

The U.S. DoD Technology Transition

A Critical Assessment

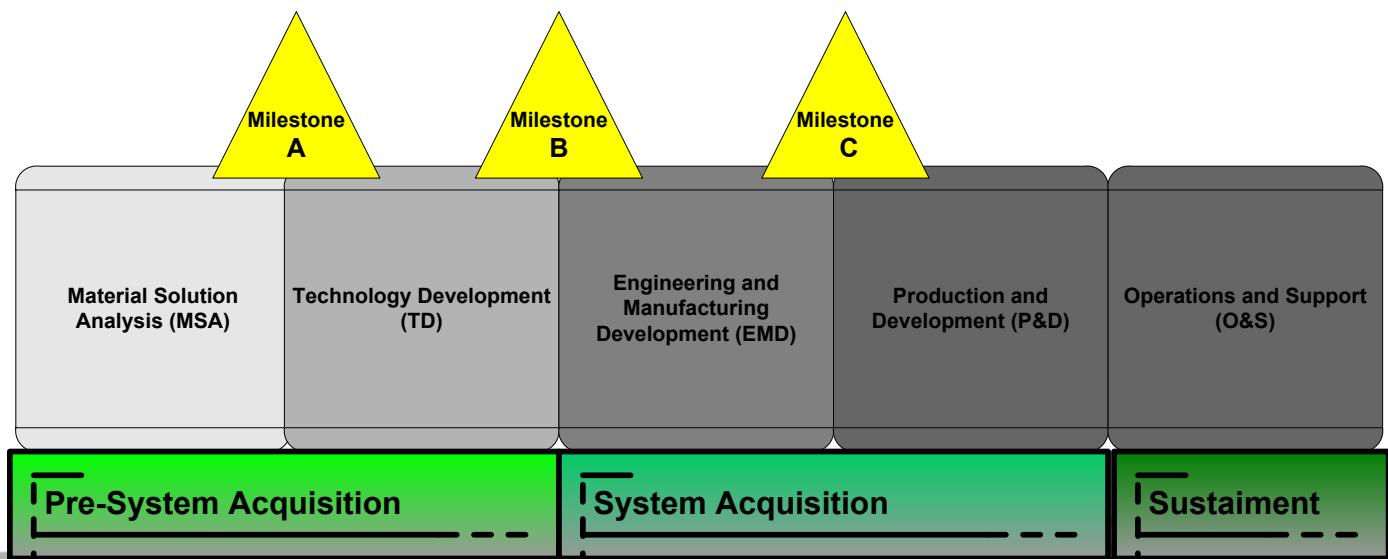
Azi Sharif
Southern Methodist University
July 9, 2012

Junfang Yu, Southern Methodist University

Jerrell Stracener, Southern Methodist University

Overview

- **Definition of Technology Transition**
- **Current Technology Transition at US DoD**
- **Knowledge-Based Acquisition**
- **Gaps and Recommendations for Improvement**
- **New Research Direction**
- **Questions**
- **References**


Definitions

- *Technology Transition* versus *Technology Transfer*
- ***Technology Transfer:*** Handing over at any stage of technology development life cycle
- ***Technology Transition Life Cycle:*** A process from research and development to new product development, and to adaptation and implementation

Current Technology Transition

“The Technology Acquisition Life Cycle”

- **Consists of five time periods called phases and three decision points, called milestones**
- **Stages:**
 - **Pre- Acquisition Stage:** Materiel Solution Analysis (MSA) phase and Technology Development (TD) phase
 - **Systems Acquisition Stage :** Engineering and Manufacturing Development (EMD) phase and Production and Deployment (P&D) phase
 - **Sustainment Stage:** Operations and Support (O&S) phase
- **Decision Points:**
 - **Milestone A:** Technology Transition from MSA to TD
 - **Milestone B:** Technology Transition from TD to EMD
 - **Milestone C:** Technology Transition from EMD to P&D

Major Risks in Technology Transition

- **The two major risk areas in acquisitions are**
 - Immature product technologies
 - Immature manufacturing capability
- **At DoD:**
 - The technology risk is addressed by Technology Readiness Level (TRL) metric
 - Manufacturing risk is addressed by Manufacturing Readiness Level (MRL) metric

Current Technology Transition

“Readiness Metrics: Technology Readiness Level (TRL)”

- Originally developed by NASA in 1970s
- Calculated throughout the life cycle to determine the **maturity** of the technology and if it is ready to move forward to the **next phase**
- TRL is a number between 1 and 9 that describes the degree of maturity of a project
 - **TRL 1:** The idea is at early stage of scientific investigation
 - **TRL 9:** The technology is being successfully used in a system

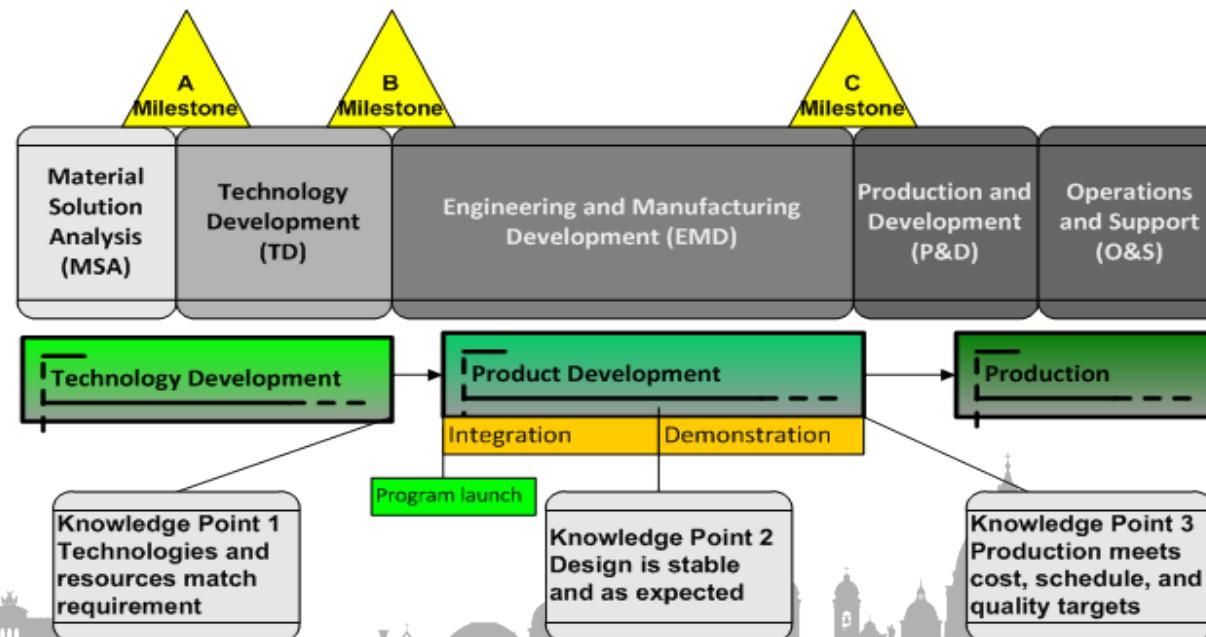
Technology Readiness (maturity)	Definitions
TRL 1	Basic principles observed and reported
TRL 2	Technology concept or application formulated
TRL 3	Experimental and analytical critical function and characteristic proof of concept
TRL 4	Component or breadboard validation in a laboratory environment
TRL 5	Component or breadboard validation in a relevant environment
TRL 6	System or subsystem model or prototype demonstrated in a relevant environment
TRL 7	System prototype demonstration in an operational environment
TRL 8	Actual system completed and “flight qualified” through test and demonstration
TRL 9	Actual system “flight proven” through successful mission operations

Current Technology Transition

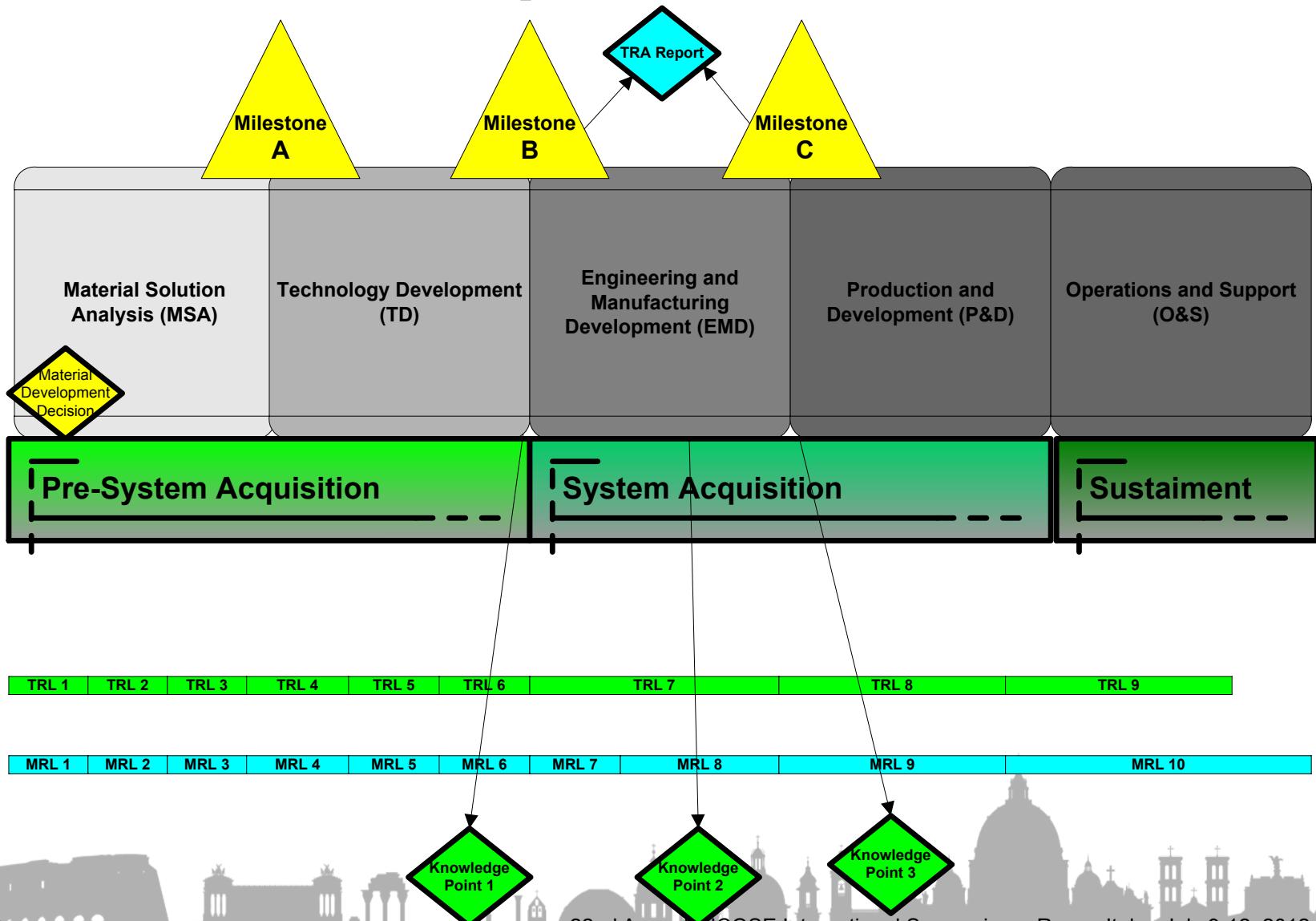
“Readiness Metrics: Manufacturing Readiness Metric (MRL)”

- **Assesses** manufacturing maturities and manufacturing risks of projects throughout the entire defense acquisition life cycle
- **10 MRLs**, 1 through 10, which are correlated with the 9 TRLs

Manufacturing Readiness (Maturity)	Definitions	TRL Correlation
MRL 1	Basic Manufacturing Implications Identified	Must be TRL1
MRL 2	Manufacturing Concepts Identified	Must be TRL 2
MRL 3	Manufacturing Proof of Concept Developed	Must be TRL 3
MRL 4	Capability to Produce the Technology in a Laboratory Environment:	At Least TRL 4
MRL 5	Capability to Produce prototype Components in a Production relevant environment	At Least TRL 5
MRL 6	Capability to produce a prototype system or subsystem in a production relevant environment	At Least TRL 6
MRL 7	Capability to produce systems, subsystems, or components in a production representative environment	On a path to achieve TRL 7.
MRL 8	Pilot line capability demonstrated; Ready to begin Low Rate Initial Production	At Least TRL 7
MRL 9	Low rate production demonstrated; Capability in place to begin Full Rate Production	Must be TRL 9
MRL 10	Full Rate Production demonstrated and lean production practices in place	Must be TRL 9


Current Technology Transition

“Technology Readiness Assessment (TRA)”


- An official process to evaluate readiness level of technology transition at Milestones
- The TRA uses the Technology Readiness Level (TRLs) criteria to evaluate readiness level system elements
- TRA is conducted by an Independent Review Team (IRT) of subject matter experts (SMEs)
- TRA is a requirement at Milestone B and Milestone C

Knowledge-Based Acquisition

- Government Accountability Office recommended best practice for DoD Acquisition
- To have high knowledge about **critical** features of the project at **key points** in time during its development and delivery
- **Knowledge Point 1:** By the start of EMD, ensure technologies and resources match end user requirements; **TRL should be 7**
- **Knowledge Point 2:** Ensure design is stable and as expected; Completion of at least 90 percent of engineering drawings
- **Knowledge Point 3:** Ensure production meets cost, schedule, and quality targets

Summary of DoD's Technology Acquisition

Major Problems

- **Main Issue: Non Optimal Investment**
 - The most promising technology is not always selected to fund
- **Valley of Death**
 - Many projects do not get transitioned from S&T to acquisition community and do not make it past TRL 6
- **Cost Overrun**
 - GAO (2011) Report: Half of DoD's major defense acquisition programs do not meet cost performance goals and that 80 percent of programs have experienced an increase in unit costs from initial estimates.
- **Schedule Delays**
 - Takes average of 10 years from basic research to implementation
- **Performance Mismatch**
 - Causes cancellation of programs: Waste of resources

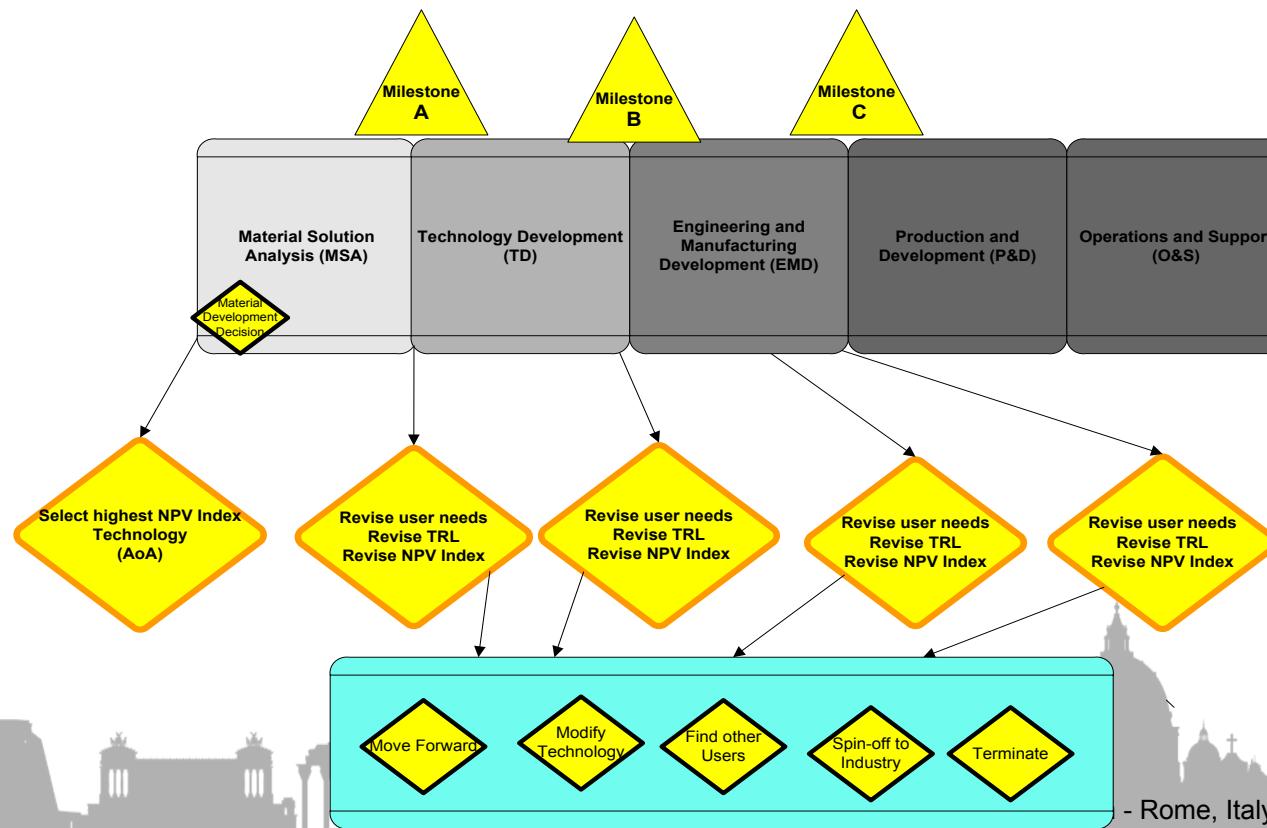
Gaps and Recommendations for Improvement

- **Gap:** Lack of knowledge at key decision points
 - **Effect:** Leads to continuation of projects no longer meeting end user need
 - **Recommendation:** Implement **Knowledge Based Model** as used by the industry
- **Gap:** TRA certification is not required at Milestone A
 - **Effect:** Continuation of unnecessary projects past Milestone A
 - **Recommendation:** Mandate formal **TRA Certification** at Milestone A prior to moving forward from the material solution analysis phase to technology development phase.
 - Helps identify technologies no longer needed due to change in end-users requirements or emergence of more advanced technologies

Gaps and Recommendations for Improvement (cont.)

- **Gap:** MRL metric is not a requirement for TRA
 - **Effect:** A technology might meet the required TRL and move into the engineering and manufacturing development phase at Milestone B without meeting the manufacturing readiness criteria
 - **Recommendation:** Incorporate MRL assessment into the formal TRA certification to ensure the intended correlations between the TRL numbers and the MRL numbers are met
- **Gap:** S&T developers each have their own small area of focus
 - **Effect:** Many independent small projects do not integrate into a system suitable for Acquisition
 - **Recommendation:** Require more coordination of S&T project managers combine projects into a system suitable for effective transition

Gaps and Recommendations for improvement (cont.)



- **Gap:** S&T community does not have the budgetary authority for transition at Milestone B
 - **Effect:** Many projects fall into the so called *Valley of Death*
 - **Recommendation:**
 - Authorize S&T community for developing, maturing, and transitioning mature technologies to the acquisition community
 - Emphasize acquisition community to focus solely on product development activities and delivering weapon systems to the warfighter.

New Research Direction

Main Issue: Non Optimal Investment

- **Gap:** Lack of Dynamic Cost Benefit Analysis and TRL update
 - **Effect:** DoD projects are intended for specific missions and threats. When threats change, priorities and requirements change and the technology under development becomes irrelevant.
 - **Recommendation:**
 - Update the TRL at Key Decision Points based on changes in end user requirements
 - Develop Dynamic Cost Benefit Analysis, such Net Present Value metric, to justify validity of continuation at each major decision point

Questions

Bibliography

- Alkemade, F., Frenken, K., Hekkert, M.P. and Schwoon, S. (2009). A complex systems methodology to transition management. *Journal of Evolutionary Economics* **19**: 527–543.
- Amessea, F. and Cohendet, P. (2001). Technology transfer revisited from the perspective of the knowledge-based economy. *Research Policy* **30**: 1459–1478.
- Ayyaz, A., Muhammad, L.M. and Ian, H. (2011). A systems approach for the effective adoption of rapid prototyping for SMEs. *Proceedings of the 2011 International Conference Industrial Engineering and Operations Management*, Kuala Lumpur, Malaysia, January 22-24, 2011.
- Azizian, N. (2011). A framework for evaluating technology readiness, system quality, and program performance of U.S. DoD acquisitions. *PhD dissertation, The School of Engineering and Applied Science of The George Washington University*. Retrieved from ProQuest August 2011.
- Azizian, N., Sarkani, S. and Mazzuchi, T. (2009). A comprehensive review and analysis of maturity assessment approaches for improved decision support to achieve efficient defense acquisition. *Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II WCECS 2009*, October 20-22, 2009, San Francisco, USA.
- Baines, T. (2004). An integrated process for forming manufacturing technology acquisition decisions. *International Journal of Operations & Production Management* **24**(5): 447 466.
- Bilbro, J.W. (2007). A suite of tools for technology assessment. *Presentation at AFRL Technology Maturity Conference*, Virginia Beach, VA Sept. 11-13, 2007.
- Boehm, B. and Hansen, W. (2001). The spiral model as a tool for evolutionary acquisition. *CrossTALK: The Journal of Defense Software Engineering*.
- Boehm, B. and Lane J., A. (2007). Using incremental commitment model to integrate system acquisition, system engineering, and software engineering. *CrossTALK: The Journal of Defense Software Engineering*.
- DAU (2008, December). Introduction to defense acquisition management. *Defense Acquisition University Press*: Fort Belvoir, Virginia.

Bibliography (cont.)

- Doerry, N. (2010). transitioning technology to naval ships. Naval Sea Systems Command, SEA 05 Technology Group, Ser 05T/017.
- DoDD-5000.01 (2001, May). Department of Defense DIRECTIVE: The Defense Acquisition System. *The U.S. Department of Defense*.
- DoDI-5000.02 (2008). Department of Defense INSTRUCTION: Operation of the Defense Acquisition System. *The U.S. Department of Defense*.
- DoD (2009, July). Technology Readiness Assessment (TRA) Deskbook. Prepared by the Director, Research Directorate (DRD) Office of the Director, Defense Research and Engineering (DDR&E).
- Fowler, P. and Levine, L. (1994). From theory to practice: technology transition at the SEI. Proceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sciences, 1994.
- GAO (1999, July). Best practices: better management of technology development can improve weapon system outcomes. *GAO Report No. GAO/NSIAD-99-162*.
- GAO (2006, June). Defense acquisitions: space system acquisition risks and keys to addressing them. *GAO Report No. GAO-06-776R*.
- GAO (2011, March). Defense acquisition: assessments of selected weapon programs. *GAO Report No. GAO-11-233SP*.
- Graettinger, C.P., Garcia, S., Siviy, J., Schenk, R.J. and Syckle, P.J.V. (2002). Using the technology readiness levels scale to support technology management in the DoD's ATD/STO environments. *Special Report, Carnegie Mellon Software Engineering Institute, Pittsburgh, PA*.
- Mahafza, S.R. (2005). A performance-based methodology to assess department of defense technologies. *PhD Dissertation, The Department of Industrial & Systems Engineering and engineering Management*, The School of Graduate Studies, The University of Alabama at Huntsville. Retrieved from ProQuest, August 2011.
- Sauser, B., Gove, R., Forbes, E. and Ramirez-Marquez, J.E. (2010). Integration maturity metrics: Development of an integration readiness level. *Information Knowledge Systems Management* 9: 17–46.
- Wissler, C.J.B. (2006). Technology transition: a more complete picture. *Defense Acquisition Review Journal, Supplemental Edition*.