

Sharing the Total Cost of Ownership of Electric Vehicles: A Study on the Application of Game Theory

Hugo G. Chalé G.
RENAULT
1 avenue du Golf
78288 Guyancourt, France

Abdelkrim Doufene, Daniel Krob
Ecole Polytechnique
Laboratoire d'Informatique (LIX)
91128 Palaiseau Cedex, France

Copyright © 2013 by Renault. Published and used by INCOSE with permission.

1. Introduction & Context
2. Why Systems Architecture and Multidisciplinary / Multi-Objective Optimization
3. Why Game Theory ?
4. Application to Electric Vehicles in their ecosystem
5. Conclusions & Perspectives

01

Introduction & Context

Introduction / Context

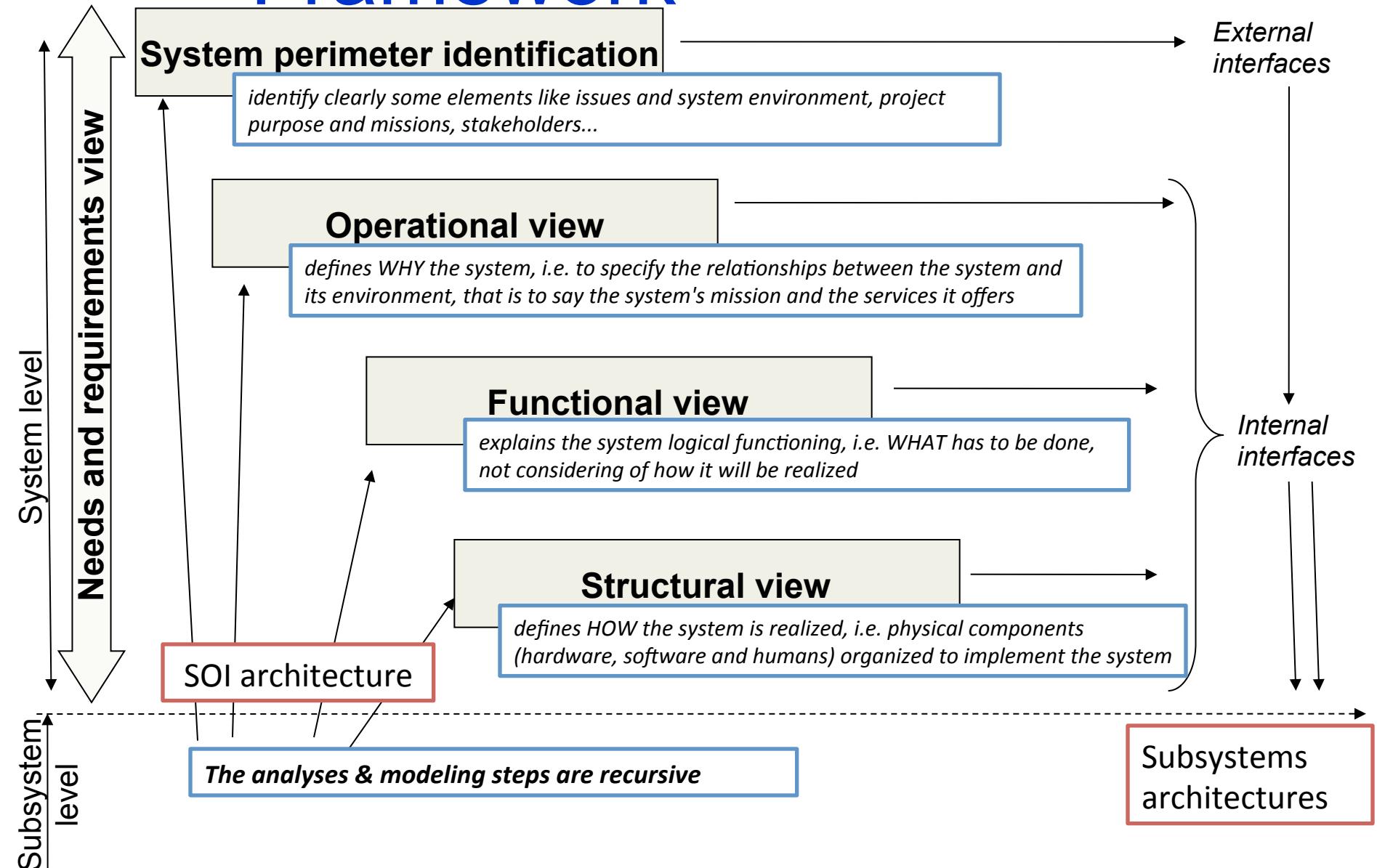
- ✓ Engineering of complex industrial systems with a holistic approach.
- ✓ Taking into account the whole life cycle of systems.
- ✓ Supporting tradeoff analysis and decision making.

But

- *Several multidisciplinary objectives and constraints.*
- *Conducting analyzes, defining the right criteria and evaluating alternatives are difficult tasks.*
- *The separation between the problem definition and solution design is often blurry.*

Main purpose

- Bridge the gap between problem definition & solution design.
- Clarify the link between design constraints and design variables.
- Structure and organize the architectures of the SOI
 - Covering all the scope of the system architecture & the different abstraction levels.
- Support trade-off analysis and decision making.
- Find optimal solutions and ensure a stable integration of the SOI in its environment.



02

Systems Architecture and Multidisciplinary / Multi-Objective Optimization (MOO)

Architectural Design Framework

MOO problem mathematical formulation

$$\min \mathbf{J}(\mathbf{x}, \mathbf{p})$$

$$\text{s.t. } \mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0$$

$$\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$$

$$x_{i,LB} \leq x_i \leq x_{i,UB} \quad (i = 1, \dots, n)$$

$$\mathbf{x} \in S$$

$$\text{where } \mathbf{J} = [J_1(\mathbf{x}) \quad \dots \quad J_z(\mathbf{x})]^T$$

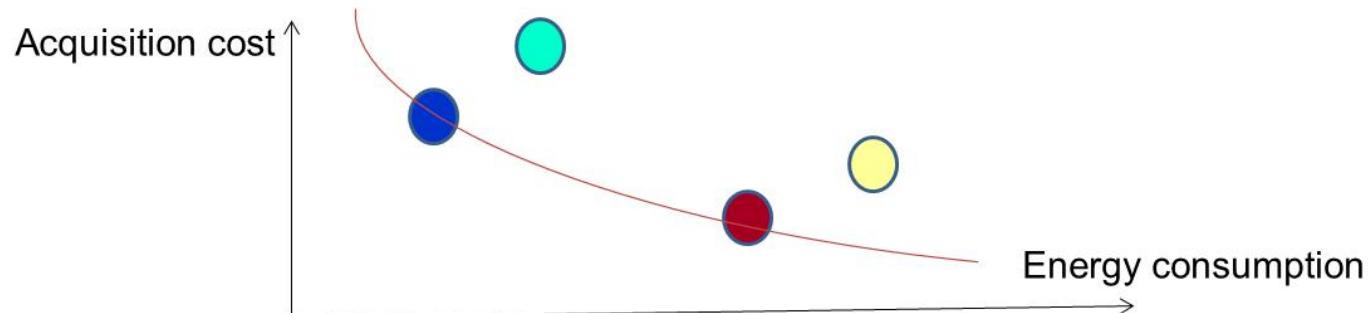
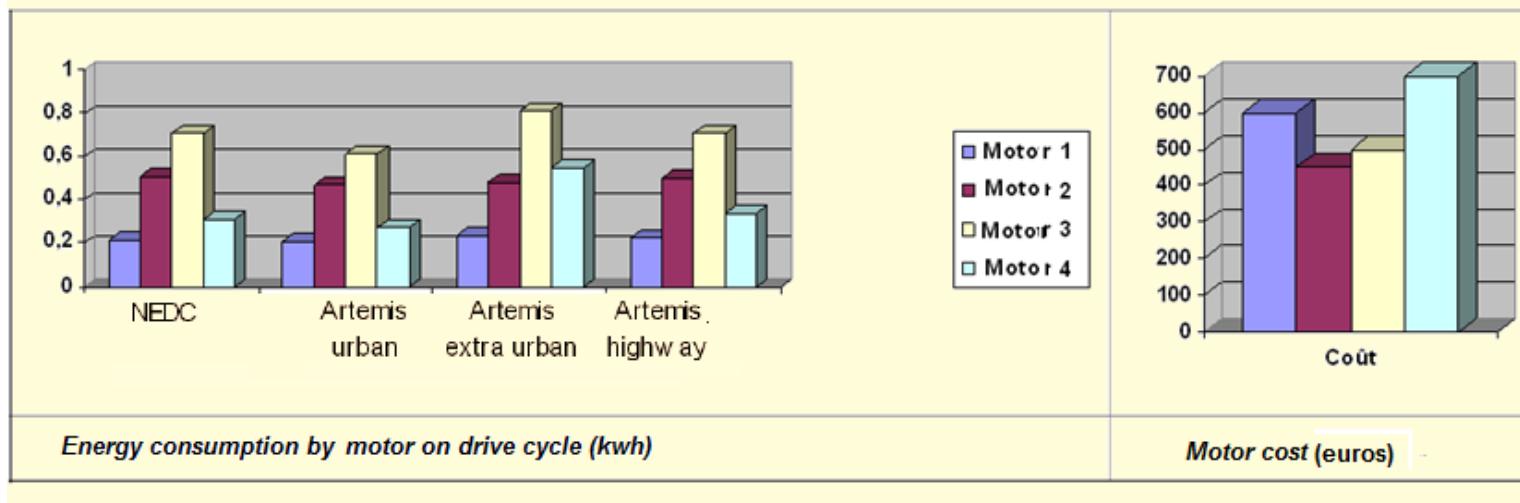
$$\mathbf{x} = [x_1 \quad \dots \quad x_i \quad \dots \quad x_n]^T$$

$$\mathbf{g} = [g_1(\mathbf{x}) \dots g_{m_1}(\mathbf{x})]^T$$

$$\mathbf{h} = [h_1(\mathbf{x}) \dots h_{m_2}(\mathbf{x})]^T$$

MOO problem resolution

- Preference and priority between optimization objectives influence the choice of solving methods.
- Methods with **a priori** or **a posteriori** articulation of preferences.
- The objective is NOT to find one solution but several alternatives...
The predominant concept in defining an optimal point is that of Pareto optimality - (with a posteriori articulation of preferences).
- In the case where preferences depend on several **interdependent** stakeholders or decision makers, the concept of **equilibrium** is important.

Example— electric vehicles

Results - Pareto Frontier

Example: choice of an electric motor for the electric vehicle powertrain, according to two optimization objectives (TCO and Energy Consumption)

03

Why Game Theory ?

Interdependence

1 - Multidisciplinary and multi-objective optimization models, with a posteriori articulation of preferences (using Pareto frontiers) are useful for searching the best architectures given several constraints and needs during the whole life cycle of the SOI.

→ **Support of "independent" decisions**

2 - Equilibrium models, in the sense of game theory, serve to searching the best architectural equilibrium to satisfy different stakeholders around a SOI and ensure the stability of the environment on the long term.

→ **Support of "interdependent" decisions**

Game theory link with SE

Mathematical formalization

- A game with n players. Stakeholders
- Each player i has a set of \mathbf{S}_i strategies. Needs, constraints
- Total gain. TCO, Lifecycle
- $\mathbf{s} = (s_1, \dots, s_n)$ is a combination of strategies of n player where s_i is the strategy chosen by the player i . Tradeoffs
- $\Pi = (\Pi_1, \dots, \Pi_n)$ is the result of the game where $\Pi_i(s_1, \dots, s_n)$ is the gain of the player i when \mathbf{s} is chosen.. Solution

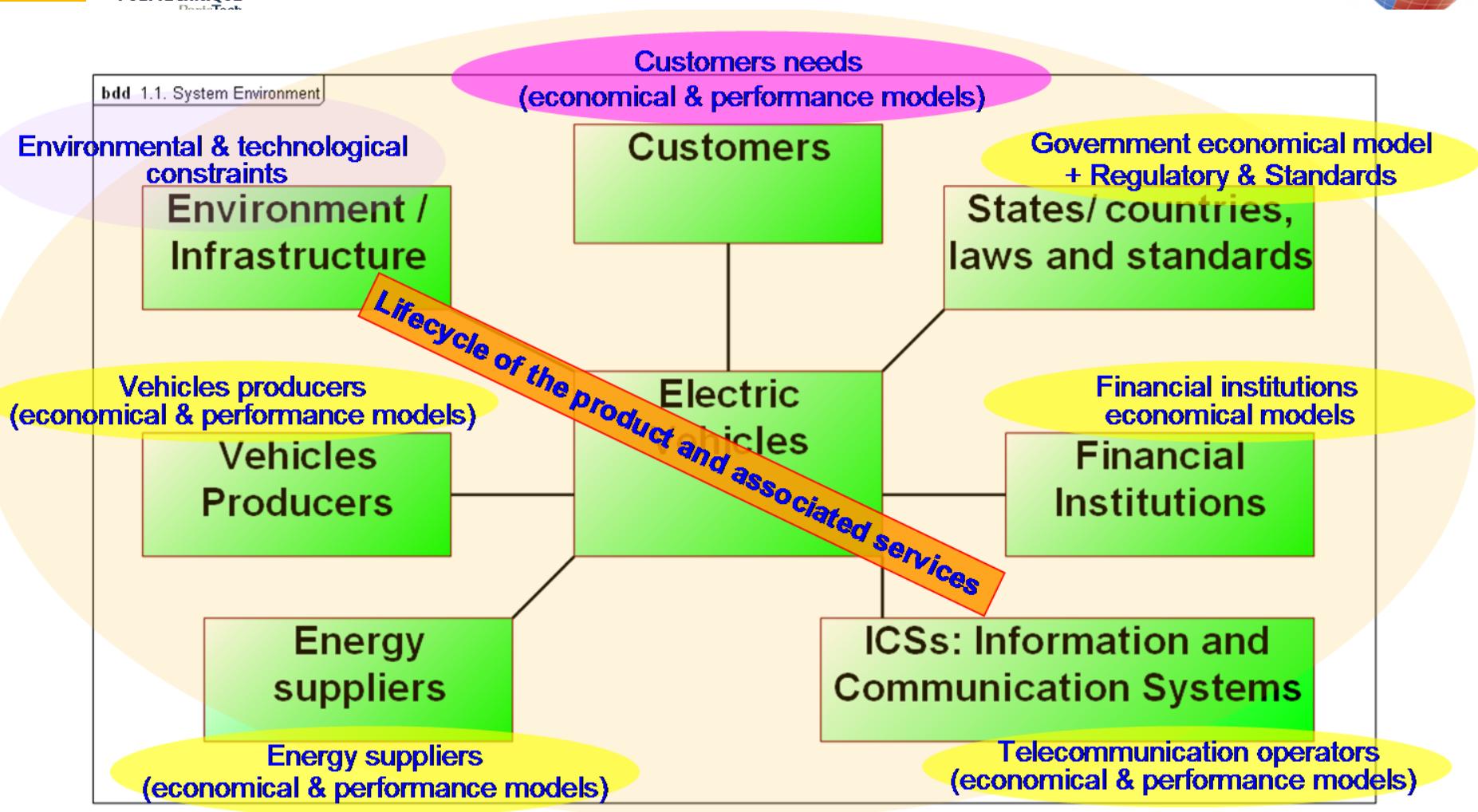
Equilibrium

An equilibrium situation can be seen as a “win-win” solution, in which a given player does not have an interest in changing his own strategy (given the strategies chosen by the other players)

Generic Approach

1. Analysis of the environment of the SOI.
2. Identification of stakeholders (Players)
3. Analysis of stakeholder needs and identification of measures of effectiveness (Focus on their business strategies and most important constraints)
4. Identification and formalization of the interdependence of strategies.
5. Analysis of the SOI life cycle and its Total Cost of Ownership (TCO).
6. Formalization of the game, with the TCO being the total gain.
7. Definition of distribution scenarios
8. Search of architectural equilibrium (using Nash equilibrium).
9. If coalitions are acceptable, imagine coalitions between stakeholders – Go to 7
10. Implement the equilibrium solutions

04 Application to Electric Vehicles in their Ecosystem


Why Electric Vehicles?

- **Huge economic and environmental stakes**
 - 1.6 billion vehicles worldwide in 2030 → **2.5 billion in 2050** (EC).
 - High differences in density* of vehicles in the world (WorldBank, 2012).
 - Energy consumption by road transportation represents about 20% of total consumption [EEE, 2010], [EET, 2007].
 - Internal combustion vehicles are responsible for about **10% of CO2** emissions in the atmosphere (www.wri.org).
- **A complex environment**
 - Interests, stakeholders, stakes... and thus, **equilibrium**, will depend on many different PESTEL** contexts

* Number of vehicles per 1000 inhabitants.

** PESTEL for Political, Economic, Social, Technological , Environmental and Legal

+ Equilibrium model

Data input

1- List of variables and relations

Variables	Explanations	Mathematical formulations
EV_TCO	TCO of the electric vehicle given a number of months (Y1).	$EV_TCO = F1 + (F2 + F4) * Y1$
ICEV_TCO	TCO of an internal combustion engine vehicle given a number of months (Y1).	$ICEV_TCO = F1 + (F3 + F4) * Y1 + G2$
F1	Initial costs related to the purchase of the vehicle. All the variables are explained in this table.	$F1 = ((X1 * (1 + X2) - X3 - X4 - X5) + (G1 * X6) + X7 + X8 + X29)$
X1	Vehicle price before tax.	
X2	VAT (Value Added Tax)	
X3	Governmental bonus	

2 - Allocation of variables per player

Player	Variables of the player
EVs producers	X1 X4 X11 X12
Electricity supplier	X10 X29 X13
Governments	X2

3- Examples of strategies per player

Player	Strategies
P EV manufacturer	SP1 Rent EVs SP2 Sell EVs
G Governments and local authorities ³	SG1 Purchasing SG2 No purchase
E Energy supplier	SE1 Standard charging SE2 Preferential charge station

The player	Revenues	Expenses	Gains
EV manufacturers	$RP = X11 - X4 + X12 * Y1$	$CP = EV \text{ production cost}$	$RP - CP$
Electricity supplier	$RF = X29 + X13 * Y1 + X10 * X11 * Y2 * Y1 / 100$	$CF = crkwh * X11 * Y2 * Y1 / 100$ Where crkwh is the production cost of 1 kwh	$RF - CF$
Governments, communities and local authorities	$RE = (X2 * RP + (X10 * X11 * Y1 * Y1 / 100) * X27 + X8 + X17 * Y1 + X21 * Y1) - X3$	CE	$RE - CE$

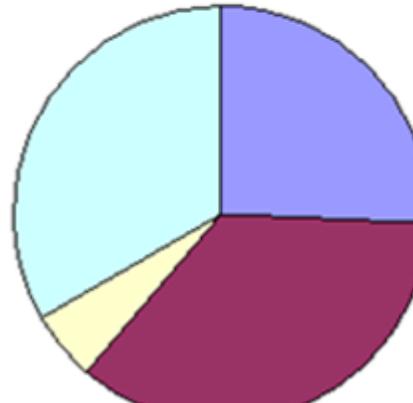
4- Gains calculation according to the strategies combination

Examples of results

Example of scenarios
of gains sharing by
combining strategies
(for one vehicle)

Vehicle sale
Government bonus
Standard cost of energy

Vehicle rent
Government bonus
Standard cost of energy



- EV producers
- Governments
- Energy suppliers
- Customers

Vehicle sale and battery rent
Government bonus
Standard cost of energy

Vehicle sale
No Government bonus
Standard cost of energy

Discussion

- In our example, we reached an equilibrium where the economy of scale did not play an important role
- In order to increase gains some players have to « make concessions », but...
 - Who will be willing to play a **dominated strategy** in order to reach a greater economy of scale?
 - When will the game stabilize?
 - Can the players build coalitions?

05

Conclusions & Perspectives

Conclusion

- We presented an integrated approach combining systems engineering, multi-objective optimization and equilibrium in the sense of game theory.
- The resulting models can serve as a baseline for
 - Managing variability and uncertainty.
 - Adapting the technical design to different contexts of use and associated business models.
 - Reducing engineering costs by reusing models.
 - Reducing time to market.

Conclusion

- Copyright © 2013 by Renault. Published and used by INCOSE with permission.
- In a complex and increasingly uncertain environment, what is considered as reliable now might not be so tomorrow!
 - Value must be created **before** it can be shared
 - Give / Give - Win / Win situations.
 - Importance of long-term and economy of scale (i.e. taking into account the whole system lifecycle)
 - Game theory looks very promising to study architectural equilibrium and to analyze interdependent decisions.
 - This contribute to ensure a better integration of the SOI, the stability of its environment and the satisfaction of all stakeholders in the long-term

Thank you for your attention

Copyright © 2013 by Renault. Published and used by INCOSE with permission.

Any Questions?

- 1 et 3 Charge lente sur réseau domestique
- 2 "Quick-drop": station d'échange rapide de batteries
- 4 Stations de charge rapide

References (1)

- AFIS, 2009. Découvrir et comprendre l'Ingénierie Système. deuxième version expérimentale, ouvrage collectif AFIS (Association Française d'Ingénierie Système). Version 5.05 – 09 janvier 2009
- Andersson, J. 2000. "A survey of multiobjective optimization in engineering design". Technical Report LiTH-IKP-R-1097, Department of Mechanical Engineering, Linkoping University, Linkoping, Sweden.
- Balesdent M, Bérend N, Dépincé P. et Chriette A., 2011. A survey of multidisciplinary design optimization methods in launch vehicle design. Received: 11 March 2010 / Revised: 21 July 2011 / Accepted: 29 July 2011 / Published online: 27 September 2011. Springer-Verlag 2011Struct Multidisc Optim (2012) 45:619–642. DOI 10.1007/s00158-011-0701-4.
- Bartolomei J.E., Cokus M., et al., 2007. "Analysis and Applications of Design Structure Matrix, Domain Mapping Matrix, and Engineering System Matrix Frameworks," MIT.
- Bartolomei J.E., Hastings D.E., de Neufville R., and Rhodes D.H, 2011. Engineering Systems Multiple-Domain Matrix: An Organizing Framework for Modeling Large-Scale Complex Systems. MIT, Accepted 24 February 2011, Published online 10 October 2011 in Wiley Online Library (wileyonlinelibrary.com).
- Benkhannouchel S. and Penalva J.M, 1993. Systemic Approach for Supervision Systems Design. In Systems, Man and Cybernetics, International Conference on 'Systems Engineering in the Service of Humans', Conference Proceedings. 395 – 400, vol.1. Issue October 1993.
- Björnander S., Grunske L., 2008. Architecture Description Languages for Automotive Systems – A Literature Review. Technical Report: C4-01 TR M49, Swinburne University of Technology, 30th July 2008
- Blanchard B.S. and Fabrycky W J, 1998. Systems engineering and analysis. Third edition, United States Prentice Hall, Inc., Upper Saddle River, NJ (USA).
- Buede D. M. 2009, The Engineering Design of Systems: Models and Methods. Wiley series in systems engineering, Second Editions.
- Chalé-Gongora H.G., Taofifenua O. and Gaudré T. 2010, A Process and Data Model for Automotive Safety-Critical Systems Design. In Proceedings of the 20th annual International Symposium of the INCOSE (Chicago, IL). Seattle: INCOSE.
- Chalé Góngora H.G., Dauron A., and Gaudré T. 2012. "A Commonsense-Driven Architecture Framework. Part 1: A Car Manufacturer's (naïve) Take on MBSE." "Accepted for publication in proceedings of the INCOSE International Symposium, Rome, INCOSE.
- Chatel V., El Koursi E.M, Feliot C. and Huismann U., 2002. Functional analysis of the sub-system of energy and infrastructure of conventional rail. IEEE International Conference Systems, Man and Cybernetics, vol.3 Issue October 2002.
- Chatel V. and Feliot C., 2004. Functional analysis for safe and available system design, IEEE International Conference Systems, Man and Cybernetics.
- Chatterjee, B. 2009. An optimization formulation to compute Nash equilibrium in finite games. Proceeding of International Conference on Methods and Models in Computer Science. ICM2CS.
- Chinchuluun A. et · Pardalos P. M.. 2007. A survey of recent developments in multiobjective Optimization. Published online: 1 June 2007 © Springer Science+Business Media, LLC Ann Oper Res (2007) 154: 29–50 DOI 10.1007/s10479-007-0186-0.

References (2)

- Cloutier R., Muller G., Verma D., Nilchiani R., Hole E. and Bone M. 2010, The Concept of Reference Architectures. Systems Engineering 2010.
- Coello Coello, C.A., Multiobjective Optimization Website and Archive: <http://www.lania.mx/~ccoello/EMOO/> (last update February 23rd, 2010)
- Daniels J., Werner P.W., and Terry Bahill A., 2001. Quantitative Methods for Tradeoff Analyses. Systems Engineering, Vol. 4, No. 3, 2001, © 2001 John Wiley & Sons, Inc.
- Daskalakis C., Goldberg P.W. and Papadimitriou C.H. The Complexity of Computing a Nash Equilibrium, June 4, 2008 – report available on http://people.csail.mit.edu/costis/journal_ver10.pdf
- Dauron A., Doufene A. and Krob D., 2011. [Complex systems operational analysis - A case study for electric vehicles](#). International Conference CSD&M, Poster session, Paris 2011.
- de Weck, O.L. 2006. "Multiobjective optimization: History and promise". in China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, s. d.
- de Weck, O.L., Roos D. and Magee C.L. 2011. Engineering Systems: Meeting Human Needs in a Complex Technological World. The MIT Press editions, October 2011.
- Doufene A., Chalé-Góngora H.G. and Krob D., 2012. Complex Systems Architecture Framework. Extension to Multi-Objective Optimization. International conference, Complex Systems Design and Management, CSDM, Paris December 2012. Proceedings published in the "Science and Engineering" series by Springer.
- Dumitrescu, C., Dauron A. et Salinesi C., "Towards a Framework for Variability Management and Integration in Systems Engineering". Rome, 2012.
- Dumitrescu, C., Dauron A. et Salinesi C., "Formalization and Exploitation of the Coupling Between Systems Engineering Methods and Product Lines." INCOSE Insight 14, no. 4 (December 2011): 12–13.
- Dumitrescu, C., Tessier P., Salinesi C., Gérard S. et Dauron A., "Flexible Product Line Derivation Applied to a Model Based Systems Engineering Process". Paris, 2012.
- EEA, Final Energy Consumption by Sector, 2010. Official document of European Environment Agency, available on <http://www.eea.europa.eu/data-and-maps/indicators/transport-final-energy-consumption-by-mode/transport-final-energy-consumption-by-2>)
- EET, European Energy and Transport –Trends to 2030. European Commission- Directorate-General for Energy and Transport. 2007.
- Estefan J.A., Survey of Model-Based Systems Engineering (MBSE) Methodologies, Report of INCOSE MBSE Focus Group, Rev. A, May 25, 2007.
- Friedenthal S., Moore A. and Steiner R., A practical guide to SysML - The Systems Modeling Language, Morgan Kaufmann, 2008.
- Fülop J., 2005. Introduction to Decision Making Methods- Work document, Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungary Academy of Sciences.
- Guerrien B., 2010. La Théorie des jeux, Livre aux éditions Economica, Collection "poches", 4ème édition parue en 2010.
- Gazzella L., 2010, Options Techniques pour la Mobilité individuelle future <http://www.idsc.ethz.ch>, EPF Zurich

References (3)

- Hanawalt E.S. and Rouse W.B, Car Wars: Factors Underlying the Success or Failure of New Car Programs, Wiley Periodicals, Systems Engineering Vol 13, No. 4, 2010.
- Heywood J., Baptista P., Berry I., Bhatt K., Cheah L., Sisternes F., Karplus V., Keith D., Khusid M., MacKenzie D. and McAulay J., An Action Plan for Cars: The Policies Needed to Reduce U.S. Petroleum Consumption and Greenhouse Gas Emissions. MIT Energy Initiative, Cambridge, Massachusetts. December 2009.
- Honour E.C., Understanding the Value of Systems Engineering. INCOSE, 2004.
- INCOSE, Systems Engineering Handbook. A guide for system lifecycle processes and activities. International Council on Systems Engineering (INCOSE), San Diego, CA. January 2010.
- Janiaud N., Vallet F.X., Petit M., Sandou G. 2009. "Electric Vehicle Powertrain Architecture and Control Global Optimization", Electric Vehicle Symposium, Stavanger, Norway. Publication de l'article dans WEVA Journal (World Electric Vehicle Association), vol.3, 2009, ISSN 2032-6653.
- Janiaud N. 2011. "Modélisation du système de puissance du véhicule électrique en régime transitoire en vue de l'optimisation de l'autonomie, des performances et des coûts associés". PhD thesis, SUPELEC, France.
- Karplus V., Prospects for Plug-In Hybrid Transportation in the United States: A General Equilibrium Analysis. Master of Science Thesis, Technology and Policy Program, and Dept. of Civil and Environmental Engineering, MIT, 2008.
- Kempton W. et Tomic J., Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy, Journal of Power Sources, Volume 144, Issue 1, Pages 280-294, 1 June 2005.
- Kim, I. Y., et de Weck O. L. 2005. "Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation". Structural and Multidisciplinary Optimization 31 p. 105-116.
- Kim, I.Y., et de Weck O.L. 2005. "Adaptive weighted-sum method for bi-objective optimization: Pareto front generation". Structural and Multidisciplinary Optimization 29, no. 2 (2005): 149–158.
- Koessler F. 2008, Théorie des jeux, support de formation. Ecole polytechnique, 2008. disponible sur <https://sites.google.com/site/frederickkoessler/teaching> (accès juin 2012).
- Krob D., Eléments d'architecture des systèmes complexes, in "Gestion de la complexité et de l'information dans les grands systèmes critiques", A. Appriou, Ed., 179-207, CNRS Editions, 2009.
- Krob D., Enterprise Architecture, Modules 1-10, Ecole Polytechnique, 2009-2010 (personal communication).
- Lawson, C. M., 2008. Group decision making in a prototype engineering system : the Federal Open Market Committee. Dissertation de thèse, Massachusetts Institute of Technology, 2008.
- Meinadier J.P., Ingénierie et intégration de systèmes, Hermès, 1998.
- Meinadier J.P., Le métier d'intégration de systèmes, Hermès-Lavoisier, 2002.
- Marler, R.T., et Arora J.S. 2004. "Survey of multi-objective optimization methods for engineering". Structural and multidisciplinary optimization 26, no. 6 p. 369–395.
- Parnell G.S., Driscoll P. et Henderson D., Decision Making in Systems Engineering and Management. Wiley Series in Systems Engineering and Management, 2008.

References (4)

- Penalva J.M., La modélisation par les systèmes en situations complexes, PhD Thesis, Université de Paris 11, Orsay, France. 1997.
- Pénard T. 2004, La théorie des jeux et les outils d'analyse des comportements stratégiques, Université de Rennes 1, CREM, Octobre 2004.
- PESTEL, PESTEL analysis of the macro-environment. Oxford University Press. 2007.
- Richards M.G., Hastings D.E., Shah N.B. et Rhodes D.H., Managing Complexity with the Department of Defense Architecture Framework: Development of a Dynamic System Architecture Model, Conference on Systems Engineering Research, Los Angeles, CA, April 2006.
- Roos D., de Neufville R., Moavenzadeh F. et Connors S., The design and development of next generation infrastructure systems, in: Systems, Man and Cybernetics, IEEE International Conference on, Issue October 2004.
- Saaty T.L. et Vargas L.G., Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, International Series in Operations Research and Management Science, Springer; 2000.
- Sage A. P., Systems Engineering and Management for Industrial Ecology and Sustainable Development, IEEE International Conference on Systems, Man, and Cybernetics, 'Computational Cybernetics and Simulation', 784 - 790 vol.1, Issue Oct. 1997.
- Sage A.P., Risk Management for Sustainable Development, IEEE International Conference on Systems, Man, and Cybernetics, 4815 - 4819 vol.5, Issue October 1998.
- Sage A.P., Systems Engineering Education, IEEE Transactions on Systems, Man and Cybernetics, Part C Application and Reviews, Vol. 30, NO. 2, May 2000.
- Sage A.P., Systems of Systems: Architecture Based Systems Design and Integration. Presentation in IEEE International Conference on Systems, Man, and Cybernetics, 2005.
- Sage A.P. et. Rouse W. B, Handbook of Systems Engineering and Management. Wiley series in systems engineering, second editions 2009.
- Simon H. A., The Architecture of Complexity. Proceedings of the American Philosophical Society, Vol. 106, No. 6. (Dec. 12, 1962), pp. 467-482.
- Smaling, R.M. 2005. "System architecture analysis and selection under uncertainty". PhD thesis, Massachusetts Institute of Technology.
- Smaling, R.M. et de Weck O.L. 2004: "Fuzzy pareto frontiers in multidisciplinary system architecture analysis". AIAA Paper 4553 1–18.
- Talbi E.G. 2012, support de cours. Métaheuristiques pour l'Optimisation Combinatoire Multi-objectifs : Etat de l'art. Laboratoire d'Informatique Fondamentale de Lille, Université de Lille 1, France 2012 <http://www.lifi.fr/~talbi>
- Vogt-Schilb A., Sassi O. Cassen C. et Hourcade J.C., Electric vehicles: What economic viability and climate benefits in contrasting futures?, Report of Centre International de Recherche sur l'Environnement et le Développement, CIRED October 2009. (Available online on <http://www.centre-cired.fr/IMG/pdf/electricvehicule.pdf>, accessed March 2011).
- Weilkiens T., Systems Engineering with SysML / UML – Modeling, Analysis, Design. Morgan Kaufmann Publishers, 2008.
- Yang Y., 2009. A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand Uncertainty. PhD thesis, Engineering Systems Division, MIT.
- Bachman J.A., A framework for information systems architecture, IBM Systems Journal, 26, (3), 276-292 1987