lVN, CO 'sil;llll

Philadelphia, PA
June 24-27, 2013

Model as You Write,
or Write as You Model
— A Grammar-Based Approach to
Modeling and Documentation

Takahiro Yamada (JAXA/ISAS)
June 24, 2013

4

=

Model-Based Systems Engineering NED*

Philadelphia, PA
June 24-27, 2013

According to the INCOSE document “Systems Engineering Vision
2020”

— “Model-Based Systems Engineering (MBSE) is the formalized
application of modeling to support system requirements, design,
analysis, verification and validation activities.”

To support this approach, standard languages (such as UML and
SysML) that specify methods for developing models have been
developed.

Models developed with UML or SysML have less ambiguity than
documents written in a natural language like English. Therefore,
models can facilitate sharing of engineering information among
engineers.

This is certainly a great benefit of MBSE.

A Problem with MBSE NEY*

Philadelphia, PA
June 24-27, 2013

« The INCOSE Vision document also says,

— “MBSE is expected to replace the document-centric approach
that has been practiced by systems engineers in the past.”

 However, many engineers still write documents (e.g., design
specifications) in addition to developing models. Why?

« UML and SysML define rules on how to construct models from
elements. The syntax of models is determined by these languages.

« The semantics of models is not always specified by the languages.
YES “Ais a subclass of B’
YES “Xconsists of Y and Z”
NO “A sends message M to B every n minutes with protocol X"

» The domain-specific semantics of models is usually specified in
documents.

Why Not Use Profiles? .i% SE

Philadelphia, PA
June 24-27, 2013

You can define a profile of UML/SysML with stereotypes such as
<<send>>, <<message>>, <<protocol>>
for specifying the domain-specific semantics of models.

However, there is no standard framework for defining such domain-
specific profiles.
Therefore, there is no guarantee that models using a profile can be

integrated with other models using other profiles even in the same
problem domain.

To enable integration of models developed independently, a general
framework for specifying the semantics of models is necessary.

Proposed Approach

Philadelphia, PA
June 24-27, 2013

This paper proposes an approach for developing documents and
models at the same time.

In this approach, the semantics of any technical information, which
may be presented as models or documents, is specified with the
same artificial language.

Semantically, there is no distinction between models and
documents.

Grammar-based Approach NED*

Philadelphia, PA
June 24-27, 2013

* This approach is called GraMod (Grammar-based Modeling and
Documentation) because the key concept of this approach is
grammar.

« This method can be applied to

— Any technical information (except for analog information such as
drawings, pictures, movies, etc.).

— Requirement specifications, design specifications, interface
specifications, development plans, test plans, test procedures,
operations procedures, etc.

» Since the study of this method is still in an early stage, this paper
only presents conceptual aspects. Nonetheless, we hope that this
paper will stimulate discussion on how to develop models that can
meet the true goal of MBSE.

Similar Methods NCOSE

Philadelphia, PA
June 24-27, 2013

* Object-Process Methodology (OPM)

— Developed by Dov Dori.

— Diagrams called Object-Process Diagrams (OPDs) are
automatically translated into sentences of a language called
Object-Process Language (OPL).

— Each sentence of OPL consists of a subject, a verb and an
object.

* Object-Role Modeling (ORM)

— Developed by Terry Halpin.

— Sentences and diagrams are used to define conceptual schemas
that represent the structure of information to be stored in a

database.
— Each sentence consists of a predicate and multiple objects.

Basic Concept 1

Philadelphia, PA
June 24-27, 2013

GraMod is a method for generating models and documents at the
same time.

Any technical information is encoded into sentences of an artificial
language.

The information encoded with the artificial language can be
transformed into:

— Visible forms such as diagrams, tables, and text in a natural
language.
— Electronic forms such as XML, RDB, Linked Data (RDF/OWL).
The electronic data can be used by any application program for

validation, simulation and automation of the model described with
the data.

Basic Concept 2

Philadelphia, PA

Abstract sentences are generated une 2421, 2012
from the abstract grammar
Abstract __ Abstract Abstract
Level Grammar > Sentences
(Classes) (Instances)
- Transformed
— into
Diagrams XML
Concrete
Level Tables RDB
Text RDF/OWL
Understandable Processable

by people by applications

Abstract and Concrete Levels

Philadelphia, PA
June 24-27, 2013

Abstract sentences at the abstract level and concrete forms at the
concrete level are equivalent because the same semantic
information is maintained at both levels.

The semantic information contained in any format is specified by the
abstract grammar.

Abstract sentences can be transformed into concrete forms using
mapping rules.

Concrete forms generated at the concrete level can also be
converted to abstract sentences.

Abstract Grammar - Concept NED*

Philadelphia, PA
June 24-27, 2013

The abstract grammar specifies a method for describing the
semantics of technical information in a formal way.

The abstract grammar was developed based on the grammar of
natural languages.

In this version of the method, we assume that models are developed
to present situations/facts and rules.

The abstract grammar was designed by selecting grammatical
features necessary for presenting situations and rules.

The abstract grammar specifies how to generate abstract sentences
that present particular situations or rules.

These sentences are abstract in the sense that they only express
the semantic structure of the situations or rules.

Dialects

Philadelphia, PA
June 24-27, 2013

In order to limit the complexity of the language and to increase the
understandability of generated sentences, domain-specific dialects
will be defined for different problem domains (for example,
information systems, factory automation, spacecraft development,
etc.).

The dialect for a problem domain specifies the set of situations and
rules that should be used in that domain.

The abstract grammar actually consists of a set of domain specific
dialects, each of which is optimized for a particular domain.

Abstract Sentence Types

Philadelphia, PA
June 24-27, 2013

The abstract grammar specifies abstract sentence types.

Each abstract sentence type is used for expressing a particular type
of situations or rules, and specifies how the semantics of the
situations or rules should be expressed.

From an abstract sentence type, abstract sentences of that type are
generated.

Each abstract sentence generated from an abstract sentence type
describes a particular situation or rule.

Each domain-specific dialect specifies a set of abstract sentence
types.

Abstract Sentence Types for Situations NG5

Philadelphia, PA
June 24-27, 2013

» The situations represented by abstract sentences are classified into
situation types.

* For example, situations in which something measures some
attribute belong to a situation type called “measure”.

« A set of situation types are selected for each domain-specific dialect.

« A particular situation is encoded with an abstract sentence having a
predicate and a set of arguments.

» The predicate represents the type of situation. For example, the verb
“measure” is the predicate for the situation type “measure”.

* Predicates are usually represented by verbs or verbal phrases.

» If necessary, the required level of obligation (e.g., “must measure”,
“may measure”, etc.) can be specified. In such cases, the modality
of the predicate (i.e., “must” or “may”) is added to the predicate.

Arguments and Argument Roles NS

Philadelphia, PA
June 24-27, 2013

The arguments in an abstract sentence represent participants
involved in the situation.

Arguments are usually represented by nouns or noun phrases.
Arguments are specified based on the roles they play in situations.
For each situation type, a set of argument roles is specified.

For example, for the situation type “measure”, there are two
argument roles: Agent and Theme.

— The Agent is the thing that initiates the situation, and, in the
situation type “measure’, it is the component that measures the
value.

— The Theme is the thing that is treated in the situation, and, in the
situation type “measure’, it is the attribute that is measured.

Semantic Roles

Philadelphia, PA
June 24-27, 2013

Many (if not all) argument roles of abstract sentences can be
determined based on the semantic roles (sometimes also called
thematic roles) discussed in the literature of semantics.

Typical semantic roles discussed in the literature of semantics
include:
— Agent, Patient, Theme, Experiencer, Beneficiary, Instrument,
Location, Goal, Source, ...

To define a standard set of argument roles for each dialect (i.e.,
each problem domain) is a theme for future work.

Argument Classes NEY*

Philadelphia, PA
June 24-27, 2013

For each argument used in a situation type, the class of things that
the argument belong to must be specified.

For the situation type “measure”,
— the Agent is a component, which is a class of things.
— the Theme is an attribute, which is another class of things.

To specify the class of things that each argument belongs to, we
need a way of classifying things.

A standard method for classification is required in each domain, and
a set of standard classes should be used in each domain-specific
dialect to specify argument classes.

The classification of things that should be used in a domain can be
defined based on an ontology developed in that domain.

An Example of Classification of Things

®
Philadelphia, PA
June 24-27, 2013

Thing
AN
Object Process
AN
Info. Object Physical Object
AN AN

Complex Data Data Iltem System Component

Argument Modification and Cardinality =~ INGOSE

Philadelphia, PA
June 24-27, 2013

» [t is sometimes necessary to modify the noun used as an argument
with another word or phrase (e.g., “the temperature of X" and “the
temperature measured at 8 o’clock”).

— The resulting argument is a noun phrase, and it is a theme of
future work to determine the structure of allowable noun
phrases.

« Ifitis necessary, the cardinality of an argument can also be
specified in the specification of a situation type to indicate how many
instances of the argument there should or can exist in individual
situations (i.e., in individual abstract sentences).

Situation Type Template

Philadelphia, PA
June 24-27, 2013

A situation type is defined with the template shown below (argument
cardinalities are omitted here for brevity).

<predicate (argumentrole 1: class 1,
argument role 2: class 2,

argument role n: class n) >
The situation type “measure” can be defined as follows:

<measure (Agent: component,
Theme: attribute) >

Although abstract sentence types and abstract sentences are
expressed in English here, they do not depend on any natural
language.

Abstract Sentences for Situations 1

Philadelphia, PA
June 24-27, 2013

* From the situation type “measure”

<measure (Agent: component,
Theme: attribute) >

« The following abstract sentence is generated:
measure (SensorA, temperature)

« The above abstract sentence corresponds to the following English
sentence.

SensorA measures temperature.
* Or, to the following Japanese sentence.
SensorA wa ondo wo hakaru.

(SensorA-sbj temperature-obj measure)

Abstract Sentences for Situations 2

Philadelphia, PA
June 24-27, 2013

From the situation type “send”

<send (Agent: component,
Theme: information object,
Recipient: component) >

The following abstract sentence is generated:
send (SensorA, temperatureData, ProcessorA)

The above abstract sentence corresponds to the following English
sentence.

SensorA sends temperature data to ProcessorA .
Or, to the following Japanese sentence.
SensorA wa ondo-deta wo ProcessorAni okuru.

(SensorA-sbj temperature-obj ProcessorA-rcp measure)

Abstract Sentence Types for Rules NED*

Philadelphia, PA
June 24-27, 2013

Arule is a description of an action to be performed or a fact that
should exist when a condition is met.

A rule is encoded with an abstract sentence composed of two
clauses (a main clause and a conditional clause) concatenated with

a conjunction such as “if”’, “when”, “while”, “until”, or “after”.

The rules represented by abstract sentences are classified into rule
types, each of which is represented with the conjunction used in the
sentence.

The structure of the main clause is the same as that of abstract
sentences for situations.

The conditional clause is expressed by a group of abstract

LE A 11

sentences for situations concatenated with “and”, “or”, and “not”.

Rule Type Template

®
Philadelphia, PA
June 24-27, 2013

* Arule type is defined with the template shown below.

<conjunction (conditional clause),
main clause) >

* The rule type “if’ can be defined as follows:

<if (conditional clause),
main clause) >

Abstract Sentences for Rules l‘?ﬁ

Philadelphia, PA
June 24-27, 2013

From the rule type “if’

<if (conditional clause),
main clause) >

The following abstract sentence is generated:

if (is-more-than (temperatureA, 40 degrees)),
(must turn-off (ProcessorA, HeaterA))

The above abstract sentence corresponds to the following English
sentence.

If temperatureA is more than 40 degrees,
ProcessorA must turn off HeaterA.

INCO
Concrete Level NED*

Philadelphia, PA
June 24-27, 2013

The concrete level specifies how to present abstract sentences in
well-established formats such as natural languages, diagrams,
tables, XML, Linked Data, and so on, which are understandable by
people or processable by applications.

To enable this, rules for transforming abstract sentences into
concrete formats should be defined (definition of such rules is a
theme for future study).

The same rules can also be applied in the reverse direction to
transform concrete formats into abstract sentences.

An example of concrete format is natural languages, and some
examples of transforming abstract sentences into English and
Japanese sentences have already been shown.

Transformation into Diagrams

Philadelphia, PA
June 24-27, 2013

« The following abstract sentence
measure (SensorA, temperature)
can be transformed into the following UML diagram.

SensorA: <<measure>> Temperature:
Component Attribute

« The following abstract sentence
send (SensorA, temperatureData, ProcessorA)
can be transformed into the following SysML diagram.

SensorA: Ej > o ProcessorA:
Component | T Component

TemperatureData:
Information Object

Transformation into Tables

Philadelphia, PA
June 24-27, 2013

« The following abstract sentences

measure (SensorA, temperature)
send (SensorA, temperatureData, ProcessorA)

can be transformed into the following table.

Agent Predicate Theme Recipient

SensorA measure temperature

send temperatureData | ProcessorA

Benefits of This Approach l‘% SE

Philadelphia, PA
June 24-27, 2013

Semantic information can be embedded in models, and models can
also be used as documents.

Models and documents can be generated easily. They can be
generated with the most appropriate format for the problem domain
(e.g., diagrams, tables, text, etc.).

Models and documents can be shown in various ways (i.e., can be
transformed into various formats).

Generated models and documents can be processed by
application programs electronically.

Knowledge-base can be generated with this approach.

o & D

o2

Future Work l‘% SE

Philadelphia, PA
June 24-27, 2013

Selection of a standard set of situation types and rule types for
each problem domain.

Definition of standard argument roles.
Definition of classes of things to be used as argument classes.
Definition of the structure of allowable noun phases.

Definition of mapping rules between abstract sentences and
concrete formats.

Extension of the abstract grammar to cover more complex
sentence structures.

Comparison of expressive power between this method and other
methods including OPM, ORM, UML, SysML, RDB, RDF/OWL.

' INCO
Conclusion NED*

Philadelphia, PA
June 24-27, 2013

This paper has presented a novel approach for generating models
and documents at the same time, which is called Grammar-based
Modeling and Documentation (GraMod).

This paper only presented conceptual aspects. To validate our claim,
this method must be applied to real problems.

Our next steps are:

— to define a dialect for spacecraft testing, and to apply it for
specifying spacecraft test procedures.

— to define a dialect for spacecraft data systems, and to apply it for
specifying requirements and designs of spacecraft data systems.

Although the study of this method is still in a very early stage, we
hope that this paper will stimulate discussion on developing models
that can be used for real problems.

