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Problem Statement 

Ø How we represent systems is fundamental to the history 
of mathematics, science, and engineering. 

Ø Why is minimality of representation of interest? 
–  Scientific interests: The size of a system’s minimal representation 

is used to define that system’s complexity.1 

–  Practical interests: The size and redundancy of engineering 
specifications challenge the effectiveness of real-world 
engineering processes.  

Ø What is the smallest representation of a system? 
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Size matters! 

Ø  We describe a (possibly least) upper bound on size of effective 
representations for systems engineering (SE) purposes: 
–  Consistent with current model-based SE trends, extending their 

power; 
–  Drawn more directly from scientific traditions for representing systems 

based on physical interactions, compared to typical SE sources; 
–  When used for system families (product lines, ensembles), this 

representation also facilitates compression by use of system patterns. 
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What do we mean by “size” of a 
model? 

Aircraft 
carrier 

Aircraft 
carrier 

Not this! 
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Practical challenges in  
traditional SE representations 

Ø  Traditional task-specific representations document systems: 

CONOPS Requirements Architecture 
Design Specs FMEAs Test Plans 
O&M SOPS Use Cases Other . . .  

•  Can run hundreds or thousands of pages during life cycles. 
•  Typical: Provide the same system document to three different 

expert readers, and get back three different interpretations: 
•  This would be considered unacceptable for an electronic schematic—

so why accept it for “systems engineering” artifacts? 

•  Subjective expert judgments are typically required to assess 
artifact completeness and consistency; 

•  These are among reasons cited for model-based methods. 

Background 
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Complexity science 

Ø Subject of formal study for both natural and human-
engineered systems; 

Ø  Initial efforts sought a theoretical basis for measuring and 
understanding complexity [Li & Vitany, Chaiten, 
Kauffmann]; 

Ø More recently, practical implications for engineering 
processes [Bar-Yam, Braha, Kuras & White, Schindel] 

Ø  Terminology of Complex adaptive systems (CAS), 
Complex systems engineering (CSE), various INCOSE 
working groups, etc. 

Ø Growing awareness of the connection between systems 
science and systems engineering 

Background 
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Model-based methods 

Ø  Math-Physics models have longer-standing historical roles in design 
verification and other prediction of system behavior [Karayanakis]; 

Ø  As described by other conference speakers, modeling ideas were later 
extended, using model languages to represent system requirements and 
design [Mellor, INCOSE, MBSE, SysML Partners, Schindel]; 

Ø  In all these cases, “model” implies formal, explicit, and unambiguous—
potentially a big improvement on prose alone: 

Background 
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Constructing an efficient representation 

Ø A metamodel is a model of other models; 
–  Sets forth how we will represent Requirements, Designs, Verification, 

Failure Analysis, Trade-offs, etc.; 
–  We utilize the (language independent) S* Metamodel from 

Systematica™ Methodology: 

 Simple summary of detailed S* Metamodel. •  The resulting system models may 
be expressed in SysML™, other 
languages, DB tables, etc. 

•  Has been applied to systems 
engineering in aerospace, 
transportation, medical, advanced 
manufacturing, communication, 
construction, other domains. 
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Stakeholder Features:  
Expressing Value, for many SE Purposes 

Ø S* models represent Value as explicit objects & attributes: 
–  Essential for representing goals, innovation progress, trade space, 

effects of failure modes, expression of risk, etc.  
–  By covering all Stakeholders and their Features, these become the 

scoreboard for all decision-making and risk management. 
–  Example: Oil Filter Features 
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Physical Interactions:  
At the heart of S* models 

Ø S* models represent Physical Interactions as explicit objects: 
–  Example: Oil Filter Interactions: 
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Physical Interactions:  
At the heart of S* models 

Ø S* models represent Physical Interactions as explicit objects: 
–  Goes to the heart of 300 years of natural science of systems as a foundation 

for engineering, including emergence. 
–  Link to traditional mathematical-physical modeling. 
–  Interacting elements perform Functional Roles, based on allocated 

Requirements.  
–  All functional requirements are revealed as external interactions [Schindel 

2005]. 
–  Example: Oil Filter Mfg Process Bonding: 

Filter Media 

Heat  
Source 

Heat 
Energy 

Adhesive End Cap 

Compression 
Force 

Compression 
Source 

Heat 
Energy 

Heat 
Energy 

Compression 
Force 

Compression 
Force 

Compression 
Force 
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Physical Interactions:  
At the heart of S* models 

Ø Emergence, emergent properties are based on Interactions 
Ø  Two different mental starting points for thinking about systems 

–  Systems as interacting components, versus SIPOC perspective: 
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S* Metamodel 

Ø Other Metaclasses and Relationships include: 
–  States (Modes, Situations) 
–  Interfaces  
–  Input-Outputs 
–  Systems of Access 
–  Design Components (Physical Elements) 
–  Other classes (see the References) 
–  Relationships between them 
–  Attributes of the classes and relationships 

Ø Modeling Language? 
–  None if this is specific to modeling language (e.g., SysML, etc.) 
–  Rather, it is about underlying information that must be addressed. 
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Model minimality:  
Summary of the argument 

Ø  Summary of the formal argument of S* model minimality: 
–  Sufficiency Argument: This part of the argument demonstrates that the information 

in S* models is sufficient for the needs of various systems engineering processes; 
–  Minimality Argument: This part of the argument demonstrates that removal of any 

class of S* information results inability to adequately perform an SE process. 
§  Example: The use of States in representing Black Box Requirements—”when” does each Requirement 

apply? 

Ø  This argument makes use of a mapping of which S* model components are 
needed for different SE tasks; e.g.: 

 SE Area Grp1 Grp 2 Grp 3 Grp 4 Grp 5 

HLR X 

DLR/BB X X 

DLR/WB X X 

HLD X X X 

FMEA X X X X 

TST X X X X X 

•  This argument is constructive:  It not only tells us that such a model exists—it also tells 
us how to construct it.  

•  However, the argument does not include uniqueness: Other data structures could 
represent the same system. 
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Model views; useful redundancy 

Ø A familiar challenge is that different “SE Documents” may 
be inconsistent with (contradict) each other: 
–  This is because they contain redundant information 
–  As documents evolve, that consistency must be maintained to be 

consistent across the “documents”: 

–  This issue also occurs within single documents (self-consistency) 

Requirements 
Document 

Interface 
Control 

Document 
(ICD) 

Concept of 
Operations 
(CONOPS) 

Operations & 
Maintenance 

SOP 
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Model views; useful redundancy 

Ø  This is one reason why DB tools are powerful in systems engineering: 
–  Properly used, they can generate different “views” (documents, etc.) from the common 

underlying data model, thereby maintaining their consistency: 
 

•  The S* Model goes farther, 
by pointing out redundancies 
not always recognized; e.g.: 

–  FMEA Failure Effects vs. 
Stakeholder Features 

–  FMEA Functional Failures vs.  
Requirements (Counter-
Requirements) 

–  ICDs vs. System Requirements 
–  CONOPS and Use Cases vs. 

System Requirements, Features 
–  Such “redundancies” are really 

deep insights that make model 
construction easier & reinforcing. 
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Practical issues of size 

Ø  So, how big are S* models compared to other models? 
–  A practical discovery is that a typical S* model of requirements is more 

complete than a corresponding traditional description—it is bigger, not 
smaller! 
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Using patterns to compress models 

Ø  Descriptions of SE processes typically appear to describe engineering a 
“new” system “from scratch” [e.g., ISO 15288, INCOSE SE Handbook]: 
–  However, real projects are often concerned with engineering similar (but 

different) systems across different product generations, applications, 
configurations, or market segments: 

•  How should SE processes be adjusted to explicitly address      
“Variable Sameness”? 
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Pattern-Based Systems Engineering 
(PBSE) 

Ø Model-based Patterns: 
–  In this approach, S* Patterns are reusable, configurable S* Models 

of families (product lines, sets, ensembles) of systems. 

Ø  These Patterns are ready to be configured to serve as 
Models of individual systems in projects. 

Ø Configured here is specifically limited to mean that: 
–  Pattern model components are populated / de-populated, and  
–  Pattern model attribute (parameter) values are set 
 
   .   .   .  both based on configuration rules that are part of the Pattern. 
 
•  S* Patterns are based on the same S* Metamodel as “ordinary” S* 

Models  
20 Presentation for the INCOSE Symposium 2011 Denver, CO USA 



Pattern-based systems engineering (PBSE) 

Ø  Pattern-Based Systems Engineering (PBSE) has two overall processes: 
–  Pattern Management Process: Generates the underlying family model, and 

periodically updates it based on application project discovery and learning; 
–  Pattern Configuration Process: Configures the pattern into a specific model 

for application in a project. 

21 Presentation for the INCOSE Symposium 2011 Denver, CO USA 



Pattern configurations 

Ø  A table of configurations illustrates how patterns facilitate compression; 
Ø  Each column in the table is a compressed system representation with respect to 

(“modulo”) the pattern; 
Ø  The compression is typically very large; 
Ø  The compression ratio tells us how much of the pattern is variable and how 

much fixed, across the family of potential configurations. 
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From: D. E. Williams, “How Concepts of Self-Regulation Explain 
Human Knowledge”, The Bent of Tau Beta Pi, Winter, 2011. 

Pattern Management as Learning Feedback Loop: 

23 

An error-correcting loop, as 
might be practiced in physical 
sciences, study of markets, or 
other learning processes. 



Results and Implications 

1.  These methods have been successfully applied across a wide 
range of domains: Transportation, Mil/Aero, Communications, 
Medicine/Healthcare, Advanced Manufacturing, Consumer 
Products.  

2.  The minimum base of information required to perform SE tasks is 
clarified by MBSE. 

3.  Minimal MBSE models contain information missing from many 
projects. 

4.  Minimal underlying models generate the redundancies needed 
across different task-based artifacts, with greater consistency or 
less effort to maintain that consistency.   

5.  Formalization of Patterns as configurable Models leads to further 
size compression: Configurations. 

6.  All models are actually configurations of more abstract patterns. 
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