

Would the real systems engineer please stand up?

Duncan Kemp & Jennifer Mollett

Overview

- Background and Introduction to “The Problem”
- Overview of Systems Engineering “Types”
- The Framework and Types
- Relationships between Types
- A Review of Key Competencies
- Conclusions and Summary

The authors

Duncan Kemp

- 25 years systems engineering experience across defence, aerospace and IT domains
- Currently systems engineer for Rail in UK Department for Transport
- Previous roles include
 - MOD acquisition reform
 - MOD's C4 architect
 - Developing MOD's first SoS safety case
 - Submarine combat systems integration
 - Air Defence command and control

Jennifer Mollett

- 6 years systems engineering experience across land and naval sectors
- Previous roles include
 - Project Manager for BAE Systems' Systems Engineering for TLCM Working Group
 - Land Sector Lead for TLCM for BAE Systems' Strategic Capability Solutions
 - Technical Lead for statistical modelling on the environmental risk of acoustic activities

Introduction

- Have you ever experienced the following?
 - “What you do is interesting, but it’s not Systems Engineering.”
 - “That’s business strategy, why do we need complex mathematics?”
 - “Wow...that must be a really big project. How many people do you have working for you?”
- If so...join the club! And we’re not alone...

Hitchins’ Five Layer Model

Checkland’s SSM

Ring Value Chain

Daw – 4 Level Trade-off Model

4 Types of Systems Engineering

- **Enterprise** – redesign of organisations to improve operational performance and/or reduce cost
- **Capability** – identifying, developing and integrating systems and services to realise operational capability
- **Product** - delivery of a set of integrated systems and subsystems to deliver operational performance
- **Service** – integrating existing and newly delivered systems to deliver operational services

Analysis Framework

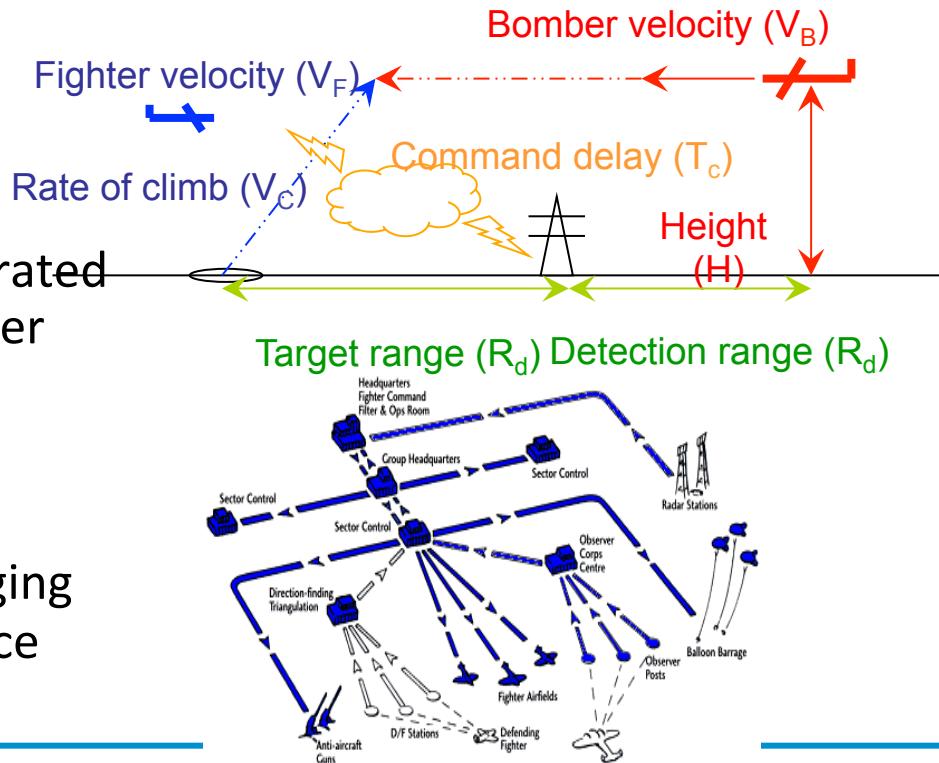
- Based on the Z1 Framework - “Six Steps to Success”
- Additional Step – “Define the high level architecture”

<i>Process Step</i>	<i>Input</i>	<i>Key Question</i>	<i>Output</i>
Understand the Problem			
Investigate Alternatives			
Define the high level architecture			
Agree and Manage Requirements			
Agree and manage the interfaces			
Prepare the test and support systems			
Track progress against a plan			

Historical Example

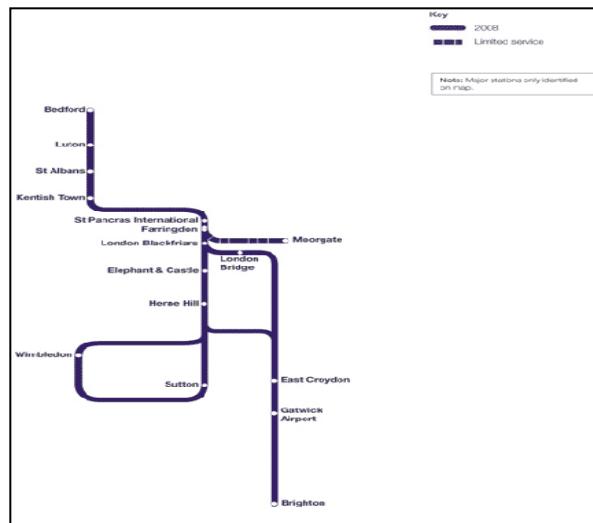
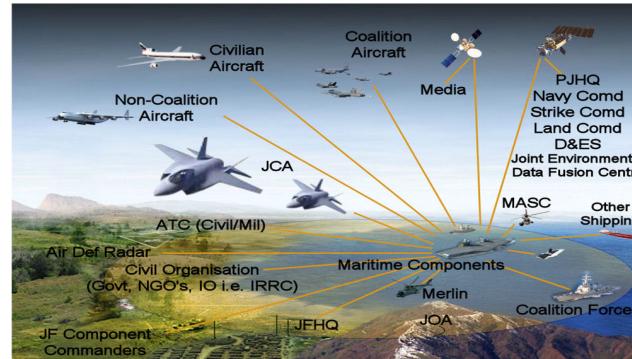
- Summer of 1940 and the dominance of the Wehrmacht and Luftwaffe
- Germany was ready to claim its next scalp...but they hadn't banked on...
- **Home Advantage** – The RAF were fighting over home territory and when shot down were able to recuperate and be back fighting within hours.
- **Underprepared Opposition** – The strategic bombing role was something the Luftwaffe hadn't prepared for. Wrong aircraft, inadequate logistics and “individualistic” ethos.
- **The Secret Weapon** – The RAF had an integrated air defence system, enabling fighters to be in the right place at the right time...again and again

Capability Engineering


Understand the Problem	Understand the capabilities to be delivered, the current and future shortfalls and the associated risks
Investigate Alternatives	Consideration of options on how to “fill” the capability gap including how they align with expectations
Define the high level architecture	Articulation of the Systems of Systems that will meet the Capability need
Agree and Manage Requirements	Capture of Measures of Effectiveness for the Capability outcome – based on stakeholder expectations and acceptable risk levels
Agree and manage the interfaces	Capture of implicit and explicit relationships between components both intra and inter-Capability
Prepare the test and support systems	Consideration of operational scenarios against which the Capability is expected to deliver
Track progress against a plan	Development activities for those components that will deliver the Capability

Capability Engineering Example

- Air Defence Capability delivered through a number of assets
 - Sensors
 - Decision Makers
 - Communications
 - Weapons Systems
- New and emerging technology integrated into existing baseline to provide better outcomes and move to “defensive warfare capability”
- Early insight of the benefits of emerging technologies in the role of Air Defence



“We can’t use radio waves to destroy German Aircraft – but we can use them to detect them at range – would that be useful?” James Watson-Watt

Capability SE some more modern examples

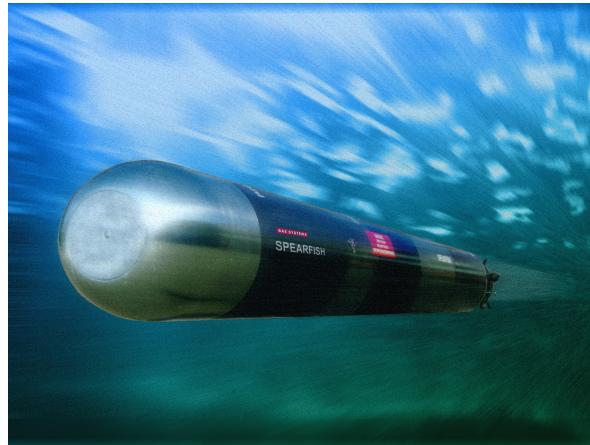
- Carrier strike
 - Capability delivered through multiple assets – air/sea/land
 - New “novel” operations in comparison to existing CVS
 - Integration with legacy/future assets
 - Coordination of LoDs

- Thameslink upgrade
 - New rolling stock
 - In-cab signalling and automatic train operation
 - New stations and infrastructure
 - New timetables
 - Trained drivers and dispatchers
- All to deliver 50K more passengers an hour in the peak – through old Victorian tunnels

Product Engineering

Understand the Problem	Statement of the performance characteristics that are required to meet the operational need
Investigate Alternatives	Consideration of functional options with associated performance, cost and risk
Define the high level architecture	Capture of the how the different “parts” of the product combine to produce the desired effect
Agree and Manage Requirements	Articulation of key performance levels at system and subsystem levels
Agree and manage the interfaces	Capture of intra and inter product interfaces and the contribution of the product to the wider system effectiveness
Prepare the test and support systems	Validation of the product performance against specified scenarios and confirmation of its contribution to the higher level service or capability
Track progress against a plan	Capture of engineering tasks to develop and integrate components within the required timescales

Product Engineering Example


- Key to the success of the Battle of Britain were products such as Spitfires and Chain Home radars
- Both were developed using processes akin to modern “Systems Engineering”
 - Requirements based on mix between technology, intelligence and operational research
 - Iterative development enabling regular updates based on operational feedback and emerging technologies
- However, without each other, their operational effectiveness was limited

Product SE some more modern examples

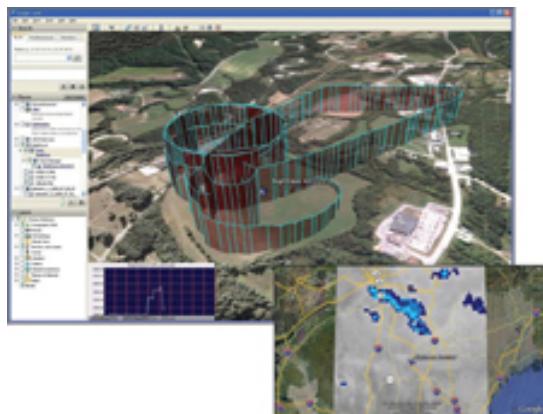
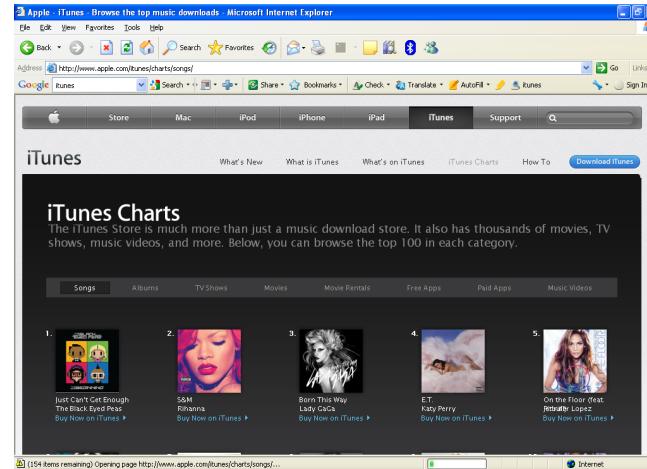
- Spearfish
 - Designed to work in many challenging environments
 - Designed as countermeasure for submarine threats
 - Multiple deployment techniques

- Tilting train designed to work with existing rail infrastructure
- Complies with existing standards
- Complex system in its own right
- Carries 450 people at up to 125 mph
- 6000-7000 people per hour per track

Service Engineering

Understand the Problem	Articulation of the levels of effectiveness required of the service
Investigate Alternatives	Consideration of the best means to deliver the service to the end customer using current, or soon to be introduced, assets
Define the high level architecture	Capture of how the technical service will meet the end customer's needs
Agree and Manage Requirements	Measures of Performance for the service and key components in main and fallback modes
Agree and manage the interfaces	Capture of the related components that are required to deliver the service
Prepare the test and support systems	Consideration of the "level of confidence" required to ensure that the service will deliver as expected
Track progress against a plan	Capture of the development activities and ordering to meet delivery timescales

Service Engineering Example



- Key Air Defence Capability information services
 - Raid Tracking – where have they been and where will they go next?
 - Command and Control – directing own forces to engagement
- Services were designed and optimised against a number of performance criteria
 - Frequency
 - Timeliness
 - Level of Detail
- Iterative Development of Services to harness the benefits of new and emerging technologies whilst ensuring service robustness and resilience

Service SE some more modern examples

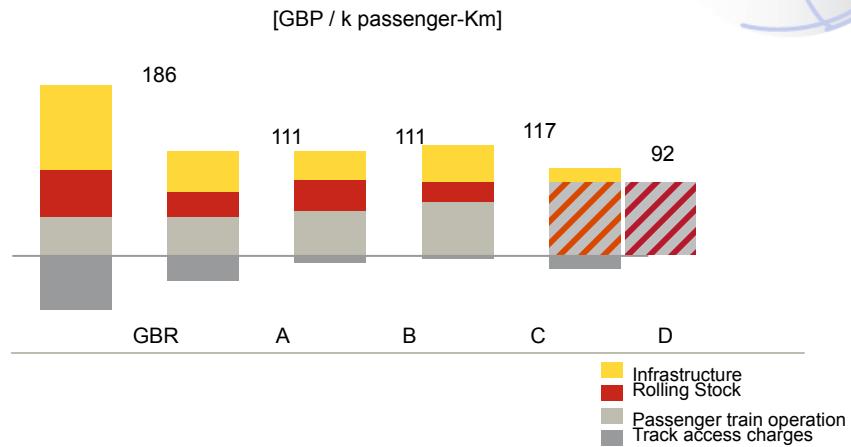
- iTunes / iPOD
 - Service delivery evolution from domestic internet connection through to third generation mobile networks
 - Evolution of compatible devices from iPod through to iPhone and iPad
 - Service fundamentals have remained the same

- Joint operational picture
 - Situational Awareness to support strategic and operational decision making
 - Information centric model with multiple providers and users
 - Level of detail appropriate to decision

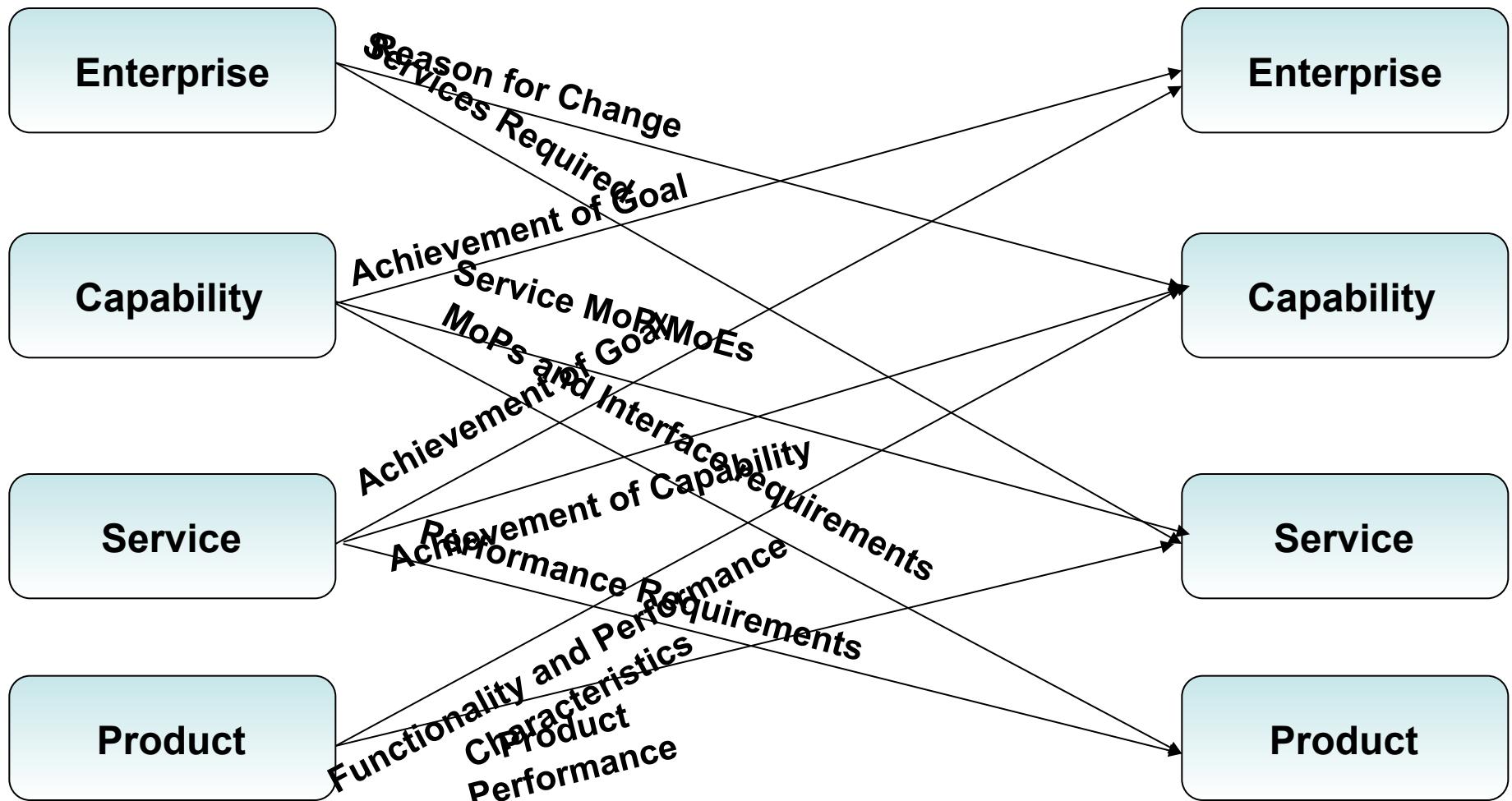
Enterprise Engineering

Understand the Problem	Expression of the Problem and its impact on the Enterprise Objectives
Investigate Alternatives	Consideration of options to address problem
Define the high level architecture	Articulation of how the solution will address the problem and show benefit against the Enterprise Goals
Agree and Manage Requirements	Capture of “what good looks like”, associated performance characteristics and where the solution will impact and benefit
Agree and manage the interfaces	Capture of the “change” elements and the impact of the solution on their outputs
Prepare the test and support systems	Articulation of the deployment options and the capture mechanisms that will be applied to measure the effectiveness of the solution
Track progress against a plan	Activities and timescales to deliver the benefit within the required timescale

Enterprise Engineering Example


- Deployment of the “Secret Weapon” (Integrated Air Defence System) was delivered by a whole new organisation
- Introduction of roles such as:
 - Radar Operators
 - Radar Trackers
 - Fighter Controllers
- Sharing of roles within a wider network enabling centralised command and control and *removal* of some squadron authority
- The pilot could now concentrate on doing what he did best ... fighting the Luftwaffe!

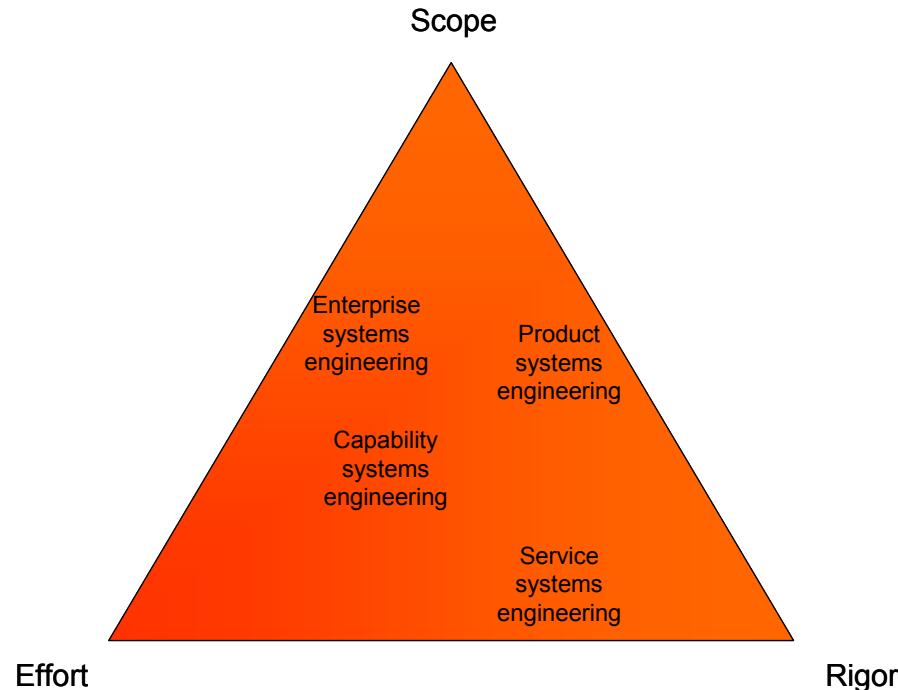
Enterprise SE some more modern examples ...



- Rail value for money study
 - What legal, operational and cultural barriers stand in the way of efficiency improvements?
 - Align the incentives across different parts of the rail industry to generate greater efficiency?
 - Identify the role of new technology, processes and working practices in fostering greater efficiency?
 - Identify ways of generating more revenue?

- Climate change
 - Cross-cultural and political challenges due to the need for multi-nation collaboration
 - Balancing the needs for economic/industrial growth against the need to minimise carbon footprint

Relationship between the 4 Types



People

Existing Systems Engineering Competencies still apply as it is the same 7 steps

Increased focus on

- **Systems thinking** –critical thinking, multiple perspectives, interrelationships
- **Coping with ambiguity** – adopting to shifting baselines dealing with undefined dependencies
- **Tailoring of the process** –knowing when to change, balancing whole life whole systems rigor and persuasion and influencing
- **Varying scope-rigor-effort** – recognising which factor lead and how to delivering a balanced solution
- **Persuasion and influencing** – agreeing involvement, agreeing need for rigorous approach, agreeing best approach and results
- **Adapting and innovating** –knowing when to adapt today's solution and when a fundamental change is required, knowing how to adapt and innovate

Conclusions and Summary

- Four different “types” of Systems Engineering
 - Enterprise
 - Capability
 - Service
 - Product
- Adaptation of Z1 “Six Steps to Success” to articulate the differences between the different types
- Operating in Enterprise, Capability and Service may require more focus on specific Systems Engineering Competencies than traditional product Systems Engineering
- More work is required to develop supporting guidance, pull-through of best practice etc

Would the real systems engineer please stand up?

Duncan Kemp – Duncan.Kemp@dft.gsi.gov.uk

Jennifer Mollett - Jennifer.Mollett@baesystems.com