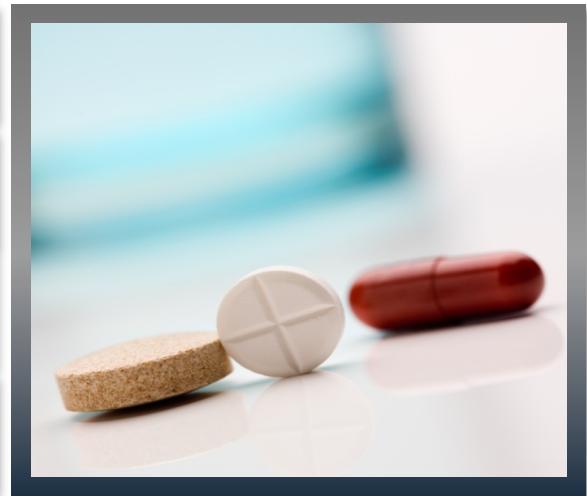


Using FMEAs to Improve Healthcare Study Design

Pat Baird, Baxter Healthcare

pat_baird@baxter.com

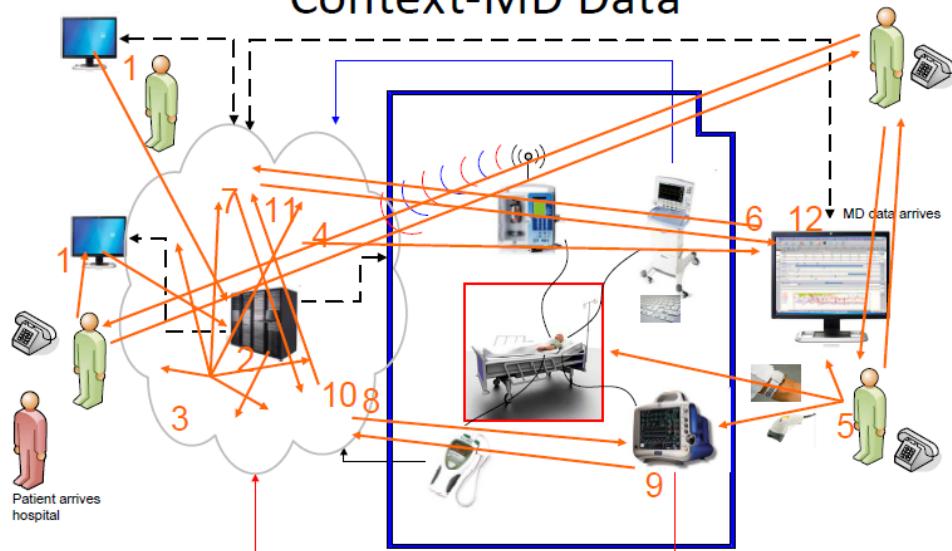

Agenda

Hospitals as Systems of Systems

Healthcare and Aviation

Examples of Healthcare Challenges

Applying SE to Healthcare: FMEA



Healthcare
needs
Systems
Engineers

Hospitals are a System of Systems

The Path for Just One Device's Patient Context-MD Data

Provider Order

Source: Julian Goldman, MD, Partners HealthCare, "Medical Device Data Systems (MDDS) a hospital's perspective"

Surely there is a precedent for dealing with complex safety situations... can't we just look to another industry ??

Inevitable Comparisons to Aviation

Naval Aviation Safety and Its Application to Medicine

By KATE MURPHY
Published: October 31, 2006

Advancing Excellence in Health Care

Medication administration process assessment: applying lessons learned from commercial aviation.

Donahue M, Brown JP, Fitzpatrick JJ. J Nurs Adm. 2009;39:77-83.
U.S. Navy photo by
Photographer's Mate Third Class (AW/SW) Joshua Karsten.

By Kirk T. Harmon, MD, FACP

What can medicine learn from aviation?
physicians and hospitals are implementing
and achieving mixed results.
2010.

Safety
Times

Healthcare is not Aviation

Entirely different usage model

Who pays ?

Who regulates manufacturers ?

Who regulates facilities ?


**Who licenses primary operators
(pilots vs. MD) ?**

**What is the reporting structure
(MD vs. Nurse vs. Pilot) ?**

**What freedom is there to chose
an alternate ?**

Who sets the flight path ?

Healthcare needs Systems Engineers at many levels

Example Process: Adverse Drug Events

Did the drug cause an injury?

Study by Brigham and Women's Hospital
6 Sites

75% of ADEs were preventable

ADEs cost \$3.8B per year

All Preventable Events cost \$16B

Source: David W. Bates, Brigham and Women's Hospital, "Computerized Physician Order Entry and IV Infusions: Current Status and Future Opportunities"

Example Process: IV Admin. Errors

Did the IV administration execute per policy?

Study by Northwestern Memorial Hospital

Observational study for medication administration errors using infusion pumps (n = 426)

67% of deliveries had an error

4% had potential of harm

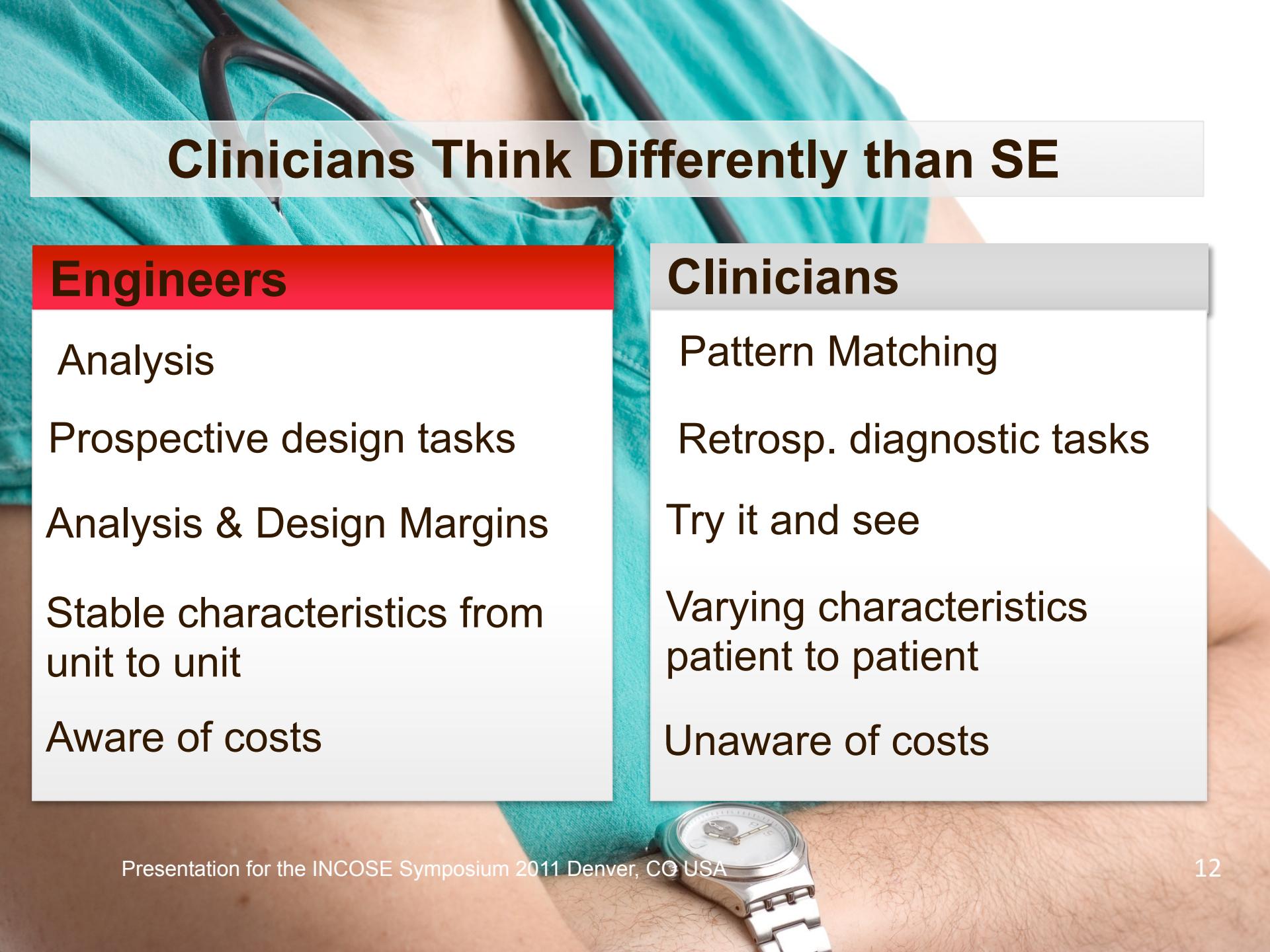
48 events self-reported in 2 years

55 events independ. observed in **1 shift on 1 day**

Source : Marla Husch , Northwestern Memorial Hospital, "One or More Errors in 67% of the IV Infusions: Insights from a Study of IV Medication Administration"

Research: MDs vs. Statistics

Do MDs understand the statistics they are given?


Tested medical residents (n=277, 11 different residency programs) understanding of statistics typically used in medical journals

Only 41% passed the test

Source : Medicine Residents' Understanding of the Biostatistics and Results in the Medical Literature
Windish, Huot, Green, JAMA 2007

Healthcare
needs
Systems
Engineers

Clinicians Think Differently than SE

A close-up photograph of a person's torso. They are wearing a teal-colored scrub top and a silver-toned wristwatch with a metal band. A stethoscope is draped around their neck. The background is slightly blurred, focusing on the watch and the stethoscope.

Engineers

Analysis

Prospective design tasks

Analysis & Design Margins

Stable characteristics from
unit to unit

Aware of costs

Clinicians

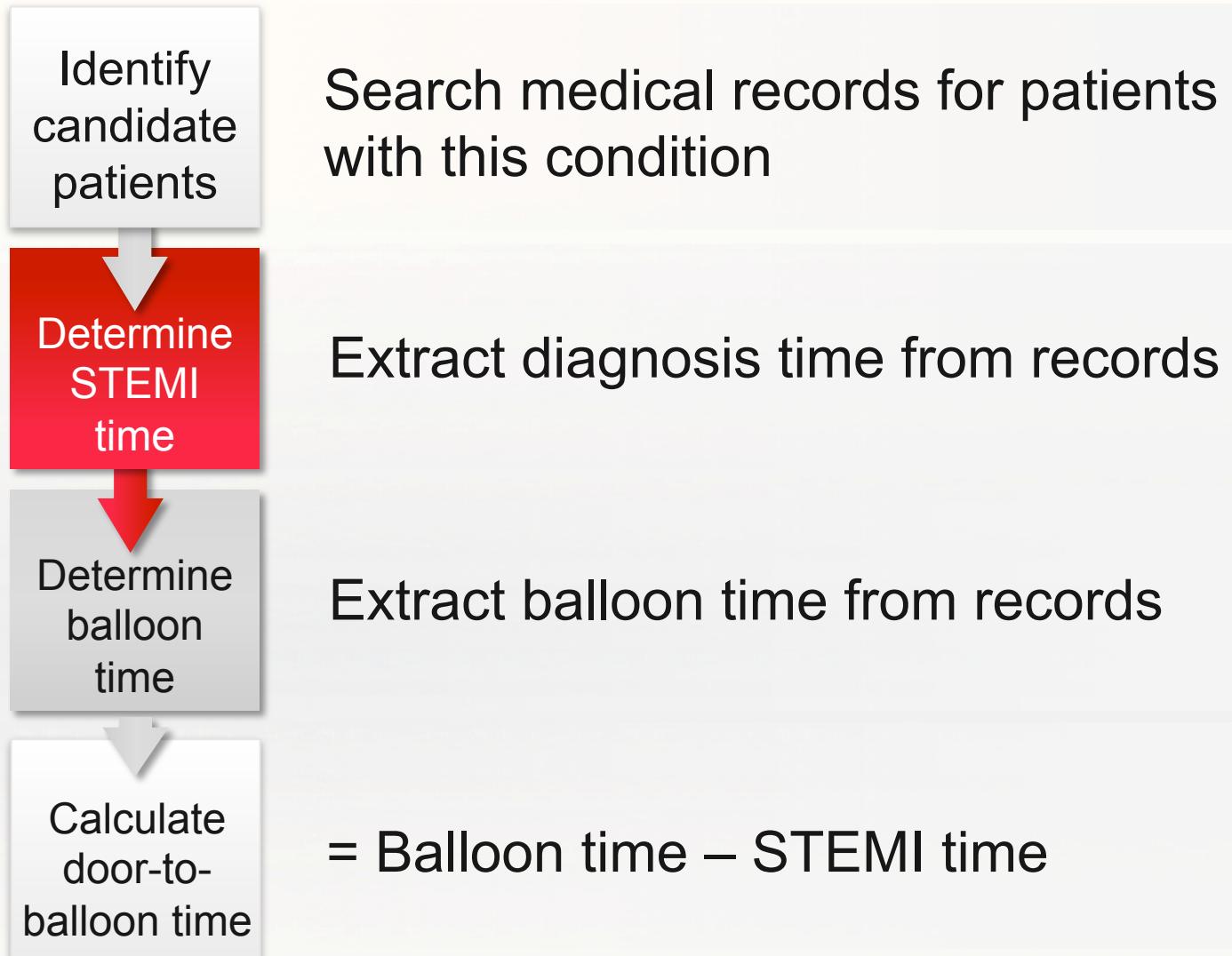
Pattern Matching

Retrosp. diagnostic tasks

Try it and see

Varying characteristics
patient to patient

Unaware of costs


Medical Study Design -

“Association of Door-to-Balloon Time and Mortality...”

Rathore Saif S, Curtis Jeptha P, Chen Jersey, et al.
Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: national cohort study. BMJ 2009;338:b1807.

- A STEMI is a type of heart attack due to a blocked blood supply. A PCI procedure involves inserting a deflated balloon into the artery, positioning the balloon near the obstruction, inflating the balloon to crush the obstruction, then deflating and removing the balloon. Afterward PCI, other treatments such as implanting stents are typically performed.
- This particular study wanted to examine the correlation between the “door-to-balloon time” and patient mortality.

Medical Study – Process Flow

Medical Study – Risk Table

Likelihood	Severity				
		Catastrophic	Major	Moderate	Minor
Frequent	UNACCEPT (16)	UNACCEPT (12)	UNDESIRE (8)	ACCEPT (4)	
Occasional	UNACCEPT (12)	UNDESIRE (9)	UNDESIRE (6)	ACCEPT (3)	
Uncommon	UNDESIRE (8)	UNDESIRE (6)	ACCEPT (4)	ACCEPT (2)	
Remote	ACCEPT (4)	ACCEPT (3)	ACCEPT (2)	ACCEPT (1)	

Severity Rankings

Catastrophic – Study leads to incorrect conclusion (e.g. more than 30% incorrect)

Major – study conclusion is questionable (e.g. correct within 30% to 15%)

Moderate – study conclusion is substantially correct (e.g. correct within 15% to 5%)

Minor - study conclusion is materially correct (e.g. correct within 5%)

Occurrence Rankings

Frequent – will happen several times over the course of the study

Occasional – likely to happen at least once during the study

Uncommon – unlikely but possible to happen. If the study were repeated 3 – 5 times, this error would likely occur.

Remote – unlikely to happen even with repeated studies; may occur with 5+ repeats.

Medical Study – FMEA

Step #	Description	Failure Mode	Cause	Lik.	Sev.	RPN	Score	Mitigation
1	Identify candidate patients (confirmed STEMI)	Too many patients counted	Duplicate records	3	2	6	UNDESIRE	Exclude duplicate records
		Too few patients	Missing STEMI in record	2	3	6	UNDESIRE	No action possible
			Incomplete record because transferred patient	3	4	12	UNACCEPT	Exclude transfers

Medical Study – FMEA contd.

Step #	Description	Failure Mode	Cause	Lik.	Sev.	RPN	Score	Mitigation
2	Note time STEMI identified	Recorded time nominally incorrect (1-5 min difference)	Difference in clocks between units	4	1	4	ACCEPT	N/A
		Recorded time significantly incorrect (5 - 30 min difference)	Medical record filled out at end of shift.	2	3	6	UNDESIRE	No action possible
		Recorded time grossly incorrect (30+ min)	Value mis-keyed into medical record	2	4	8	UNDESIRE	Exclude door-to-balloon times of < 30 min and > 180 min
		Time not recorded	Value not entered into medical record	2	4	8	UNDESIRE	No action possible

Medical Study – FMEA contd.

Step #	Description	Failure Mode	Cause	Lik.	Sev.	RPN	Score	Mitigation
3	Note time balloon inflated	Recorded time nominally incorrect (1-5 min difference)	Difference in clocks between units	4	1	4	ACCEPT	N/A
		Recorded time significantly incorrect (5 - 30 min difference)	Medical record filled out at end of shift.	2	3	6	UNDESIRE	No action possible
		Recorded time grossly incorrect (30+ min)	Value mis-keyed into medical record	2	4	8	UNDESIRE	Exclude door-to-balloon times of < 30 min and > 180 min
		Time not recorded	Value not entered into medical record	2	4	8	UNDESIRE	No action possible
			Patient expired before balloon	2	4	8	UNDESIRE	Exclude

Medical Study – FMEA contd.

Step #	Description	Failure Mode	Cause	Lik.	Sev.	RPN	Score	Mitigation
4	Calculate door-to-balloon time	Mathematical error	Did not account for midnight rollover in timestamp	2	4	8	UNDESIRE	Make sure formula accounts for rollover

Results:

1. Consider validation patient records for duplicates & transfers
2. Need to determine appropriate timing resolution

Side discussions yield interesting questions...

What really is the shortest door-to-balloon time seen in practice?

What is the longest waiting time in which the patient survived?

Include or exclude events where patient expires before the balloon?

If we were to gather those additional data points, are they consistent with the study conclusions?

All of these discussions explore additional information sources that the study authors might not have considered.

Other Uses for FMEA

After we taught a Clinician how to use FMEAs, she created a one for her daughter's wedding...

TAKEAWAY: If Murphy's Law applies, there's an FMEA.

Healthcare needs Systems Engineers

