

Systems Engineering Advancement Research Initiative

Examining Survivability of Systems of Systems

Brian Mekdeci, Adam M. Ross, Donna H. Rhodes, and Daniel E. Hastings

Massachusetts Institute of Technology

Presented by: Donna Rhodes

2011 INCOSE International Symposium

June 21, 2011

Topics

- Motivations and prior survivability research
- Characterizing disturbances
- Distinguishing SoS from traditional systems – implications for survivability
- Research directions

Paper presents preliminary examination of how some characteristic properties of SoS may enable or hinder survivability based on existing design principles and proposed taxonomy of disturbances

Motivations and Prior Research (2006 – 2009)

Motivations for Prior System Survivability Research

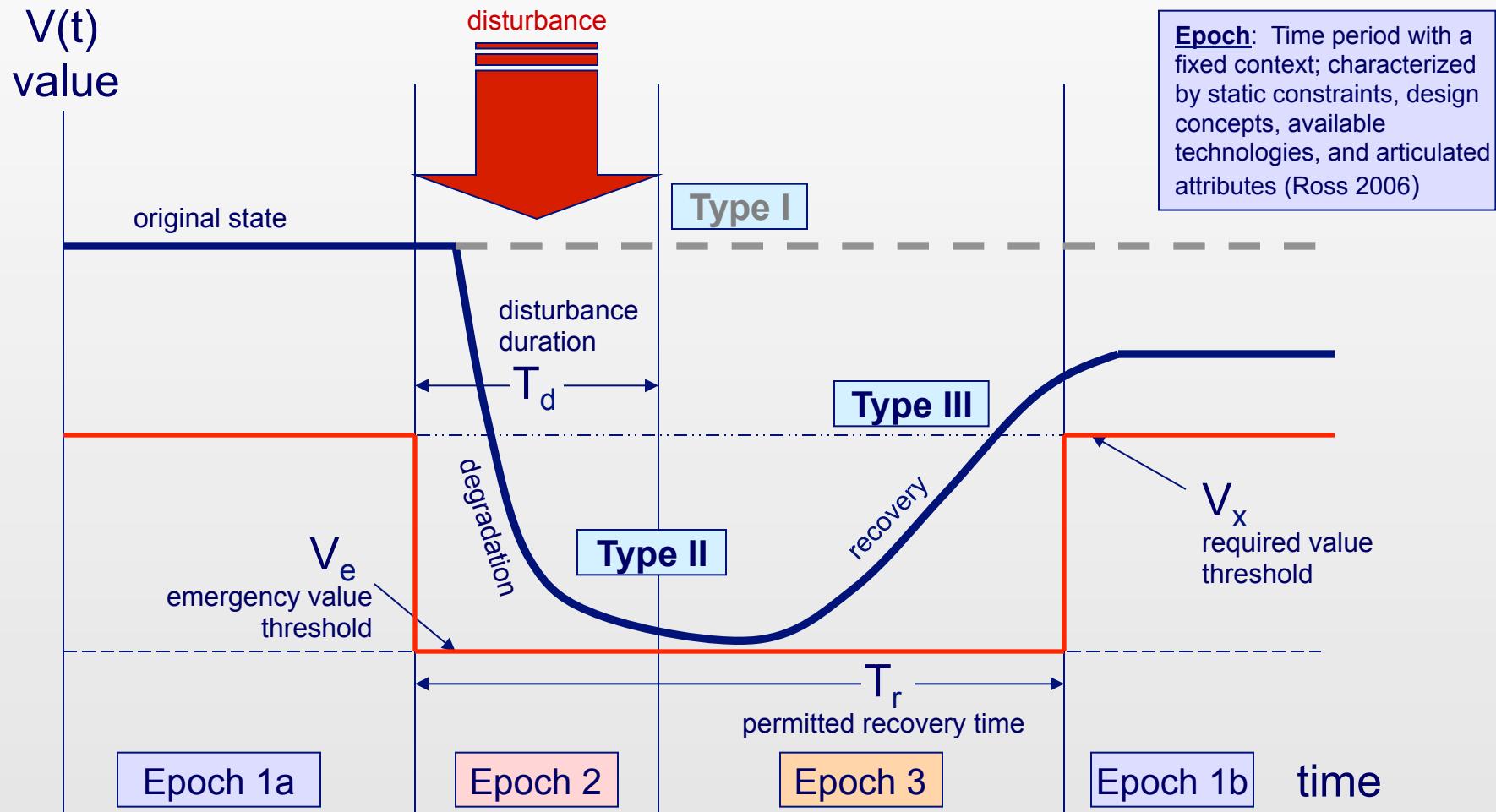
Temporal system properties known as “ilities” (e.g., flexibility, robustness) are significant challenge for engineering systems

- Survivability is a critical challenge for aerospace systems and needs to be designed into the architecture
- Imprecise definition, lack of design principles for survivability, and inadequate survivability metrics have been inhibitors

Given limitations of survivability engineering for aerospace systems,* need design methodology that:

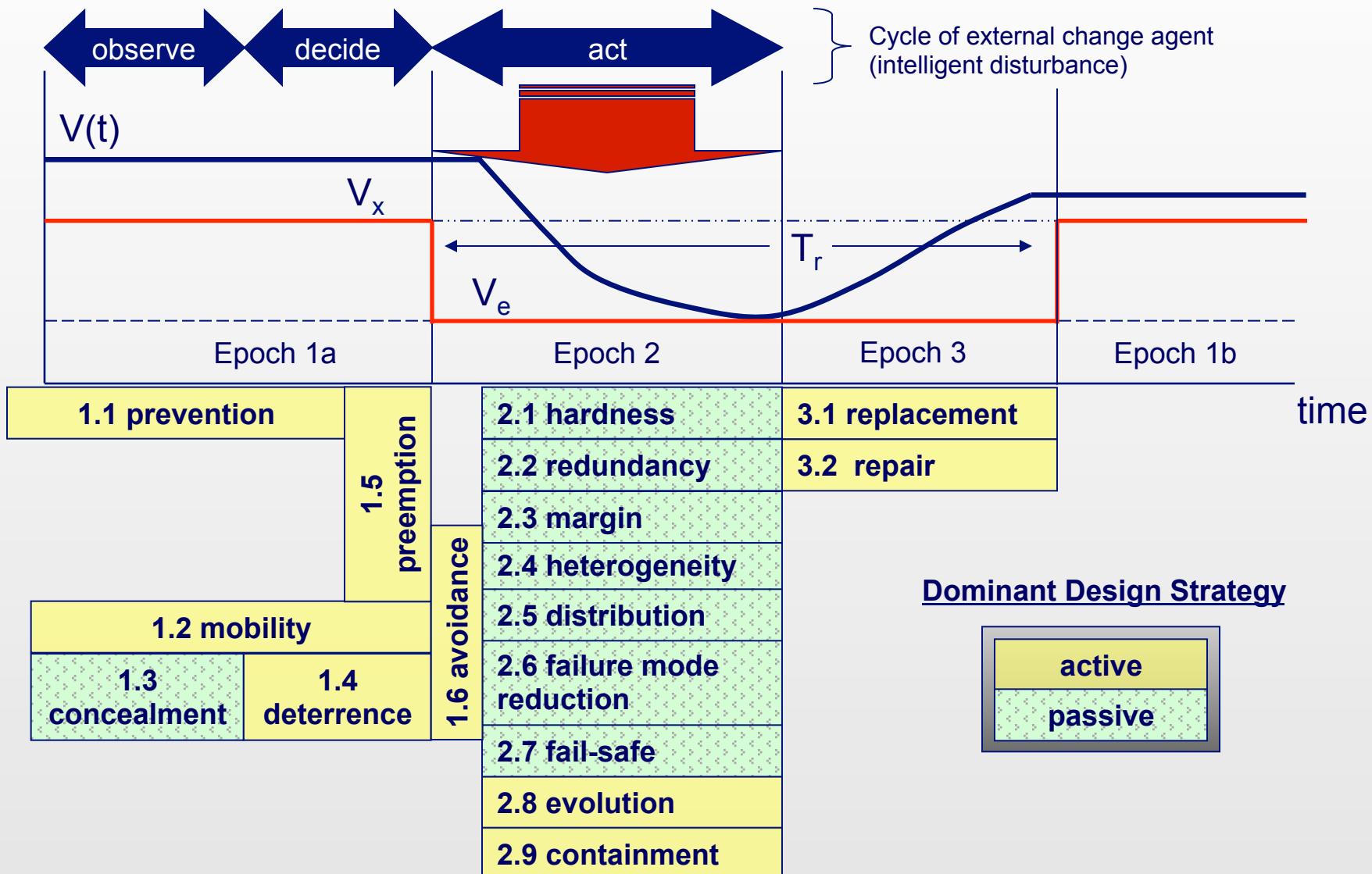
1. incorporates survivability as an **active trade** throughout design process
2. reflects **dynamics** of operational environments over entire lifecycle
3. captures **path dependencies** of system vulnerability and resilience
4. extends in scope to **architecture-level** survivability assessments
5. takes a **value-centric** perspective

Richards (MIT ESD PhD, 2009) performed the foundational research upon which the current research is based


Survivability Research Questions (2006-2009)

1. What is a dynamic, operational, and value-centric **definition** of survivability for engineering systems?
 - ✓ **Value based definition with three types of survivability**
2. What **design principles** enable survivability?
 - ✓ **17 design principles for system survivability derived**
3. How can survivability be quantified and used as a **decision metric in exploring tradespaces** during conceptual design of aerospace systems?
 - ✓ **Two new metrics developed**
4. For a given mission, how to **evaluate the survivability of alternative system architectures** in dynamic disturbance environments?
 - ✓ **MIT SEArI's Multi-Attribute Tradespace Exploration (MATE) method extended for survivability trade-offs**

Research built on a decade of foundational research on value-driven methods for tradespace exploration


Definition of Survivability

Ability of a system to minimize the impact of finite-duration disturbances on value delivery
 through (I) the reduction of the likelihood or magnitude of a disturbance, (II) the satisfaction of a minimally acceptable level of value delivery during and after a disturbance, and/or (III) a timely recovery

Survivability Design Principles

(Richards, 2009)

Survivability Design Principles

(Richards, 2009)

Type I (Reduce Susceptibility)		
1.1	prevention	suppression of a future or potential future disturbance
1.2	mobility	relocation to avoid detection by an external change agent
1.3	concealment	reduction of the visibility of a system from an external change agent
1.4	deterrence	dissuasion of a rational external change agent from committing a disturbance
1.5	preemption	suppression of an imminent disturbance
1.6	avoidance	maneuverability away from an ongoing disturbance
Type II (Reduce Vulnerability)		
2.1	hardness	resistance of a system to deformation
2.2	redundancy	duplication of critical system functions to increase reliability
2.3	margin	allowance of extra capability for maintaining value delivery despite losses
2.4	heterogeneity	variation in system elements to mitigate homogeneous disturbances
2.5	distribution	separation of critical system elements to mitigate local disturbances
2.6	failure mode reduction	elimination of system hazards through intrinsic design: substitution, simplification, decoupling, and reduction of hazardous materials
2.7	fail-safe	prevention or delay of degradation via physics of incipient failure
2.8	evolution	alteration of system elements to reduce disturbance effectiveness
2.9	containment	isolation or minimization of the propagation of failure
Type III (Enhance Resilience)		
3.1	replacement	substitution of system elements to improve value delivery
3.2	repair	restoration of system to improve value delivery

Survivability Metrics

Need to evaluate ability of system to (1) minimize utility losses and (2) meet critical value thresholds before, during, and after environmental disturbances

desirable attributes: **value-based, dynamic, continuous**

time-weighted utility loss

- Difference between design utility, U_0 , and time-weighted average utility
- Internalizes lifecycle degradation
- Inspired by Quality Adjusted Life Years in health economics*

$$\bar{U}_L = U_0 - \frac{1}{T_{dl}} \cdot \int U(t) \ dt$$

T_{dl} = time of design life

threshold availability

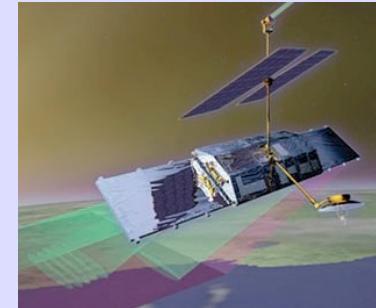
- Ratio of time above critical value thresholds (V_x during baseline Epoch, V_e during disturbance and recovery Epochs) to design life
- Accommodates changing expectations across contexts

$$A_T = \frac{TAT}{T_{dl}}$$

TAT = time above thresholds

*Pliskin, J., D. Shepard and M. Weinstein (1980). "Utility Functions for Life Years and Health Status." *Operations Research*, 28(1): 206-224.

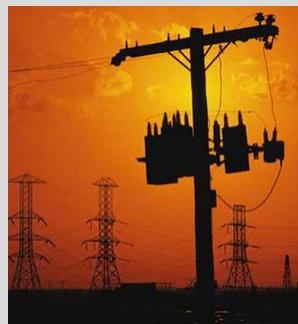
Methodological Insights Prior Survivability Research


Multi-Attribute Tradespace Exploration
adapted for Survivability **incorporates
survivability as a decision metric** into
conceptual design

- Design principles reveal latent survivability trades and inform selection of survivability design variables
- Survivability metrics enable discrimination among thousands of concept design alternatives

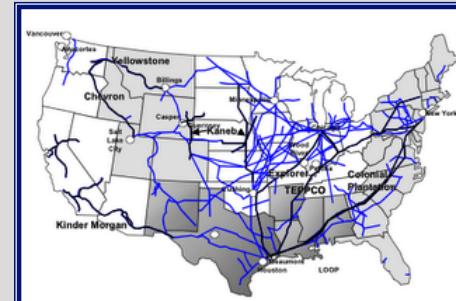
MATE for Survivability **improves on existing
tradespace approaches**

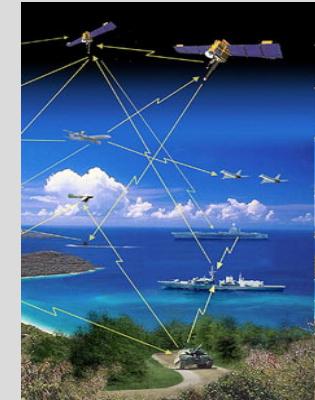
- Pareto front in traditional tradespace exploration studies excludes most survivable designs
- Evaluates survivability implications for selection of baseline architecture


CASE APPLICATION

Assess potential **satellite radar** architectures for providing the United States Military a global, all-weather, on-demand capability to **track moving ground targets**; supporting tactical military operations; maximizing cost-effectiveness; and **surviving disturbances** in the natural space environment.

2009 Research Recommendations for Further Research


- **Extend scope to systems-of-systems (SoS)**
- Incorporate Concept of Operation (CONOPs)
 - *CONOPs may be more important consideration for SoS due to potential lack of control over constituent design*
- Apply Tradespace Exploration method (MATE) for Survivability to additional system cases for prescriptive insights


power distribution

transportation

water distribution

communications

Richards, 2009

Current SoS Survivability Research (2010-2012)

Complexity of Systems as a Driving Factor in Survivability

Failures of large, complex systems have been prominent in recent news:

- Japanese nuclear power plants
- Sony PlayStation Network (PSN)

Stakeholders want systems with acceptable value

- Over long life cycle
- Requires balancing performance, cost, risk
- Subject to various disturbances / context changes

<http://kbmt.images.worldnow.com>

**Particularly problematic in systems of systems (SoS)
with diverse stakeholders (Ellison & Woody 2007)**
due to variation in:

- Needs & expectations
- Risk management strategies
- Resources

<http://nytimes.com>

As traditional systems get interconnected and overall complexity increases
designers, architects and decision makers need design principles
that will enable and enhance SoS survivability

Disturbances

Systems of systems are likely to have certain distinguishing characteristics that make them more or less survivable to certain types of disturbances

Using Passive Capabilities to Reduce Susceptibility to Natural Disturbances

Richards (2009) examples of systems reducing susceptibility were almost exclusively against Artificial disturbances, and of the active type.

What about susceptibility to natural disturbances?

- Robots aren't susceptible to disease
- Humans aren't susceptible to rust

Lightning rods & protectors

- Passive devices, attached to buildings, airplanes
- *Actually draw lightning to the object!*
 - to safely dissipate it
- Reduces susceptibility to fires, electrocutions
- Poorly designed entities can act like a lightening rod and be damaged!

<http://www.pbase.com/aestus/image/78856538>

By not considering passive capabilities to reduce susceptibility to disturbances, the prior 17 design principles for survivability are proven to be incomplete

Complex Causes and Impact

2003 North American Blackout

- 2nd largest blackout in the world (ever)
 - 55 million affected
- What caused it?
 - Overgrown trees tripped power lines
 - Ohio power station had bug in monitoring software, did not handle load switching properly
 - Load moved to other lines, which became overloaded, increasing load on nearby lines, etc.
 - Cascading failure caused by a chain of disturbances

Due to complexity of systems of systems, disturbances may not be simple, single-event occurrences

- May have multiple causes
- May have multiple impacts

Complex Origins of Disturbances

**Sun evaporates lakes → Evaporated water forms clouds → rainfall
→decreased visibility →loss of situational awareness →failure to maintain minimum separation
→crash →loss of life, system**

- Decreased visibility also impacts ability to identify and detect targets.
- Decreased visibility can also be caused by a different CONOPS, such as flying the UAV at night instead of the day
- Corrosion leads to component failure, which can have multiple impacts, including reduced ability to identify and detect targets
- Corrosion can also be caused by a different CONOPs such as flying the vehicle at low altitude, over a large body of salt water

Complex Disturbances: Sony PlayStation Network Outage

Sony stated that providing details of the attack “could be used to exploit vulnerabilities in systems other than Sony’s that have similar architecture to the PSN” (Sony letter to US Congress, 2011)

Repercussions

\$171 million in costs (so far)

Class action lawsuit

Government investigations (possible fines)

User backlash

(May 2011) A hacker used Amazon’s Elastic Computer Cloud, or EC2, service to attack Sony’s online entertainment systems last month...

Characterizing Disturbances

Nature

- Is disturbance natural or artificial
- How does the disturbance impact the system?

Origin

- Internal or external to the system
 - For many SoS, the lines are blurred.

Intent

- Is there an intent, by some entity, to cause this disturbance?
- Is the intent benign or malicious?

Duration of Impact

- How long is the duration of the disturbance?
- Does the original context resume?

Effectiveness of a survivability design principle will be strongly dependent on characteristics of the disturbances

Challenges in Applying Survivability Design Principles

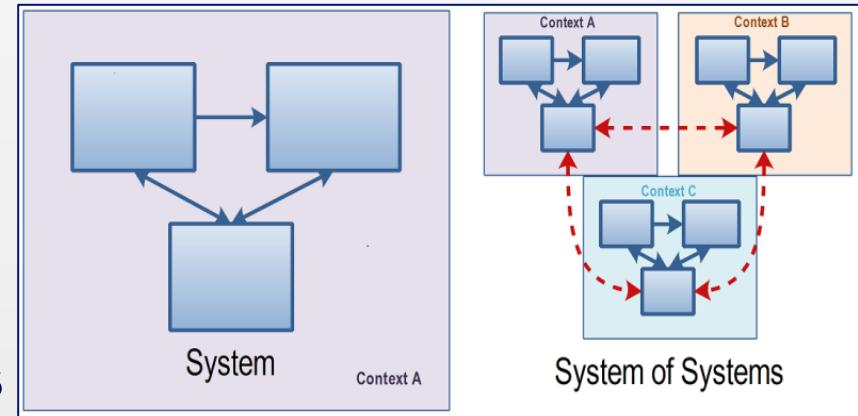
Not all design principles are equally applicable.....

- **Principle of Prevention**
 - If disturbance is a suicide bombing, prevention might include arresting a terrorist when attempting to acquire explosives
 - Not applicable to natural disturbances such as a tsunami
- **Principle of Containment**
 - Makes sense to a longer duration disturbance such as a fire
 - Does not apply to short disturbance like lightening strike.

Example Disturbance	Origin*	Nature	Duration**	Original Context Resume	Intent
Lightning strike	External	Natural	Short	Yes	Accident
Missile attack	External	Artificial	Short	Yes	Attack
Policy change	External	Artificial	Long	No	Intentional
Operator error	Internal	Artificial	Short	Yes	Accident
Biological virus	External	Natural	Short	Yes / No	Intentional

Need to investigate how design principles apply to SoS given disturbance

Properties Distinguishing SoS from Traditional System

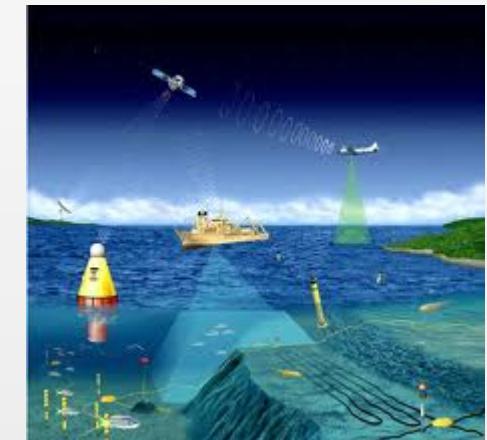

Implications for Survivability

Whether a particular SoS characteristic is going to enable or hinder survivability, will depend on disturbance and context in which system operates

Increased Contextual Diversity

Components (constituent systems) in SoS more likely to be physically separated than components in traditional systems, so more likely to be operating under different environmental conditions

With managerial independence, components in SoS more likely to be operated with different stakeholder needs/expectations



Survivability Impact: Multiple system contexts increase the probability of disturbances in overall SoS

Geographic Separation

(Maier 1998)

- Directly enables design principles of *concealment, distribution, containment*
- Components may have different environmental contexts, increasing probability of disturbance
- Separation of components creates local knowledge that must be shared, reducing ease of coordination of components

Survivability Impact: Geographic separation may both enable or hinder survivability

Component Independence

(Maier1998)

- SoS often have managerial and/or operational independence of the components
- Enables survivability in that local decisions or operational changes can be used to respond/prevent local disturbances
- Could reduce SoS survivability in that local decisions or controls may not always be in the interests of global level survivability

Survivability Impact: Component independence may enable component survivability, but may make SoS level survivability more difficult

Evolutionary Development

(Maier1998)

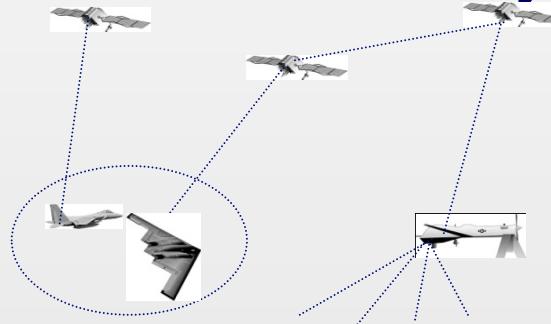
- Traditional systems typically designed and assembled prior to operations
- SoS components often added or removed dynamically, during operation of SoS – constantly evolving
- Enables survivability in that there may be intermediate forms that SoS can “fall back to”
- Lessens survivability in that multiple vendors, protocols, product generations make reliability difficult to achieve
- Threat to survivability if SoS evolves toward an unmanageable state

Survivability Impact: Evolutionary development may both enable or hinder survivability

Decreased System Awareness

Since SoS constituents often operating/controlled somewhat independently under differing contexts, must share contextual information on timely basis, depending upon:

1. Important differences in context must be apparent
2. Stakeholders must be willing to share information
3. Mechanisms must exist to permit timely sharing

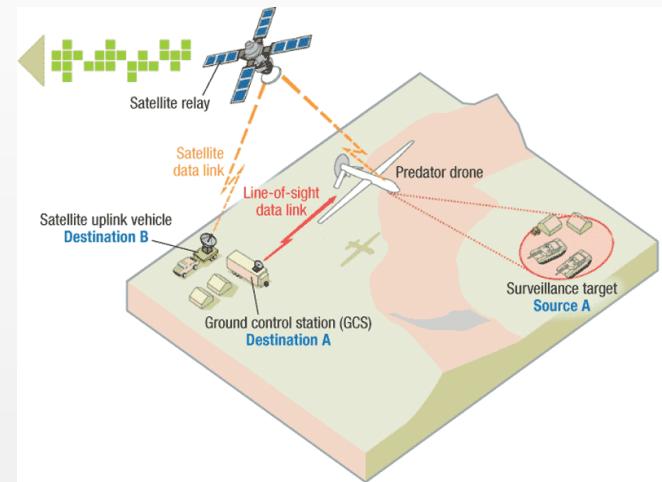

Survivability Impact: SoS constituents may be operating under incorrect or incomplete information hindering survivability

Internal Interoperability

(Ellison & Woody 2007)

Constituents in SoS must interoperate

- SoS constituents often designed and operated independently – newer constituents must interface with legacy
- Standards exist but not always enforced in SoS



Survivability Impact: Weaknesses in SoS constituent interoperability may increase susceptibility, introduce vulnerabilities and inhibit timely recovery from disturbances

Dubious Validation

(Ellison & Woody 2007)

- Testing and validation of SoS difficult with evolutionary nature
- Not practical to validate each change with every permutation of past, present, and future constituents
- SoS less likely to be held to rigorous testing and validation of traditional systems

Survivability Impact: Changes in SoS constituents may hinder or enable survivability, but without testing may not be known until disturbances occur

Emerging Design Principles

Defensive Posture

- **Type I - Reduce Susceptibility**
- *Be liberal in what you receive, and conservative in what you send*
- Postel's Robustness Principle (1981)

Stable Intermediate Forms

- **Type II - Reduce Vulnerability**
- Explicitly design for evolutionary development
- Allows “fall back state” in case of disturbance

Adaptation

- **Type III - Increase Resilience**
- System deliberately changes value delivery function by altering its form and/or CONOPs in the presence of a disturbance

New survivability design principles address challenges and opportunities made possible by some of the characteristics of systems of systems

Illustrative Example Electronic Toll Collection SoS

Malicious Access

DEFENSIVE POSTURE

Millions of older transponders in use have unencrypted RFID chips, allowing a malicious individual to steal ID's and use those accounts to get free tolls using a "cloned" transponder. (Chen 2008)

Network failure

STABLE INTERMEDIATE FORMS

Congestion pricing is the most powerful policy tool at the hands of City officials to reduce unnecessary driving, promote environmentally sound transportation, and finance 21st Century improvements to our aging transportation infrastructure.

Policy change

ADAPTATION

Summary

SoS Survivability

- Characteristics of SoS
- Characteristics of disturbances
- Emerging design principles for SoS

Concept of Operations

- Need for including CONOPs in tradespace studies
- System architecture incorporates CONOPs
- Distinguishes a system from its design

Pliability (emerging research)

- Details allowable changes in system architectures
- Provides a “guarantee” that changes won’t break system

SoS Case Scenario to Test Hypotheses

- Many SoS characteristics and subject to numerous disturbances
- Many CONOPs choices
- Hypotheses made about survivability (to be tested)