

Rolls-Royce

The Barriers to Systems Thinking

Richard Beasley

**Global Chief of Systems Engineering;
Associate Fellow – Systems Engineering**

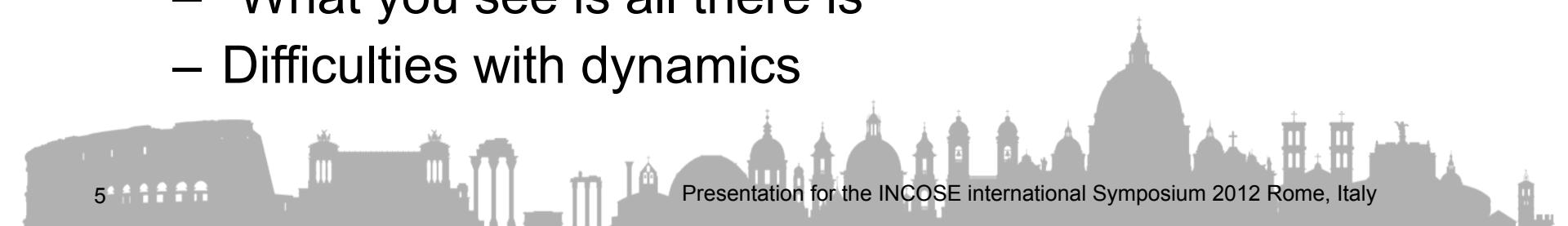
richard.beasley@rolls-royce.com

© 2012 Rolls-Royce plc

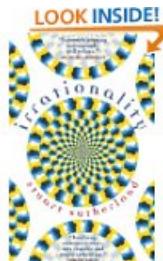
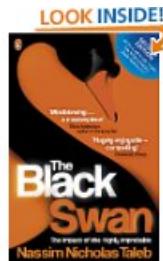
The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

- **Systems Thinking**
 - What is it?
 - Why is it important?
- **Barriers to it**
 - Human nature (the human mind)
 - Organisation / engineering
- **Overcoming the barriers**
 - Knowing the problem – what needs to be done to overcome
- **Concluding remarks**



- Systems Thinking critical to effective Systems Engineering
- Rolls-Royce definition of Systems Engineering and Thinking
 - *Systems Engineering* is applying the **concept of a system** to a situation in order to gain insight and understanding (Systems Thinking), in a **systematic and repeatable** manner.
 - A *System* is connected components forming a whole, **showing properties of the whole**, rather than the components. A system **has systemic properties** and characteristics used to understand the problem / situation under investigation.
- Apply properties of a system to problem, even when it isn't an actual system, to get understanding
- Systems Thinking to be a core competence across RR Engineering




Balance thinking and process

Being Systematic	Good process	No invention / rework No real thinking, Systems process methods “by the numbers” methods, ineffective Systems Engineering	A very good chance The right understanding of problem – skilled and appropriate use of process and method
	Poor Process	No chance Cannot handle complexity and unlikely to do well!	No control Individuals “uninterested” in process –no control, critical things missed, reinvention, some “mavericks”
		Poor Systems Skills	Good Systems Skills
Being Systemic			

- The way the human mind works is one of the biggest barriers to Systems Thinking
- Specific barriers are
 - Levels of activity in the human brain – e.g. Koestler “Ghost in Machine” describes
 - **Autonomous** (e.g. Breathing)
 - **Limbic / reactive** (“Horse’s kick”, “fast thinking”)
 - **Cognitive / reasoned** – often very analytical and “reductionist” – but thoughtful “slow thinking”
 - Jumping to conclusions – and the “availability error” (see later slide)
 - “What you see is all there is”
 - Difficulties with dynamics

Key references for human aspects

- The paper draws heavily on 3 “popular press” publications
 - recommended for further reading
 - Taleb, Nassim, 2007 *The Black Swan* – first half!!
 - Sutherland, Stuart, 1992. *Irrationality*,
 - Dorner, Dietrich; 1996 *The Logic of Failure* (Original in German in 1989)
- Since writing the paper my thoughts have been reinforced by reading Kahneman, Daniel, 2011 *Thinking, fast and slow*
 - Fast thinking is the default – instinctive, jump to conclusion
 - Slow thinking is rational / analytical (not Systems Thinking) and biased by fast thinking preconceptions

Natural drive to jump to conclusions as soon as possible compounded by “**the availability error**”

Assertion – “A card with Letter **A** on one side always has a **3** on the other”

Task – you are given 4 cards – which **two** do you turn over to test the assertion?

A D 3 7

A – most chosen and sensible – no 3 shows assertion is wrong

D – least chosen – and least chosen

3 – popular choice – **irrelevant to assertion** – **but 3 is available**

7 – rarely chosen – **but very relevant** – an A disproves assertion

The United States of of America

- ↑ “*Understanding how to act under condition of incomplete information is highest and most urgent human pursuit*”

Karl Popper 1972

But ..

- Our “jump to (plausible) conclusion” mindset prevents us wanting to look
- When we do look – focus is on known problems
- A little extra information increases confusion – and destroys “safe” assumptions

Dynamic Situations even worse

- Failure to comprehend momentum (see Dorner)

Organisation and engineering itself

- There are specific issues from the nature of organisations and the nature of Engineering
 - Changing is hard (see Kotter change model)
 - Drive for progress
 - Engineering as a discipline
 - Systems Engineering – and the way it is described / sold
 - Large / diverse organisations

- A desire for progress is natural human behaviour
- Shakespeare summarises it ...

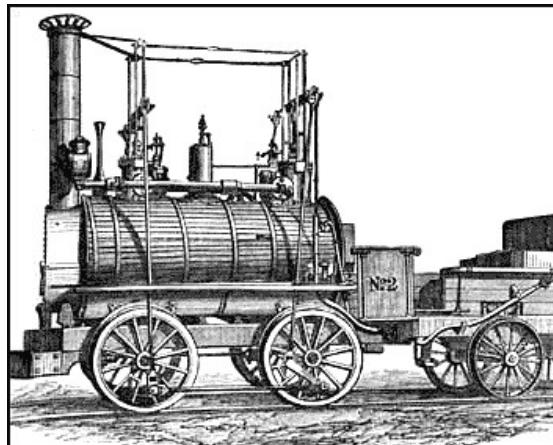
And thus the native hue of resolution

*Is sicklied o'er with the pale cast of thought,
And enterprises of great pitch and moment
With this regard their currents turn awry*

And lose the name of action...

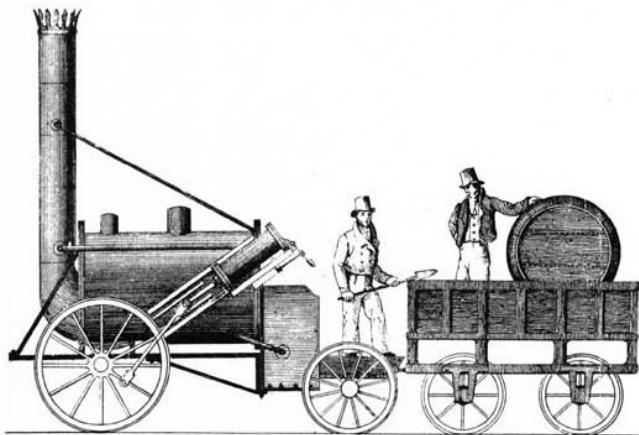
Hamlet Act 3 Scene 1

- Progress needs to be tangible / visible
 - Understanding of problem isn't
- Time on plans one way – no iteration



Beware the “Curse of the Gantt chart”

Engineers as practical



George Stephenson. 1778 - 1848

Blucher engine – designed and built
by George Stephenson 1814

- Problem with escaping steam
- Flowing through chimney **DOUBLED POWER OF ENGINE**

- Blucher innovations lead to high performance of the Rocket **in 1829**, and without steam blast, and locomotives would still be dragging themselves along at 5 or 6 miles an hour (written 1874)
- Performance principles of the combustion aerodynamics theoretically understood at Purdue University **in 1908**

- Sources – Samuel Smiles on “the lives of the Engineers”, and for theoretical understanding (Purdue) Wikipedia article of George Stephenson

“Systems Engineering is just good engineering with special emphasis”

From Introduction – Systems Engineering and Analysis – Blanchard and Fabrycky 2005)

“Are you saying I’m not a good engineer?!!”

- Heroes fix problems, don’t prevent them
- Engineering process not set up for “wicked” problems
- Systems Engineering language can be a barrier
- Systems Engineer as “glue / integrator” seen as overhead (want one task per person)
 - But what’s point in Sys Engineer understanding what the System Designer with solve

**Beware Systems Engineering being seen as a new
breed of magic**

- *“You've got to accentuate the positive
Eliminate the negative”*

Johnny Mercer, 1944

- *“Describing barriers is important to understand, but negative on journey – we need to be thinking of solution scenario (and what its like) rather than eliminating problem, which keeps us fixating on problem and so we lose confidence”*

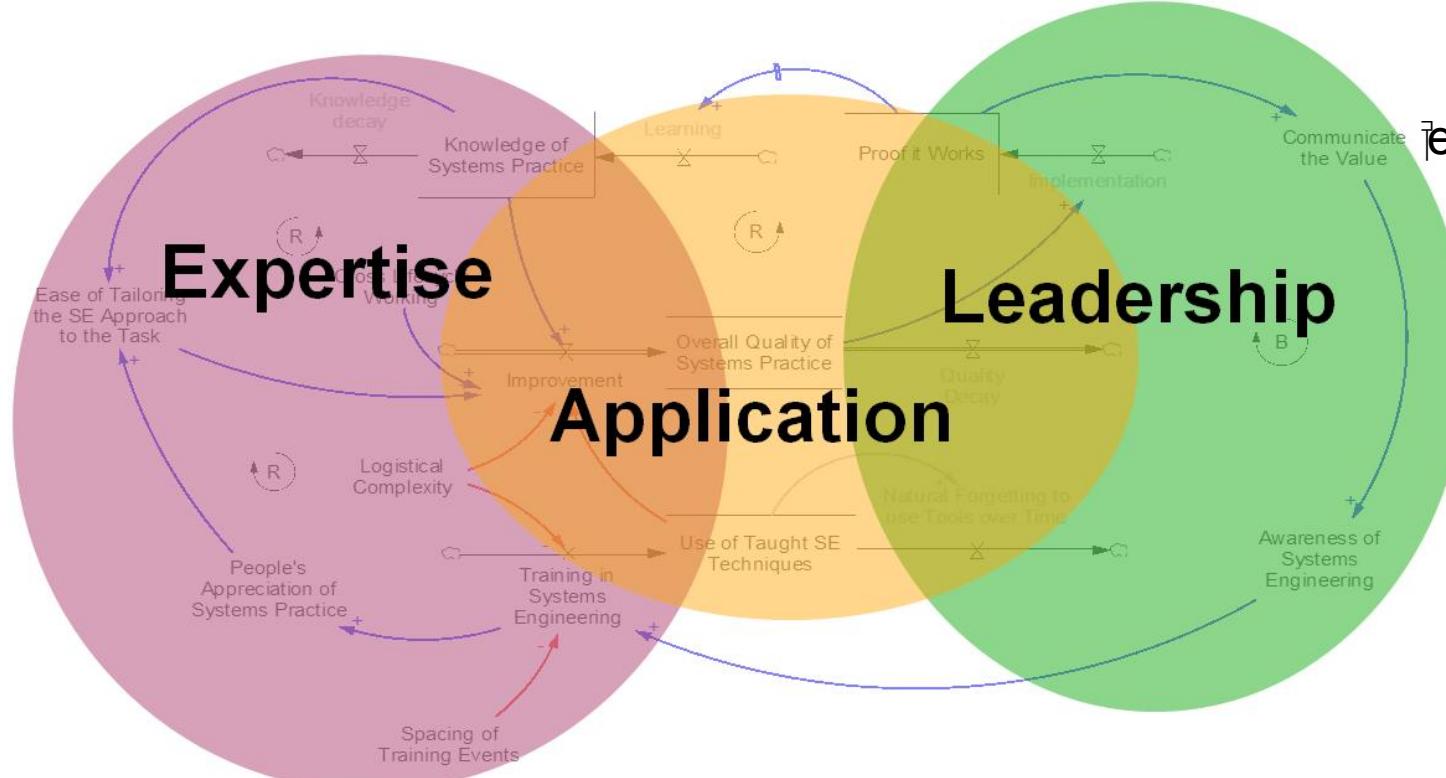
Relationships made easy, David Fraser, 2010

- Let us not give up hope – and focus on ideas to improve / enable Systems Thinking – based on understanding barriers

How to Develop Systems Thinking

1. Make it a core engineering skill

Systems Engineering to be the way RR does engineering


2. Identify the best way to learn –

- Basic training necessary but not sufficient
- Davidz / Nightingale (2008) emphasise
 - Experiential learning
 - Right supportive environment
 - Identifying specific supporting behaviours

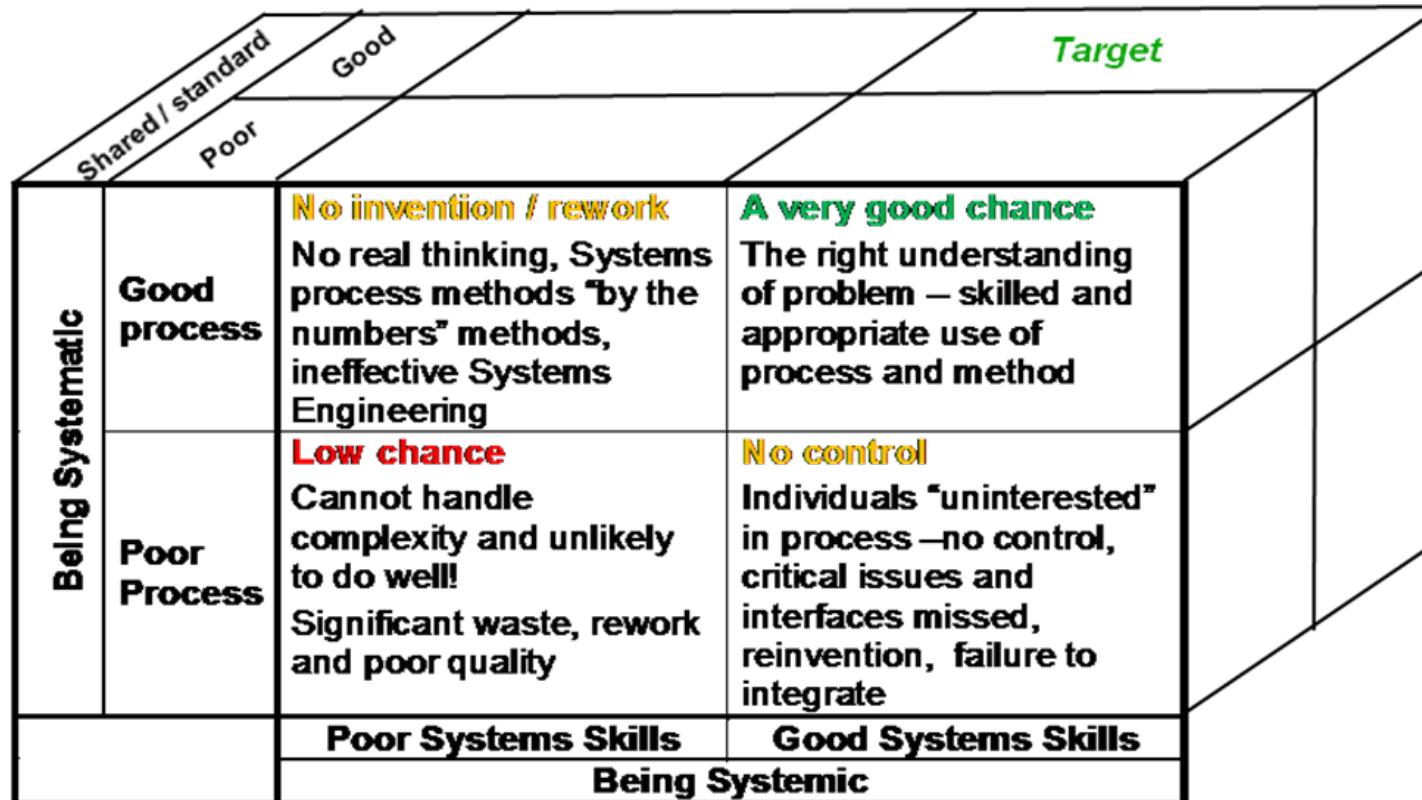
3. Behaviours

- UK dstl highlight “emotional intelligence”
- NASA focus on “human dynamics”

Model for developing / enabling Systems Practice

From on-going EngD work at Bristol Systems Centre by Charlotte Dunford

Training alone not enough – so need


- Right coaching / support (to embed)
- Opportunities to apply
- Leadership pull to expect / pull for Systems Practice

Ne

Learning trajectory for Systems Thinking

Project Type	Real world	Resolving in-service problems Quicker results and faster appreciation of power of approach	Major projects The highest value from SE, but not the place to learn
	Pedagogical	Simple Introduction / learning tools and concept, but low domain applicability	Large case study worked examples Insufficient benefit in return for the case
		Short, Simple	Long, complex
Project Duration and Complexity			

Standardise and Share

Conclusions

- Systems Thinking important, but (for many reasons) hard to do
- Key to success is wanting to do it, and recognising that the key to successful development is personal experiential learning
- This needs to be supported / nurtured by leadership
- Make SE core (understanding is a team sport)
- Develop the behaviour characteristics to support
- **Don't give up** – the benefits of Systems Thinking are too great to miss

*The Last Judgement, Michelangelo, Sistine Chapel,
Rome (1534-1541)*

*“The great danger“
for most of us
lies NOT in
setting our aim
too high and
falling short, but
in setting our aim
too low, and
achieving our
mark”*

• **Michelangelo Buonarroti
Simoni (1475 –1564)**

QUESTIONS?

Reliability, integrity, innovation