, Edwin. 1995. *Knowledge in the Wild*. Cambridge: MIT Press.
- Leuf, Bo, Ward Cunningham, 2008, What is Wiki. Website accessed on 7 December 2008: <http://www.wiki.org/wiki.cgi?WhatIsWiki>.
- Saunders, Steven. 2007. Promoting the Real Value of Systems Engineering using an Extended SCARIT Process Model. In *Proceedings of the 17th Annual International Symposium of the International Council on Systems Engineering* (San Diego, CA). Seattle: INCOSE.
- Tausworthe, R. C. 1976. Simple Intuitive Models of Programming. *Deep Space Network Progress Report 42-33*. Jet Propulsion Laboratory. Pasadena, CA.
- Trainor, Timothy E. and Gregory S. Parnell. 2007. Using Stakeholder Analysis to Define the Problem in Systems Engineering. In *Proceedings of the 17th Annual International Symposium of the International Council on Systems Engineering* (San Diego, CA). Seattle: INCOSE.
- Zhong, Yang. 2003. *Local Government and Politics in China: Challenges from Below*. Armonk, NY: M.E. Sharpe.

Don't Neglect Your Knowledge Systems