
William D. Schindel
ICTT System Sciences

schindel@ictt.com

What Is the Smallest Model of a System?

Models Big Little

Systems Large Small

© 2011 by William D. Schindel. Published and used by INCOSE with permission. Presentation for the INCOSE Symposium 2011 Denver, CO USA

V 1.3.6

Contents

Ø Problem statement: Size matters!
Ø Constructing an efficient representation

Ø Using patterns to compress models
Ø Results and implications

Additional Information

2 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Problem Statement

Ø How we represent systems is fundamental to the history
of mathematics, science, and engineering.

Ø Why is minimality of representation of interest?
–  Scientific interests: The size of a system’s minimal representation

is used to define that system’s complexity.1

–  Practical interests: The size and redundancy of engineering
specifications challenge the effectiveness of real-world
engineering processes.

Ø What is the smallest representation of a system?

3 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Size matters!

Ø  We describe a (possibly least) upper bound on size of effective
representations for systems engineering (SE) purposes:
–  Consistent with current model-based SE trends, extending their

power;
–  Drawn more directly from scientific traditions for representing systems

based on physical interactions, compared to typical SE sources;
–  When used for system families (product lines, ensembles), this

representation also facilitates compression by use of system patterns.

4 Presentation for the INCOSE Symposium 2011 Denver, CO USA

What do we mean by “size” of a
model?

Aircraft
carrier

Aircraft
carrier

Not this!

5 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Practical challenges in
traditional SE representations

Ø  Traditional task-specific representations document systems:

CONOPS Requirements Architecture
Design Specs FMEAs Test Plans
O&M SOPS Use Cases Other . . .

•  Can run hundreds or thousands of pages during life cycles.
•  Typical: Provide the same system document to three different

expert readers, and get back three different interpretations:
•  This would be considered unacceptable for an electronic schematic—

so why accept it for “systems engineering” artifacts?

•  Subjective expert judgments are typically required to assess
artifact completeness and consistency;

•  These are among reasons cited for model-based methods.

Background

6 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Complexity science

Ø Subject of formal study for both natural and human-
engineered systems;

Ø  Initial efforts sought a theoretical basis for measuring and
understanding complexity [Li & Vitany, Chaiten,
Kauffmann];

Ø More recently, practical implications for engineering
processes [Bar-Yam, Braha, Kuras & White, Schindel]

Ø  Terminology of Complex adaptive systems (CAS),
Complex systems engineering (CSE), various INCOSE
working groups, etc.

Ø Growing awareness of the connection between systems
science and systems engineering

Background

7 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Model-based methods

Ø  Math-Physics models have longer-standing historical roles in design
verification and other prediction of system behavior [Karayanakis];

Ø  As described by other conference speakers, modeling ideas were later
extended, using model languages to represent system requirements and
design [Mellor, INCOSE, MBSE, SysML Partners, Schindel];

Ø  In all these cases, “model” implies formal, explicit, and unambiguous—
potentially a big improvement on prose alone:

Background

8 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Constructing an efficient representation

Ø A metamodel is a model of other models;
–  Sets forth how we will represent Requirements, Designs, Verification,

Failure Analysis, Trade-offs, etc.;
–  We utilize the (language independent) S* Metamodel from

Systematica™ Methodology:

 Simple summary of detailed S* Metamodel. •  The resulting system models may
be expressed in SysML™, other
languages, DB tables, etc.

•  Has been applied to systems
engineering in aerospace,
transportation, medical, advanced
manufacturing, communication,
construction, other domains.

9 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Stakeholder Features:
Expressing Value, for many SE Purposes

Ø S* models represent Value as explicit objects & attributes:
–  Essential for representing goals, innovation progress, trade space,

effects of failure modes, expression of risk, etc.
–  By covering all Stakeholders and their Features, these become the

scoreboard for all decision-making and risk management.
–  Example: Oil Filter Features

10 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Physical Interactions:
At the heart of S* models

Ø S* models represent Physical Interactions as explicit objects:
–  Example: Oil Filter Interactions:

11 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Physical Interactions:
At the heart of S* models

Ø S* models represent Physical Interactions as explicit objects:
–  Goes to the heart of 300 years of natural science of systems as a foundation

for engineering, including emergence.
–  Link to traditional mathematical-physical modeling.
–  Interacting elements perform Functional Roles, based on allocated

Requirements.
–  All functional requirements are revealed as external interactions [Schindel

2005].
–  Example: Oil Filter Mfg Process Bonding:

Filter Media

Heat
Source

Heat
Energy

Adhesive End Cap

Compression
Force

Compression
Source

Heat
Energy

Heat
Energy

Compression
Force

Compression
Force

Compression
Force

12 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Physical Interactions:
At the heart of S* models

Ø Emergence, emergent properties are based on Interactions
Ø  Two different mental starting points for thinking about systems

–  Systems as interacting components, versus SIPOC perspective:

13 Presentation for the INCOSE Symposium 2011 Denver, CO USA

S* Metamodel

Ø Other Metaclasses and Relationships include:
–  States (Modes, Situations)
–  Interfaces
–  Input-Outputs
–  Systems of Access
–  Design Components (Physical Elements)
–  Other classes (see the References)
–  Relationships between them
–  Attributes of the classes and relationships

Ø Modeling Language?
–  None if this is specific to modeling language (e.g., SysML, etc.)
–  Rather, it is about underlying information that must be addressed.

14 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Model minimality:
Summary of the argument

Ø  Summary of the formal argument of S* model minimality:
–  Sufficiency Argument: This part of the argument demonstrates that the information

in S* models is sufficient for the needs of various systems engineering processes;
–  Minimality Argument: This part of the argument demonstrates that removal of any

class of S* information results inability to adequately perform an SE process.
§  Example: The use of States in representing Black Box Requirements—”when” does each Requirement

apply?

Ø  This argument makes use of a mapping of which S* model components are
needed for different SE tasks; e.g.:

 SE Area Grp1 Grp 2 Grp 3 Grp 4 Grp 5

HLR X

DLR/BB X X

DLR/WB X X

HLD X X X

FMEA X X X X

TST X X X X X

•  This argument is constructive: It not only tells us that such a model exists—it also tells
us how to construct it.

•  However, the argument does not include uniqueness: Other data structures could
represent the same system.

15 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Model views; useful redundancy

Ø A familiar challenge is that different “SE Documents” may
be inconsistent with (contradict) each other:
–  This is because they contain redundant information
–  As documents evolve, that consistency must be maintained to be

consistent across the “documents”:

–  This issue also occurs within single documents (self-consistency)

Requirements
Document

Interface
Control

Document
(ICD)

Concept of
Operations
(CONOPS)

Operations &
Maintenance

SOP

16 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Model views; useful redundancy

Ø  This is one reason why DB tools are powerful in systems engineering:
–  Properly used, they can generate different “views” (documents, etc.) from the common

underlying data model, thereby maintaining their consistency:

•  The S* Model goes farther,
by pointing out redundancies
not always recognized; e.g.:

–  FMEA Failure Effects vs.
Stakeholder Features

–  FMEA Functional Failures vs.
Requirements (Counter-
Requirements)

–  ICDs vs. System Requirements
–  CONOPS and Use Cases vs.

System Requirements, Features
–  Such “redundancies” are really

deep insights that make model
construction easier & reinforcing.

17 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Practical issues of size

Ø  So, how big are S* models compared to other models?
–  A practical discovery is that a typical S* model of requirements is more

complete than a corresponding traditional description—it is bigger, not
smaller!

18 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Using patterns to compress models

Ø  Descriptions of SE processes typically appear to describe engineering a
“new” system “from scratch” [e.g., ISO 15288, INCOSE SE Handbook]:
–  However, real projects are often concerned with engineering similar (but

different) systems across different product generations, applications,
configurations, or market segments:

•  How should SE processes be adjusted to explicitly address
“Variable Sameness”?

19 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Pattern-Based Systems Engineering
(PBSE)

Ø Model-based Patterns:
–  In this approach, S* Patterns are reusable, configurable S* Models

of families (product lines, sets, ensembles) of systems.

Ø  These Patterns are ready to be configured to serve as
Models of individual systems in projects.

Ø Configured here is specifically limited to mean that:
–  Pattern model components are populated / de-populated, and
–  Pattern model attribute (parameter) values are set

 . . . both based on configuration rules that are part of the Pattern.

•  S* Patterns are based on the same S* Metamodel as “ordinary” S*

Models
20 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Pattern-based systems engineering (PBSE)

Ø  Pattern-Based Systems Engineering (PBSE) has two overall processes:
–  Pattern Management Process: Generates the underlying family model, and

periodically updates it based on application project discovery and learning;
–  Pattern Configuration Process: Configures the pattern into a specific model

for application in a project.

21 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Pattern configurations

Ø  A table of configurations illustrates how patterns facilitate compression;
Ø  Each column in the table is a compressed system representation with respect to

(“modulo”) the pattern;
Ø  The compression is typically very large;
Ø  The compression ratio tells us how much of the pattern is variable and how

much fixed, across the family of potential configurations.

22 Presentation for the INCOSE Symposium 2011 Denver, CO USA

From: D. E. Williams, “How Concepts of Self-Regulation Explain
Human Knowledge”, The Bent of Tau Beta Pi, Winter, 2011.

Pattern Management as Learning Feedback Loop:

23

An error-correcting loop, as
might be practiced in physical
sciences, study of markets, or
other learning processes.

Results and Implications

1.  These methods have been successfully applied across a wide
range of domains: Transportation, Mil/Aero, Communications,
Medicine/Healthcare, Advanced Manufacturing, Consumer
Products.

2.  The minimum base of information required to perform SE tasks is
clarified by MBSE.

3.  Minimal MBSE models contain information missing from many
projects.

4.  Minimal underlying models generate the redundancies needed
across different task-based artifacts, with greater consistency or
less effort to maintain that consistency.

5.  Formalization of Patterns as configurable Models leads to further
size compression: Configurations.

6.  All models are actually configurations of more abstract patterns.

24 Presentation for the INCOSE Symposium 2011 Denver, CO USA

1.  Ahmed, J., Hansen, J., Kline, W., Peffers, S., Schindel, W. 2011. All innovation is innovation of systems: An integrated 3-D model of
innovation competency. To appear in Proceedings of the 2011 American Society for Engineering Education Annual Conference,
Vancouver, BC.

2.  Alexander, Christopher; Sara Ishikawa, Ingrid Fiksdahl-King, Shlomo Angel. 1977. A pattern language: Towns, buildings, construction.
New York: Oxford U. Press.

3.  Ashby, W. Ross. 1957. An introduction to cybernetics. London: Chapman & Hall.
4.  Bar-Yam, Y. 2003b. When systems engineering fails—toward complex systems engineering. Proceedings of the International

Conference on Systems, Man & Cybernetics, Vol 2, 2021-2028. Piscataway, NJ: IEEE Press.
5.  ———. 2005. About engineering complex systems: multiscale analysis and evolutionary engineering. ESOA 2004, LNCS 3464, pp

16-31, Spinger-Verlag, 2005.
6.  Bradley, J, Hughes, M, Schindel, W. 2010. Optimizing delivery of global pharmaceutical packaging solutions, using systems engineering

patterns. Proceedings of the INCOSE 2010 Symposium.
7.  Braha, D., A. Minai, Yaneer Bar-Yam, eds. 2006. Complex engineered systems: Science meets technology, City: Springer.
8.  Chaitin, Gregory. 2005. Metamath: The quest for omega, New York: Pantheon, 2005.
9.  Cloutier, Robert J., Dinesh Verma. 2007. Applying the concepts of patterns to systems architecture. Systems Engineering. Wiley. Vol

10, No. 2. pp 138-154.
10.  Duda, Richard. O., Peter E. Hart, David G. Stork. 2001. Pattern classification, (2nd ed.), New York: Wiley.
11.  Estafan, J. 2008. Survey of model-based systems engineering (MBSE) methodologies. INCOSE MBSE Initiative.
12.  Gamma, E., R. Helm, Ralph Johnson, J. Vlissides. 1995. Design patterns: Elements of reusable object-oriented software. Reading, MA:

Addison-Wesley.
13.  Gould, S. J. 2003. The hedgehog, the fox, and the magister’s pox: Mending the gap between science and the humanities. New York:

Three Rivers Press.
14.  Grunwald, P. 2007. The minimum description length principle. Cambridge, MA: MIT Press.
15.  Gunyon, R., and Schindel, W. 2010. Engineering global pharmaceutical manufacturing systems in the new environment. Proceedings of

the INCOSE 2010 Symposium.
16.  Haskins, Cecilia. 2005. Application of patterns and pattern languages to systems engineering. Paper presented at the 15th annual

international symposium of the international council on systems engineering, Rochester, NY.
17.  Haskins, Cecilia, ed. 2010. INCOSE systems engineering handbook, Version 3.2. Seattle, WA: International Council on Systems

Engineering.

References

25 Presentation for the INCOSE Symposium 2011 Denver, CO USA

References
18.  INCOSE HSIG web site. http://www.incose.org/practice/techactivities/wg/hsi/
19.  INCOSE MBSE web site: http://www.incose.org/practice/techactivities/modelingtools/mdsdwg.aspx.
20.  INCOSE SSWG web site: http://www.incose.org/practice/techactivities/wg/syssciwg/
21.  ISO 10303 AP233 web site. http://www.ap233.org/
22.  ISO/IEC 15288: 2002. Systems engineering – System life cycle processes. Geneva: International Organization for Standardization.
23.  Karayanakis, N., Computer-assisted simulation of dynamic systems with block diagram languages. CRC Press, 1993.
24.  Kauffman, Stuart. 2000. Investigations New York: Oxford University Press.
25.  Kuras, M. L., B. E. White. 2005. Engineering enterprises using complex-system engineering. Paper presented at the annual international

symposium of the International Council on Systems Engineering, July, Rochester, NY.
26.  Li, Ming, Vitany, Paul. 1997. An introduction to Kolmogorov complexity and its applications. Second edition. Springer.
27.  Mellor, Stephen; Marc J. Balcer. 2002. Executable UML: A foundation for model-driven architecture. Boston: Addison-Wesley.
28.  Schindel, W. 1996. Systems engineering: An overview of complexity’s impact. Tech Paper 962177, SAE International.
29.  ______. 1997. The tower of Babel: Language and meaning in system engineering. Technical Report No. 973217 SAE International.
30.  ———. 2005a. Requirements statements are transfer functions: An insight from model-based systems engineering. Paper presented at the

annual international symposium of the International Council on Systems Engineering, July, Rochester, NY.
31.  ———. 2005b. Pattern-based systems engineering: An extension of model-based systems engineering. INCOSE TIES tutorial presented at

2005 INCOSE Symposium.
32.  ______. 2006. Feelings and physics: Emotional, psychological, and other soft human requirements, by model-based systems engineering.

Proceedings of the INCOSE 2006 International Symposium.
33.  ______. 2010. Failure analysis: Insights from model-based systems engineering. Proceedings of the INCOSE 2010 International

Symposium.
34.  ______. 2011. Systems engineering for advanced manufacturing: Unit op insights from model-based methods. To appear in Proceedings of

the INCOSE 2011 International Symposium.
35.  Schindel, William D., Vern R. Smith. 2002. Results of applying a families-of-systems approach to systems engineering of product line

families. Technical Report 2002-01-3086. SAE International.
36.  Shannon, Claude. 1963. A mathematical theory of communication. Champaign, IL: University of Illinois Press.
37.  Snow, C.P. 1960. The two cultures. Cambridge: University Press. pp. 181. ISBN 978-0521457309 (second edition; 1993 reissue).
38.  SysML Partners web site. http://www.sysml.org/

26 Presentation for the INCOSE Symposium 2011 Denver, CO USA

Speaker background

Bill Schindel (schindel@ictt.com) is president of ICTT
System Sciences (www.ictt.com), a systems engineering
company, and developer of the Systematica™
Methodology for model and pattern-based systems
engineering. His 40-year engineering career began in
mil/aero systems with IBM Federal Systems, Owego,
NY, included service as a faculty member of Rose-
Hulman Institute of Technology, and founding of three
commercial systems-based enterprises.

He has consulted on improvement of engineering processes within automotive,
medical/health care, advanced manufacturing, telecommunications, aerospace,
and consumer products businesses. Schindel earned the BS and MS in
Mathematics, and was awarded an Hon. D.Eng by Rose-Hulman Institute of
Technology for his systems engineering work. At the 2005 INCOSE
International Symposium, he was recognized as the author of the outstanding
paper on Modelling and Tools.

27 Presentation for the INCOSE Symposium 2011 Denver, CO USA
Systematica is a trademark of System Sciences, LLC.
SysML is a trademark of OMG

