

A novel approach to Large Systems Performance Prediction via Markov analysis

Roberto Petrucci, Domenico Vigilante
Finmeccanica - Selex Sistemi Integrati
Via Tiburtina km 12400, 00131 Rome, Italy

Roadmap

- Introduction
- Mathematical Framework
 - *Definitions and metrics*
 - *Large Systems State Evolution*
 - *Engagement Timeline*
 - *Markov Model*
- Study Case
 - *Oil Camp Protection Overview*
 - *Frontal Assault Scenario Description*
 - *Frontal Assault Scenario Results*
- Conclusions

Introduction

- This paper provides a preliminary answer to the rising needs for **performance prediction** in the Large System (LS) area.
- Up to now, performance studies have been mostly confined to **sub-system** level modeling and simulation techniques.
- Even if each company has a mature modeling capability with respect to its own produced sub-system, the overall performance prediction theory is still embryonic and mostly based on huge Monte Carlo **simulations** , useful only to test and refine a **defined system architecture**.

Introduction

- However, **simulations provide poor support to system design**, as it is well known to SE community: they are time and resource consuming, requires a lot of coding effort and are not oriented to sensitivity and trade-off studies.
- What is missing is a **closed formula model** to be used in the preliminary design stage, to support the system **architecture definition** and, from a marketing perspective, to support the production of high-quality **technical proposals**.

Introduction

- Our proposed approach offers a **solution** to these drawbacks, providing a **guideline** to those engineers facing the challenge of LS devising.
- Aim of this work has been **twofold**:
 - Define a suitable **mathematical framework**, including performance metrics, modeling and calculus procedures.
 - Perform a **trade study**, using the model mentioned above, to assess the performance improvements obtained adding a radar sub-system to a **notional study case**: the protection of an Oil Camp sited in an area affected by critical terroristic activity.

Mathematical Framework

Definitions and metrics 1/3

- We propose the following practical **definition**, mostly because it is functional to the aims of this report.
 - ***An integrated system is a set of heterogeneous items (named subsystems) playing different roles and directed towards a common objective, that is the mission execution.***
- In most cases, different items have no comparable performances: the **metrics** used to define the “quality” of item A may be completely different from those used for item B, provided that item A could be a ground sensor whereas item B could be a truck, a fence or a command and control system.

Mathematical Framework

Definitions and metrics 2/3

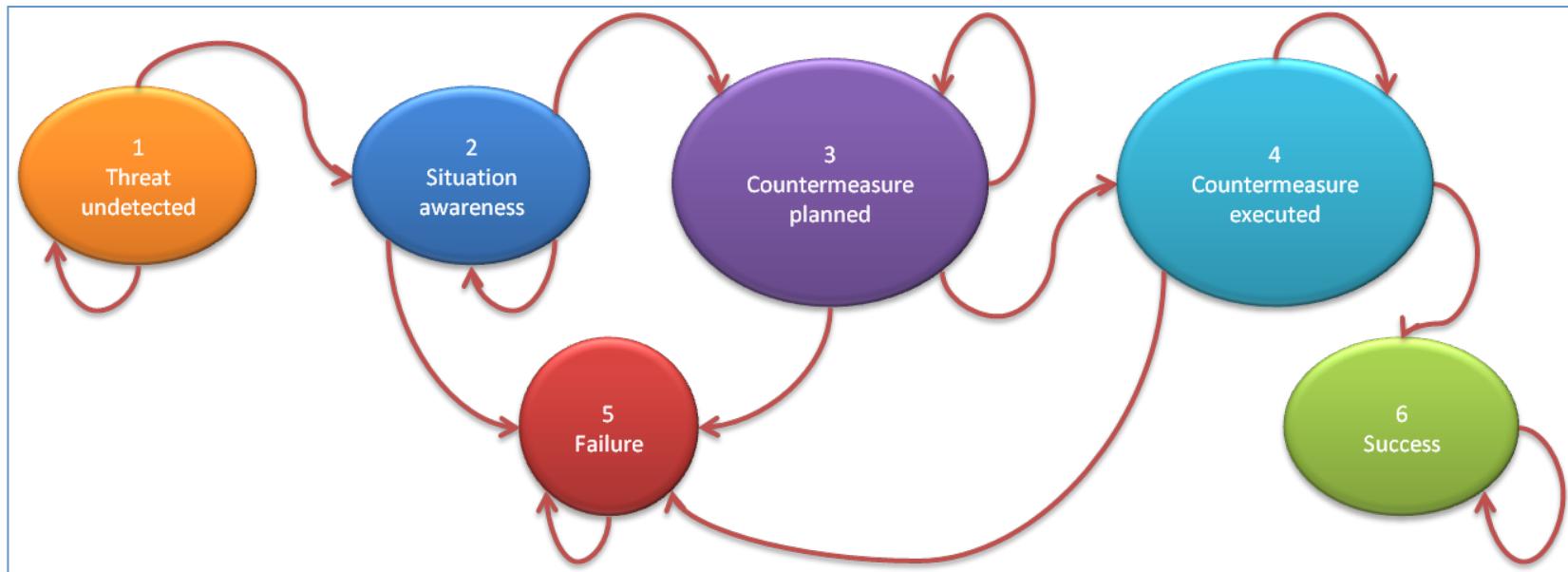
- A straight forward approach to the metrics problem begins with the definition of the overall **LS performance** as **the probability to succeed** against a specified set of threatening scenarios.
- The overall success probability depends on the success probability of the **items composing the system**.
- We propose to “**scale**” the system approach to the subsystem level:
 - ***The performance of a subsystem is defined as the probability that such subsystem carries out its role within the LS mission in the required timeframe.***

Mathematical Framework

Definitions and metrics 3/3

- This approach leads to a **Markov** model to represent the scenario within following assumptions:
 - Assumption 1: The **number of states** significant and representative of the system evolution **is finite**
 - Assumption 2: Each system **state** is defined by a **combination of each scenario actor** state. For scenario actors is intended each item playing a role inside the scenario: threats, subsystems, environment etc.
 - Assumption 3: The **transition** from one state to the next one is **ruled** by a specific **combination of subsystem performances**. These probabilities may be **non-stationary**, i.e. they may change with time.

Mathematical Framework

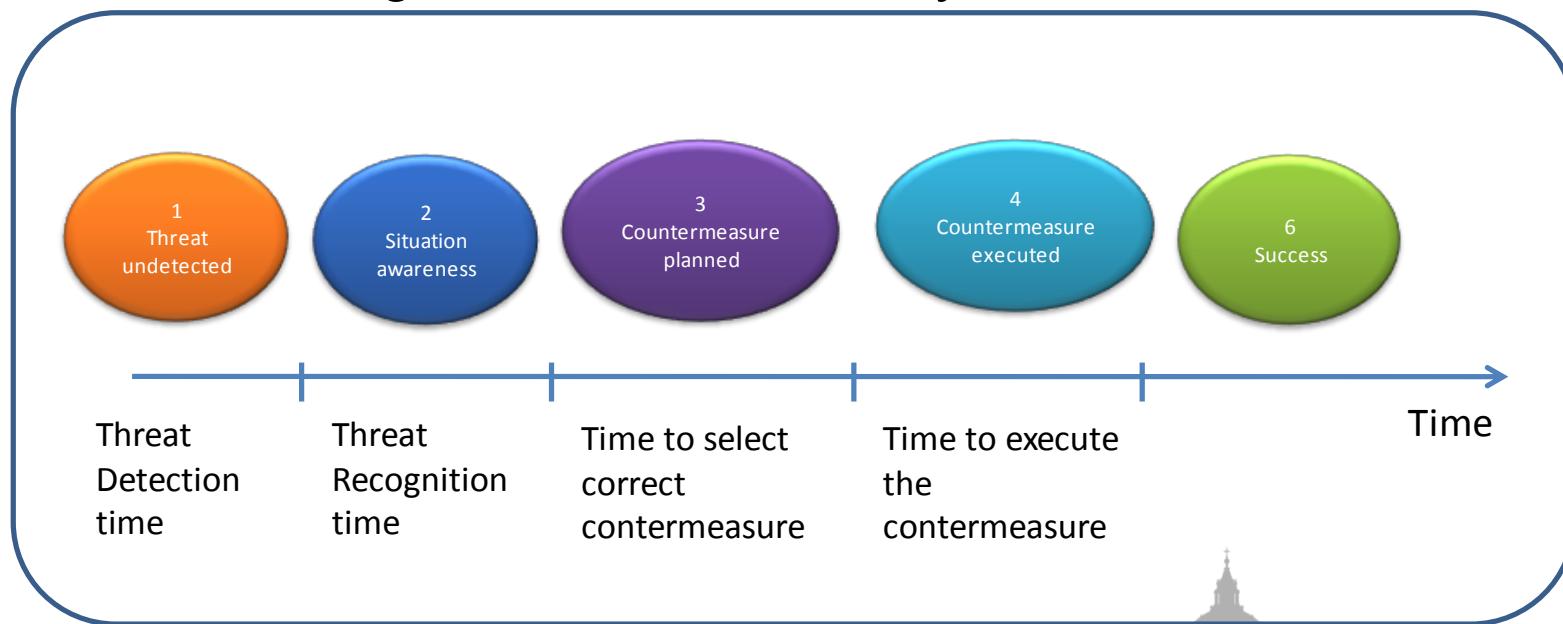

LS state evolution 1/2

- The mission execution of a LS can be summarized in a subset of macro-states:
 1. **Threat Undetected**: this state represents the “*at rest*” system state, when no active countermeasure is operated.
 2. **Situation Awareness**: the sensors suite, as well as intelligence and data mining techniques, identify a specific threat.
 3. **Countermeasures Planned**: the decision makers, supported by information management systems and decision support systems, plan specific countermeasures against the identified threat.
 4. **Countermeasures Executed**: the subsystems involved in the countermeasures application are activated and forced in the needed states.
 5. **End Game**: we may have multiple mission endings, from a complete success to a complete failure, with all the intermediate cases.

Mathematical Framework

LS state evolution 2/2

States Diagram of a general Large System



The state transition is provided by the performance of the actors

Mathematical Framework

Engagement Timeline 1/3

- Each sub-system performs its functions according to a **time-based script**, which we will refer to as *Engagement Timeline*. It is the common language that will help us to **integrate metrics** coming from different sub-systems

Mathematical Framework

Engagement Timeline 2/3

- From a System Designer point of view, the timeline should be defined **from the end point above**. That is, from state 6 up to state 1:
 - In order to properly counteract the specific threat of the scenario, the optimal **countermeasure needs a certain time** to be executed;
 - The **command&control systems need time** to select that particular countermeasure, after the threat has been correctly identified and recognized;
 - The **classification** and discrimination sub-systems need to **observe the target for a certain time** in order to operate;
 - The **sensor** suite (radar, acoustic, electro-optic, cameras, etc.) **needs time to acquire** and initiate the observation.

Mathematical Framework

Engagement Timeline 3/3

- The end-state “**Failure**” has not been reported in this example; however, if one or more **subsystems fail** to correctly play their role, we can reach the **bad end-state** following **many different routes**.
- To further **aggravate the complexity** of this kind of scenario evolutions, we must acknowledge that many large systems (mostly in homeland protection and defense) are **over-specified**; that is, they offer **redundant solutions** to recover from some sub-systems failure.
- In other words, we must recognize that the number of “**what if**” cases **exponentially increases** as we increase the complexity of the large system and of its behavior.

Mathematical Framework

Markov Model 1/2

- **Markov condition:** the system state at time k depends **only** on the system state at time $k-1$.
- **State vector s** in which the element i^{th} is the probability of the system to lies in the state “ i ” at a given time:

$$s(k) = [p_1(k) \quad p_2(k) \quad \dots \quad p_n(k)]$$

- The system evolution is represented by the **transition matrix**:

$$T(k) = \begin{bmatrix} p_{11}(k) & p_{12}(k) & \dots & p_{1n}(k) \\ p_{21}(k) & p_{22}(k) & \dots & p_{2n}(k) \\ \dots & \dots & \dots & \dots \\ p_{n1}(k) & p_{n2}(k) & \dots & p_{nn}(k) \end{bmatrix}$$

Mathematical Framework

Markov Model 2/2

- One of the biggest **limitations** within the Markov theory boundaries is the **Markov Condition**, which implies that we cannot model (at least in a straight forward manner) **memory-based systems** with this mathematical tool.
- Nevertheless, common experience says that complex systems are usually **far from being memory-less**.
- Following example try to explain how to bypass this limitation and make the Markov chain useful to LS evaluation performance

Mathematical Framework

Example 1/6

- An enemy vehicle is approaching our defended site, with the purpose of breaking inside and destroying some facilities.
- The best countermeasure we should select is a plain **intercept mission** by means of armed security contractors *before* the enemy vehicle reaches the site boundaries.
- If one of the sub-systems fails (i.e. **does not execute** its task or **executes it overtime**) the end game will be **FAIL** instead of **SUCCESS**

Mathematical Framework

Example 2/6

- The LS system mission can be summarized as follows:
 - **SEARCH**. Until the threat is detected the system is in the state 1.
 - **RECOGNITION**: When the threat is detected it is taken in charge by the early warning system that provides the target classification and identification: the time assigned to this task is the threat recognition time.
 - **COUNTERMEASURE PLANNING**: After the recognition time the system has to plan the correct countermeasure to mitigate or neutralize the threat (typically, this phase involves computer-aided decision making); at the end of this time the large system reach the state 3.
 - **COUNTERMEASURE EXECUTION**: The correct countermeasure execution brings the large system to the end state “success”.

Mathematical Framework

Example 3/6

- Let us define following **Markov states**:
 - **State 0**: Security Patrol not at Intercept Point
 - **State 1**: Security Patrol at Intercept Point
 - **State 2**: Intruder reaches the Intercept Point
 - **State 3**: Intruder enters the site
- The transition probability from state 2 to state 3 clearly **depends on system state before state 2**; in other words, security patrol presence at IP affects the probability that intruders break in.

Mathematical Framework

Example 4/6

- Mathematically speaking:
 - $P_{23}(k) = \Pr\{\text{state 3 at time } k \mid \text{state 2 at time } k-1\}$ depends on time $k-2$:
 - $P_{023}(k) = \Pr\{\text{state 3 at time } k \mid \text{state 2 at time } k-1 \text{ AND state 0 at time } k-2\}$
 - $P_{123}(k) = \Pr\{\text{state 3 at time } k \mid \text{state 2 at time } k-1 \text{ AND state 1 at time } k-2\}$
- Those transition probabilities **clearly violate the Markov Condition.**

Mathematical Framework

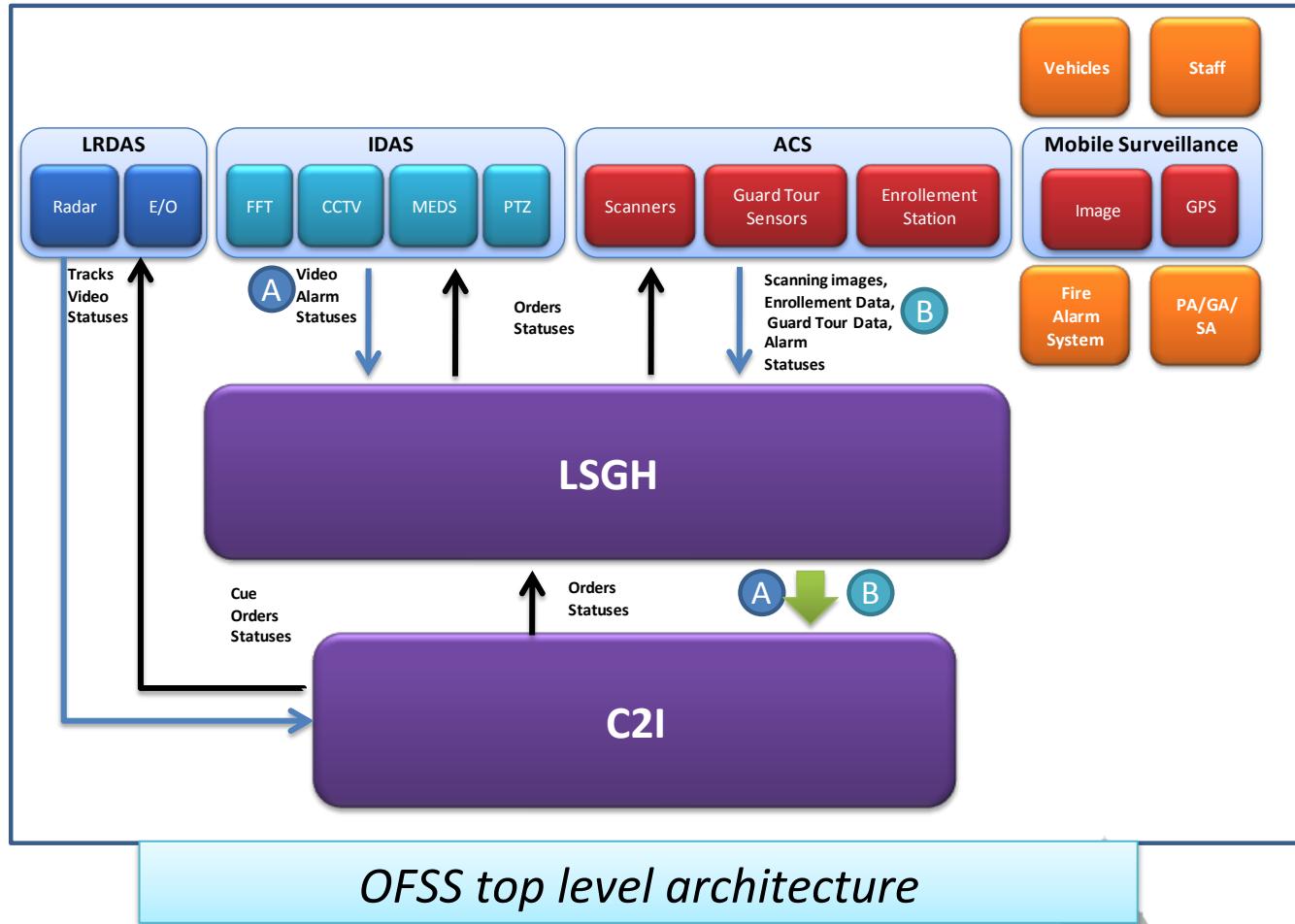
Example 5/6

- Let us define the system states in a slightly different way:
 - State A**: “Security Patrol not at intercept point”
 - State B**: “Security Patrol at intercept point”
 - State C**: “Intruder reaches the intercept point AND Security not at intercept point”
 - State D**: “Intruder reaches the intercept point AND Security at intercept point”
 - State E**: “Intruder enter the site”

Mathematical Framework

Example 6/6

- We can now write again the transition probabilities **without violating the Markov Condition**:
 - $P_{CE}(k) = \Pr\{\text{state E at time } k \mid \text{state C at time } k-1\}$
 - $P_{DE}(k) = \Pr\{\text{state E at time } k \mid \text{state D at time } k-1\}$
- The memory information is already **embedded** inside the system **status**. This “trick” makes easier the mathematical formulation; however, the computational time needed to run the model, depending on the number of states, increases exponentially.
- The total **number of states increases**; it is easy to verify that this increase is equal to 2^n , where n is the **memory depth** we wish to emulate.

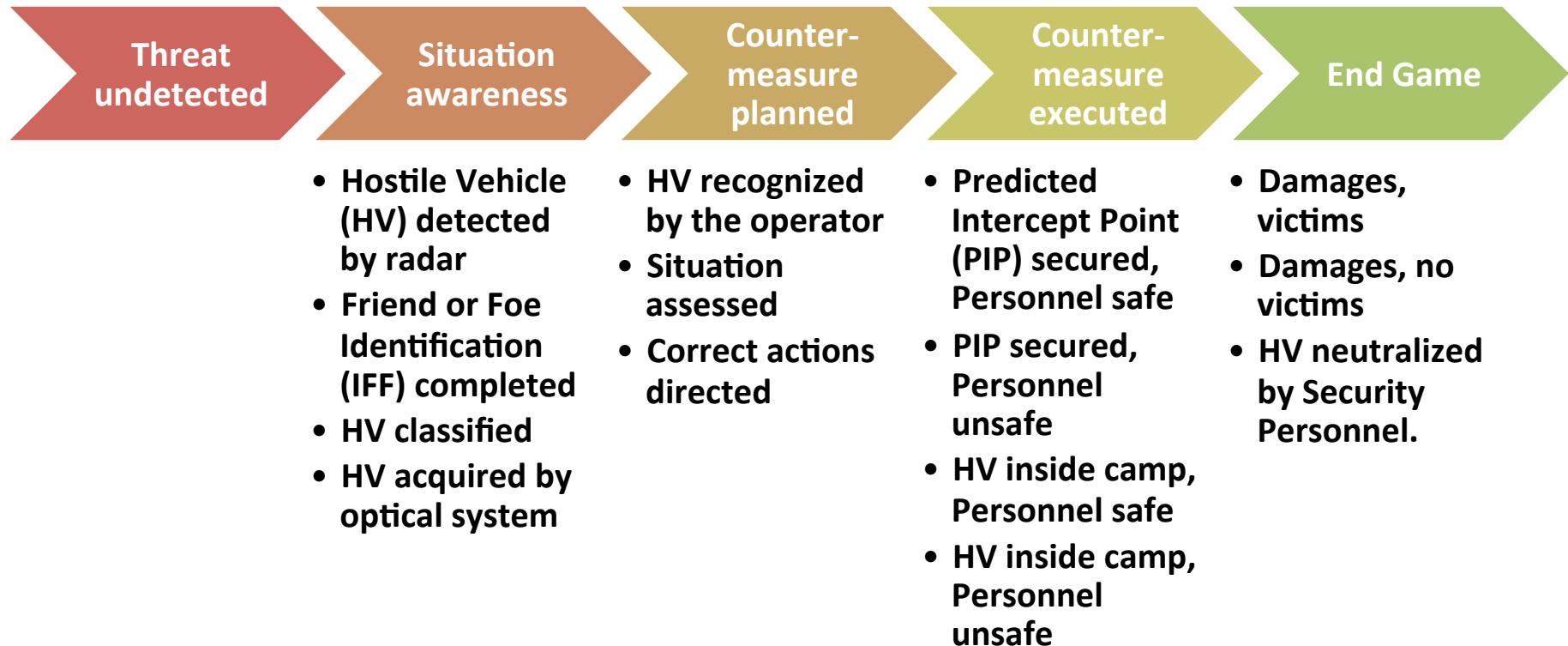

Study case

Oil Camp Protection Overview 1/2

- This is a **notional** representation of a typical design process for the protection of an **oil camp in a hostile territory**.
- It has been derived from a **technical proposal** produced by Finmeccanica for the protection of **Oil Fields in Iraq**.
- The proposed **model has been applied**, in that context, in order to perform a **trade study** and support the **inclusion of a radar sensor** in the Oil Field Security System (**OFSS**).

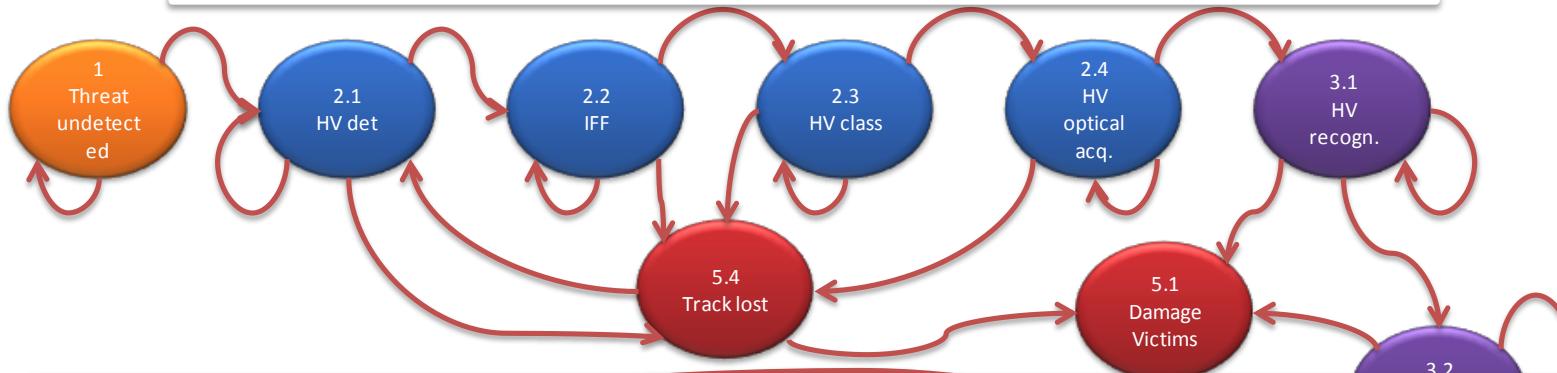
Study case

Oil Camp Protection Overview 2/2

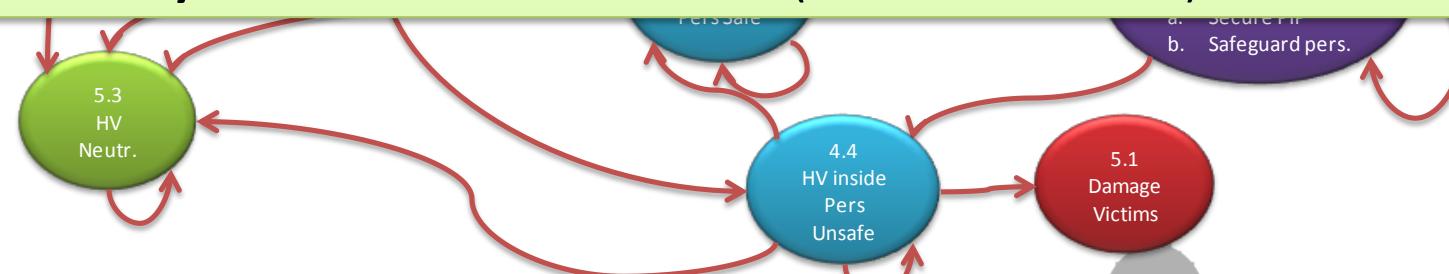

Study case

Frontal Assault Scenario Description 1/3

- The **scenario storyboard** can be resumed in the following scenes:
 - The **hostile vehicle** is moving toward the camp
 - The Early Warning system **detect, classify and identify** the threat providing these information to the Command and Control System
 - The operator recognizes the threat and selects the **correct procedure**.
- In that specific scenario the right procedure is composed by **two specific actions**:
 - **Alert the personnel** inside the camp and lead them in a safe bunker
 - Lead a **security patrol** toward the predicted attack point.


Study case

Frontal Assault Scenario Description 2/3


Study case

Frontal Assault Scenario Description 3/3

The transition from one state to the others is ruled by the **transition probabilities**, that depend on the performances of each sub-system involved in the transition.

As an example, the transition **from state 1 and state 2** is given by the **probability of detection of the sensor** (Radar in this case).

Study case

Frontal Assault Scenario Input Data 1/2

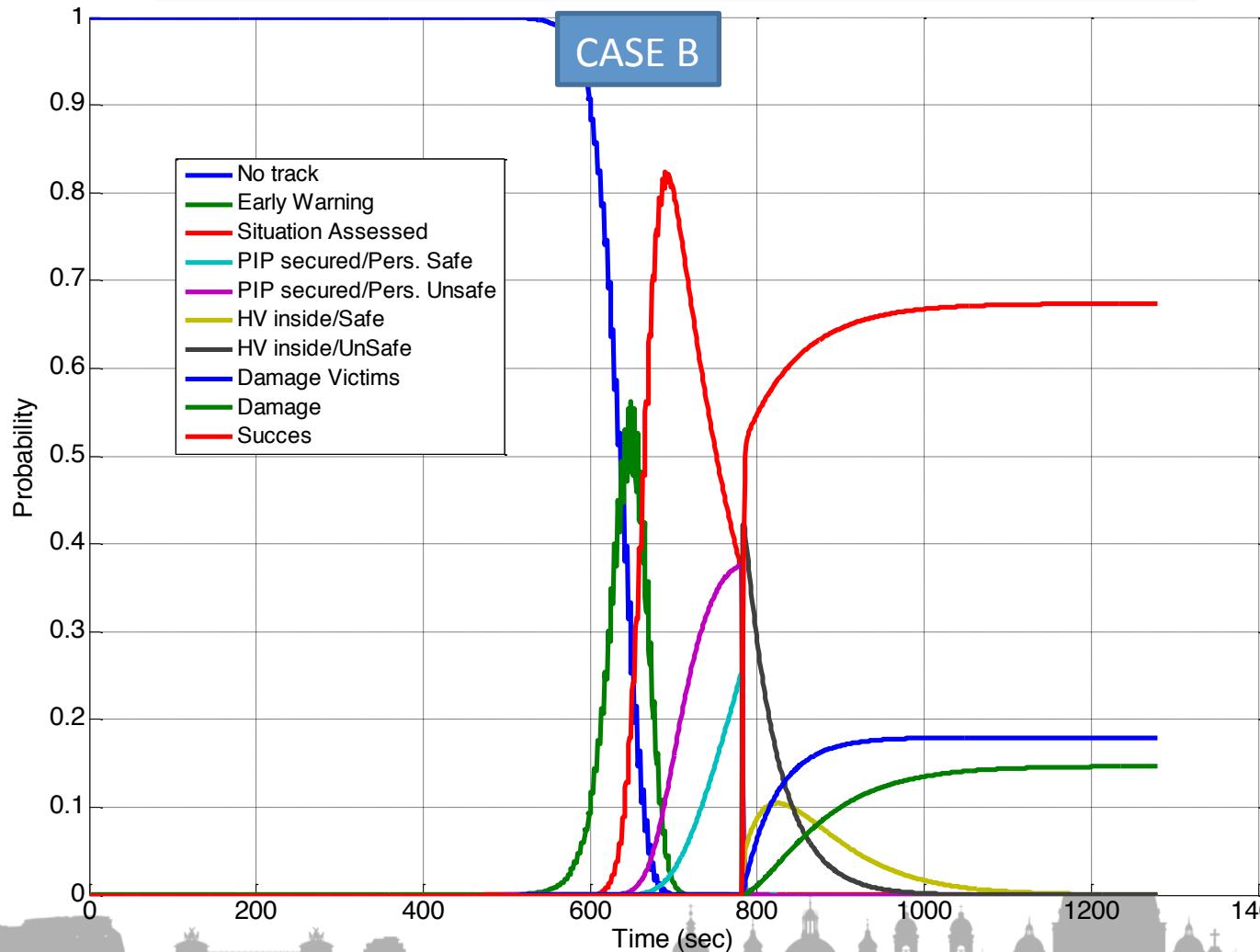
- **CASE A:**

- Hostile vehicle speed: 90 km/hr
- Sensor suite coverage: 20 km radar / 5 km EO system.
- Probability of correct HV recognition within 30 sec: 95%
- Probability of correct situation assessment within 30 sec: 95%
- Probability of correct procedure selection within 30 sec: 95%
- Probability to secure PIP within 5 minutes from alarm: 95%
- Probability to safeguard personnel within 5 minutes: 95%
- Probability to win fight in case of PIP secured: 100%
- Probability to win fight inside camp within 10 minutes: 95%

Study case

Frontal Assault Scenario Input Data 2/2

- **CASE B (degraded early warning system):**
 - Hostile vehicle speed: 90 km/hr
 - Sensor suite coverage: 2 km EO system.
 - Probability of correct HV recognition within 30 sec: 95%
 - Probability of correct situation assessment within 30 sec: 95%
 - Probability of correct procedure selection within 30 sec: 95%
 - Probability to secure PIP within 5 minutes from alarm: 95%
 - Probability to safeguard personnel within 5 minutes: 95%
 - Probability to win fight in case of PIP secured: 100%
 - Probability to win fight inside camp within 10 minutes: 95%


Study case

Frontal Assault Scenario Results 1/3

Study case

Frontal Assault Scenario Results 2/3

Study case

Frontal Assault Scenario Results 3/3

- The probability of success is **90% in Case A** and only 67% in case B.
- The main reason is that the **Radar system can warn the operators well in advance**, so that the security personnel can be alerted and directed towards the intercept point before the intruder breaks through the fence.

End Game	CASE A	CASE B
Success	90%	67%
Damage	9%	15%
Damage/Victims	1%	18%

Conclusions

- Our engineering judgment is that this path may lead to significant results in producing a supporting tool able to provide **quantitative predictions** even in the preliminary phases of the project (i.e., technical proposal definition).
- The model is based on **closed formulas calculations**, thus being **very fast** in terms of computational time. This is a **critical** feature for system architects, where virtual **fast-prototyping** approaches are often used, and “real time” results are therefore needed.
- In other words, the proposed approach **suites very well the designer needs** in terms of sensitivity studies, design, parameter tuning, trade-off analyses, and top level architecture definition.

Conclusions

- In order to fully exploit this technique, some **additional effort** should be devoted to the following aspects:
 - The **library of subsystems should be enriched** with additional components (metal detectors, body scanners, enforcements, weapon systems, etc.).
 - A **rich set of notional scenarios**, for performance comparisons and trade studies, should be built.
 - A **user friendly software** tool should be coded, starting from the core functions produced for this report, in order to be usable within the company
 - A sensitivity study, as well as some performance **measurements** in scaled and controlled environment, should be executed in order to **validate and corroborate** our prediction method.

Questions?