
A Decision Support Framework for
the Software Systems Engineer

Dr. Bob Knapper, The MITRE Corporation
Dr. Peggy Brouse, George Mason University

Presented by Rosana Stoica

9 July 2012

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012

This material is for presentation only at INCOSE IS 2012 – Not for Distribution

Agenda

•  Introduction
•  Problem Statement
•  Research Methodology
•  Case Study
•  Architecture Artifact Restructuring Techniques (AARTs)
•  AARTs Validation
•  Experiment Findings and Conclusions
•  Software Engineering Decision Support
•  Conclusions
•  Open Research Items
•  Questions ?

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 2

Introduction

•  Legacy Systems
–  Any fielded system is a legacy system
–  Constructed with varying technologies and for varying

timeframes of utility
–  Retiring legacy systems is a consideration between the cost to

reengineer or replace vs. cost to retain/maintain

•  Integrating “as-is” into “to-be”
–  Requirements engineering and “use-case” analysis critical

•  Challenges
–  Legacy systems may be poorly documented
–  Requirements may be non-existent
–  Stovepipes may be resistant to integration

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 3

Problem Statement

•  System-Level Software challenges exist in development,
maintenance, reengineering, or modernization activities.

•  Legacy systems are often retained beyond their original
expected period of performance for many reasons.

•  Monolithic (or stovepiped) systems are often considered
as targets for renewal and integration into new systems.

•  Disparate systems should be viewed at the same
abstract architecture level for consistency.

•  Techniques, tools, and methodologies employed at a
common abstract architecture level for disparate systems
is of benefit.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 4

Research Methodology

•  Phase I – Performed a Case Study
–  Assessed the use of an architecture framework to create

valuable components for further use in the integration lifecycle

–  Developed and documented architecture artifact restructuring
techniques (AARTs) for manipulating architecture components

•  Phase II – Performed an Experimental Study
–  Designed an experiment to test AARTs against hypotheses

–  Executed the experiment and determined the efficacy of applying
AARTs in real-world development efforts

–  Developed conclusions based on findings and analyses

•  Documented overall conclusions and identified open
research items

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 5

Case Study

•  Phase I – A Case Study
–  Single case to be studied:

•  Extremely large DoD enterprise architecture (EA) effort was
attempted.

•  EA documented the Operational and System architecture views
partially for the “as-is” enterprise and the projected “to-be”
enterprise.

•  The “to-be” enterprise system comprised legacy systems and new
development.

•  Initial version of the Operational and a draft System architecture
views were developed and analyzed during the study period.

–  The 12-month Case Study was conducted to gather information,
make observations, and to explore “what if” exercises with
respect to architecture frameworks and the integration of the
architecture components.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 6

Case Study Conclusions

•  DoD Architecture Framework provided adequate high-level
guidance, but required experienced modelers and subject matter
experts to be effective.

•  The one-year effort to fully document the Enterprise Architecture
generated 100’s of architecture artifacts, but was less than
successful:
–  Many gaps remained in the limited “as-is” architecture coverage.
–  Integration was incomplete.
–  System View artifacts did not map well to Operational View artifacts.

•  Current architecture documentation methods used to generate
meta-level artifacts are not capable of predictive analyses for
integration on their own.

•  Given the nature of the relatively poorly constructed / documented
architectures, opportunities abounded for applying new techniques
(e.g. AARTs, see next slide).

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 7

Architecture Artifact Restructuring Techniques
(AARTs)

•  A group of architecture artifact restructuring techniques is defined:
–  Adapterize - create an adapter between components
–  Containerize - employ “wrapping” of components
–  Assimilate - subjugate one component to another
–  Conform - modify one component and/or interface
–  Equalize - modify both components and/or interfaces

•  These techniques are intended for use with abstract representations
of architecture components.

•  Applying AARTs to architecture components results changes to the
architecture which guides and assists applicable changes to the
underlying implementation.

•  Benefits to using AARTs include reduced complexity, elimination of
duplicate functionality, preservation of critical functionality, and ease
of future maintenance.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 8

Commonly Known
and Applied

Less Common

AARTs Graphical Depiction

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 9

Incompatible Component Interfaces

Applying Adapterize Restructuring Operation

Component A Component B

Component A

A
dapter

Component B

Adapterize

Applying Equalize Restructuring Operation

Component
A’

Component B’

Incompatible Component Interfaces

Component A Component B

Equalize

Applying ContainerizeRestructuring Operation

Component A

Container

Component B

Incompatible Component Interfaces

Component A Component B

Containerize

Applying Conform Restructuring Operation

Component A Component
B’

Incompatible Component Interfaces

Component A Component B

Conform

Applying Assimilat eRestructuring Operation

Component A
+ B’

Component B
- B’

Incompatible Component Interfaces

Component A Component B

Assimilate

Commonly Known
and Applied

Less Common

AARTs in the Integration Engineering
Lifecycle

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 10

LEGACY
SYSTEM

NEW
SYSTEM

AVAILABLE
INFORMATION

ATTRIBUTES /
QUALITIES

ATTRIBUTES /
QUALITIES

REQS / SPECS
INTEGRATION

INFORMAL
REQS

RENEWED
COMPONENT

NEW
COMPONENT

NON-TRADITIONAL
DEVELOPMENT

SYSTEM
ANALYSIS

REENGINEERING

REVERSE
ENGINEERING

REFACTORING

“ROUGH”
COMPONENT

FORMAL
REQS

HIGH-LEVEL
SPECS

LOW-LEVEL
SPECS

REQS
ANALYSIS ARCHITECTING DESIGN DEVELOPMENT

REQS /
SPECS

ARCHITECTURE
ARTIFACT

RESTRUCTURING
TECHNIQUES

(AARTs)

HIGH-LEVEL
SPECS

ATTRIBUTES /
QUALITIES

Architecture Restructuring Experiment Using
AARTs

•  Phase II – An Experimental Study
–  The Informational Case Study yielded five notional architecture artifact

restructuring techniques.
–  An algorithm to apply those techniques is defined:

•  Given
T(Pi, Pj, Rk) is the restructuring transformation
P is the set of program components to be integrated
Pi and Pj are elements of P
R is the set of restructuring operations
Rk is an element of R
I is the Integrated System

•  Then
I ← ∑ T(Pi, Pj, Rk) ∀ Pi , Pj ∈ P ∧ Rk ∈R

•  Adapterize and Containerize are state-of-the-practice and will be designated
as the control group in the experimental study.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 11

Restructuring Example

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 12

if			P	=	(A,	B,	C,	D,	E)	and	R	=	(Adapterize,	Equalize,	Conform,	Assimilate)	then	
I	=	T(A,	D,	Adapterize)	+	T(A,	B,	Equalize)	+	T(B,	C,	Conform)	+	T(B,	E,	Assimilate)	

C

A B

D

Adapterize	

Assimilate	

Conform	

Equalize	

1

4

3

2

E

AARTs Hypotheses to be Validated

•  H1: Using the Adapterize and Containerize restructuring techniques
 yield an integration outcome with higher cost to using the
 Assimilate, Conform, and Equalize restructuring techniques.

•  H2: Using the Assimilate, Conform, and Equalize restructuring
 techniques yield a reduction in size growth compared to using
 the Adapterize and Containerize restructuring techniques only.

•  H3: Using the Assimilate, Conform, and Equalize restructuring
 techniques yield an integration outcome with a reduction in cost
 compared to using the Adapterize and Containerize restructuring
techniques only.

•  H4: Using the Assimilate, Conform, and Equalize restructuring
 techniques yield an integration outcome with a reduction in
 complexity compared to using the Adapterize and Containerize
 restructuring techniques only.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 13

AARTs Experiment

•  Program Objective
–  Develop an armored, self-protecting, personnel carrier, capable

of multi-terrain operations
–  Vehicle is to be software-controlled to a maximum extent
–  Minimize new software development and use applicable legacy

systems as needed to achieve this

•  Developers (three experienced CMMI Level 5 DoD
software providers, biases assessed and mitigated)
–  Labeled Developer A, Developer B and Developer C

•  Subsystems Architecture Artifacts available for13
subsystems
–  Labeled Subsystem A through Subsystem M for the purposes of

this presentation.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 14

Experiment Observations

•  Developer A
–  Took the most conservative approach to the integration effort,

developing adapters and wrappers rather than the more invasive
techniques requiring modification of the existing subsystems.

–  Developer B and Developer C were compared against Developer A
(since they used the “control” techniques only).

•  Developer B
–  Had a less conservative set of restructurings. This architecture

changed considerably over Developer A since the restructurings involve
modifying interfaces and in some cases the subsystems functionality.

•  Developer C
–  Like Developer B they made modifications to one or more subsystem

interfaces and in some cases re-architected parts of the subsystem to
better facilitate integration. The choices they made to modify rather
than just wrap were based on creating systems that were seamless in
their integrated design structure in order to enhance the systems
maintainability for the future.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 15

Experiment Analysis

•  Analyzing the data involved computing the integrating value from
each developer along with the value of each method and its
significance with respect to the hypotheses. In addition, a “decision
value” is computed for use by a decision support framework.

•  The values shown in the subsequent summary tables are defined as
follows:
–  I – percentage of change expected in subsystem size
–  C – ratio of “plug and play” cost to expected cost
–  M – quartile rank of expected subsystem McCabe complexity
–  D – decision value (lower is better)

•  The values I, C and M are normalized to be in the 1-100 range
yielding I’, C’ and M’ and are weighted x, y and z respectively. The
decision value D is then computed as: D = x(I′) + y(C′) + z(M′) to
yield a result between 1 and 100.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 16

Experiment Analysis (concluded)

•  A survey of 102 software and system engineering professionals was
conducted to determine what values for x, y, and z should be chosen to
provide a “sensitivity” validation of the data.

•  The majority of the respondents (all of whom support the U.S. Government
on various programs) indicated that cost reduction was their principal factor
and they weighted it heavily (75% - 90%).

•  There were also responses favoring an equal weighting as well as those
favoring small increases in size (10% - 20%).

•  None of the respondents favored weighting the complexity attribute heavily.
•  To assist in the analysis, the responses were grouped into six clusters of

similar values for x, y, and z. The clusters are: (0.1, 0.8, 0.1), (0.3, 0.5, 0.2),
(0.333, 0.334, 0.333), (0.4, 0.5, 0.1), (0.5, 0.4, 0.1), and (0.8, 0.1, 0.1).
Values for D were computed on these clusters.

•  Additional ranges for x, y, and z were computed zeroing out one attribute
and varying the others in increments of 0.1.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 17

Experiment Results

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 18

Data for Developer A with Attributes from Experts

Developer A used
only Adapters and
Wrappers

Subsystem Restructuring
Techniques I=0.1, C=0.8,

M=0.1
I=0.3, C=0.5,

M=0.2
I=0.333, C=0.334,

M=0.333
I=0.4, C=0.5,

M=0.1
I=0.5, C=0.4,

M=0.1
I=0.8, C=0.1,

M=0.1
I' C' M' D D D D D D

Subsystem A Adapterize 11 14 2 12.5 10.7 9.005 11.6 11.3 10.4
Subsystem B Adapterize 14 19 2 16.8 14.1 11.674 15.3 14.8 13.3
Subsystem C Containerize 17 29 3 25.2 20.2 16.346 21.6 20.4 16.8
Subsystem D Adapterize 9 13 2 11.5 9.6 8.005 10.3 9.9 8.7
Subsystem E Containerize 11 14 2 12.5 10.7 9.005 11.6 11.3 10.4
Subsystem F Containerize 13 18 2 15.9 13.3 11.007 14.4 13.9 12.4
Subsystem G Containerize 9 11 2 9.9 8.6 7.337 9.3 9.1 8.5
Subsystem H Containerize 9 11 2 9.9 8.6 7.337 9.3 9.1 8.5
Subsystem I Containerize 23 52 3 44.2 33.5 26.026 35.5 32.6 23.9
Subsystem J Containerize 13 17 2 15.1 12.8 10.673 13.9 13.5 12.3
Subsystem K Containerize 19 37 3 31.8 24.8 19.684 26.4 24.6 19.2
Subsystem L Adapterize 10 12 2 10.8 9.4 8.004 10.2 10 9.4
Subsystem M Containerize 9 12 2 10.7 9.1 7.671 9.8 9.5 8.6

Average 12.85 19.92 2.23 17.45 14.26 11.675 15.32 14.62 12.49

Experiment Results (continued)

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 19

Developer B used
Conform, Assimilate,
and Equalize only

Data for Developer B with Attributes from Experts

Subsystem Restructuring
Techniques I=0.1, C=0.8,

M=0.1
I=0.3, C=0.5,

M=0.2
I=0.333, C=0.334,

M=0.333
I=0.4, C=0.5,

M=0.1
I=0.5, C=0.4,

M=0.1
I=0.8, C=0.1,

M=0.1
I' C' M' D D D D D D

Subsystem A Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem B Conform 4 7 2 6.2 5.1 4.336 5.3 5 4.1
Subsystem C Assimilate 11 15 3 13.4 11.4 9.672 12.2 11.8 10.6
Subsystem D Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem E Assimilate 9 13 2 11.5 9.6 8.005 10.3 9.9 8.7
Subsystem F Assimilate 9 12 2 10.7 9.1 7.671 9.8 9.5 8.6
Subsystem G Assimilate 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9
Subsystem H Equalize 7 11 2 9.7 8 6.671 8.5 8.1 6.9
Subsystem I Equalize 11 14 3 12.6 10.9 9.338 11.7 11.4 10.5
Subsystem J Equalize 6 9 2 8 6.7 5.67 7.1 6.8 5.9
Subsystem K Assimilate 12 18 3 15.9 13.2 11.007 14.1 13.5 11.7
Subsystem L Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem M Equalize 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9

Average 6.77 9.85 2.23 8.78 7.4 6.286 7.85 7.55 6.62

Computed values all less
than Developer A’s

Experiment Results (concluded)

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 20

Developer C used
Conform, Assimilate,
and Equalize only

Data for Developer C with Attributes from Experts

Subsystem Restructuring
Techniques I=0.1, C=0.8,

M=0.1
I=0.3, C=0.5,

M=0.2
I=0.333, C=0.334,

M=0.333
I=0.4, C=0.5,

M=0.1
I=0.5, C=0.4,

M=0.1
I=0.8, C=0.1,

M=0.1
I' C' M' D D D D D D

Subsystem A Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem B Assimilate 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9
Subsystem C Equalize 11 14 3 12.6 10.9 9.338 11.7 11.4 10.5
Subsystem D Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem E Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem F Equalize 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9
Subsystem G Assimilate 7 11 2 9.7 8 6.671 8.5 8.1 6.9
Subsystem H Assimilate 5 8 2 7.1 5.9 5.003 6.2 5.9 5
Subsystem I Equalize 9 12 3 10.8 9.3 8.004 9.9 9.6 8.7
Subsystem J Assimilate 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9
Subsystem K Equalize 13 16 3 14.4 12.5 10.672 13.5 13.2 12.3
Subsystem L Conform 3 5 2 4.5 3.8 3.335 3.9 3.7 3.1
Subsystem M Assimilate 5 7 2 6.3 5.4 4.669 5.7 5.5 4.9

Average 5.92 8.38 2.23 7.52 6.42 5.516 6.78 6.54 5.8

Computed values all less
than Developer A’s

Experiment Findings and Conclusions

•  AARTs Hypotheses - restated
–  H1: Using the Adapterize and Containerize restructuring techniques yield an integration outcome with higher

cost to using the Assimilate, Conform, and Equalize restructuring techniques.
–  H2: Using the Assimilate, Conform, and Equalize restructuring techniques yield a reduction in size growth

compared to using the Adapterize and Containerize restructuring techniques only.
–  H3: Using the Assimilate, Conform, and Equalize restructuring techniques yield an integration outcome with

a reduction in cost compared to using the Adapterize and Containerize restructuring techniques only.
–  H4: Using the Assimilate, Conform, and Equalize restructuring techniques yield an integration outcome with

a reduction in complexity compared to using the Adapterize and Containerize restructuring techniques only.

•  The assessment of the validity of the four stated hypotheses is as
follows:

–  H1: Validated. Using Adapterize and Containerize yielded noticeably higher cost than Assimilate, Conform
and Equalize.

–  H2: Validated. Using Assimilate, Conform and Equalize yielded a reduction in size growth over using
Adapterize and Containerize only.

–  H3: Validated. Using Assimilate, Conform and Equalize yielded a reduction in cost over using Adapterize
and Containerize only.

–  H4: Not validated. Using Assimilate, Conform and Equalize did not yield a reduction in complexity over
using Adapterize and Containerize only.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 21

Leveraging the Study for Decision Support

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 22

•  Decision Maker (i.e. the user)
•  Dialog Generation & Management System (i.e. the user interface)
•  Data Base Management System (i.e. the data store)
•  Model Base Management System (i.e. the “engine” that creates the

alternatives)

Notional Decision Support System

Software Engineering Decision Making

•  A decision support system framework can be constructed using the
information developed and derived from our research
–  The user interface would provide inputs for the Software

Systems Engineer/Architect decision maker to have control over
variables such as cost, schedule and performance

–  Our experiential data would be used to populate the data store
and to contribute to heuristics in the model base engine

•  Given different emphasis on the variables taken individually and as
a whole would yield different outcomes for the decision maker
–  E.g. cost-only, schedule-only, or cost/schedule/performance as a

specific combination
•  Based on the priorities of the overall system:

–  Multiple alternative paths may be prototyped
–  The best alternative may be selected only

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 23

Conclusions

•  Legacy systems are often retained beyond their original expected
period of performance for many reasons.

•  Legacy systems with extended lives are targets for renewal and
integration into modern systems and pose challenges.

•  Viewing legacy systems components and modern/new development
components at the same abstract architecture level helps to “level
the playing field” of integrating subsystems into systems.

•  The research presented herein showed the development and
validation of AARTs for use in aiding the Software System Engineer/
Software Architect.

•  Development of a Decision Support System interface would allow a
user to explore various combinations of restructurings against a set
of subsystem architectures to create a range of alternatives.

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 24

Contact Information

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 25

Dr. Robert J. Knapper
The MITRE Corporation
925 Corporate Drive, Suite 301
Stafford, VA 22554
+1-703-445-3247
rknapper@mitre.org

Dr. Peggy S. Brouse
George Mason University
2215 Nguyen Engineering Building
Fairfax, VA 22030
+1-703-993-1502
pbrouse@gmu.edu

22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012 26

Questions?

