

# Complexity Measures to Predict System Development Project Outcomes

Sarah A. Sheard, Ph.D.\*

Ali Mostashari, Ph.D.

\*Software Engineering Institute



# Agenda

- What is Complexity?
- Research Approach
  - Collecting and Filtering Measures
  - Survey
  - Analysis
- Hypothesis and statistical significance of results
- Discussion
  - Two outcome groups
  - Variable interactions
- Advertisement



# What is Complexity?

|                          |                       |                        |
|--------------------------|-----------------------|------------------------|
| Difficulty               | Stakeholder conflict  | Design Detail          |
| Cohesion and Coupling    | Technology Readiness  | Computational Time     |
| Safety Criticality       |                       | Language Maturity      |
| Size (\$ or FTE)         | Nonlinearity          | Algorithmic complexity |
| Nodes and Edges          | Changing needs        | First of a kind        |
| Connectivity             | Requirements conflict | Enterprise scope       |
| Operational evolution    | Cognitive Fog         | Uncertainty            |
| No. Requirements         | No. Contractors       | Ultra-high Quality     |
|                          | Frustration           | Short-term thinking    |
| Size of Changes in Limbo | Wicked Objectives     | Diversity              |
|                          | Management Thrashing  | Independent agents     |



# Research Approach

- **Research Question:** Are there any complexity measures that predict project success or failure?
- **Method:**
  - Identify
    - complexity measures
    - outcome measures (cost, schedule, quality, etc.)
  - Survey completed programs
  - Analyze: do “more complex” programs correlate with worse outcomes?
  - Null hypothesize re those measures, then test statistically



# Measure Filtering

300 measures

Project Milestones  
 Difficulty  
 No. Contractors  
 Uncertainty  
 Cohesion and Coupling  
 Safety Criticality  
 Size (\$ or FTE)  
 Connectivity  
 Requirements conflict  
 Cognitive Fog  
 # Requirements  
 Algorithmic complexity  
 Nonlinearity  
 Wicked Objectives  
 Operational evolution  
 Changing needs  
 Design Detail  
 Stakeholder conflict  
 Enterprise scope  
 First of a kind  
 Nodes and Edges  
 Independent agents  
 Super-High Tech  
 Management Thrashing  
 Ultra-high Quality  
 Short-term thinking

88 measures

34 measures

**Feasibility for System Development Program**

Comparable across Programs, Include all Types and Entities

300 measures

# Measure Filtering

## Feasibility for System Development Program



### # Requirements

- Easy
- Nominal
- Difficult

Short-term thinking

Difficulty

Cohesion and Coupling

Technology Readiness



88 measures

Design Detail  
Language  
Connectivity Maturity

Size (\$ or FTE)  
Enterprise scope

Stakeholder conflict  
Requirements conflict

Diversity

Unprecedented

Cognitive Fog

Changing needs

No. Contractors

Operational evolution

34 measures

Comparable across  
Programs, Include all  
Types and Entities

300 measures

# Measure Filtering

88 measures

Feasibility for System Development Program

## Entities

System, Project, Environment, (Cognitive)

## Types

Size, Connectivity, Inhomogeneity, Dynamic Short-term, Dynamic Long Term, Sociopolitical

Comparable across Programs, Include all Types and Entities

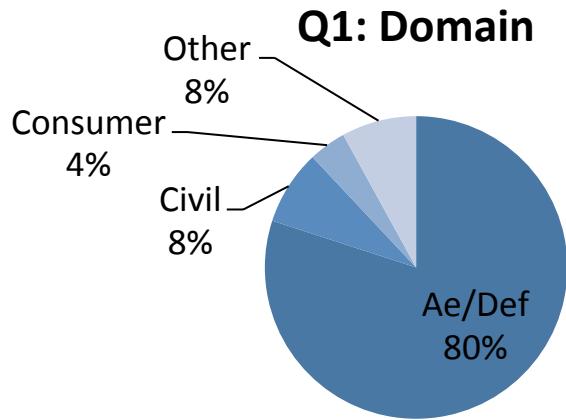
Requirements conflict

# Requirements  
-Easy  
-Nominal  
-Difficult

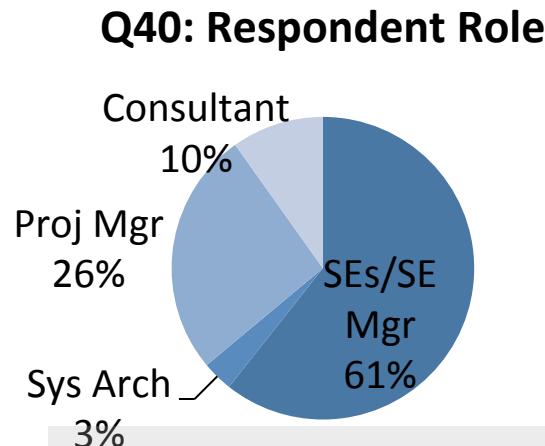
Mission Environment

Technology Readiness

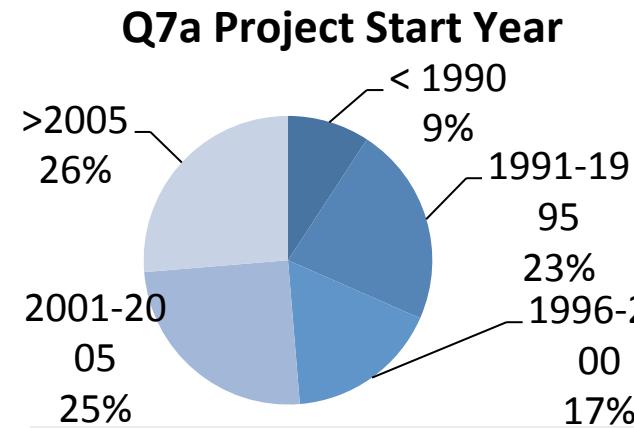
34 measures


Stakeholder conflict  
Enterprise scope  
Size (\$)

Unprecedented

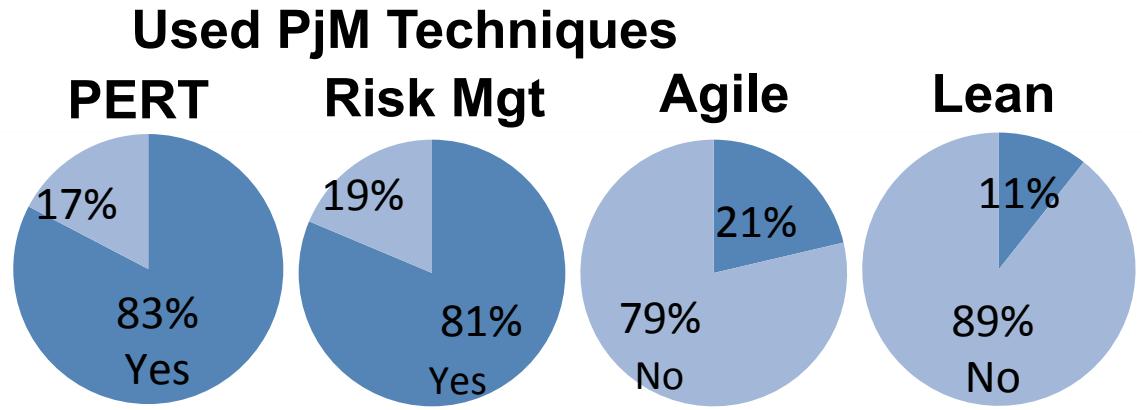

Cognitive Fog

No. Contractors



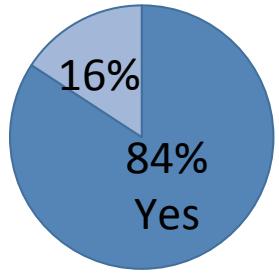



*80% Aerospace/  
defense*

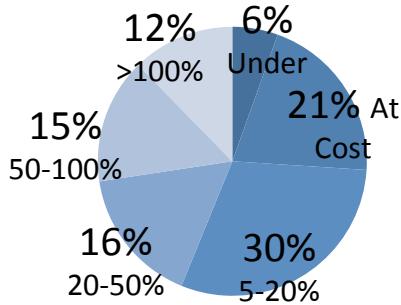



*> ½ SEs, ~ ¼  
Project Managers*

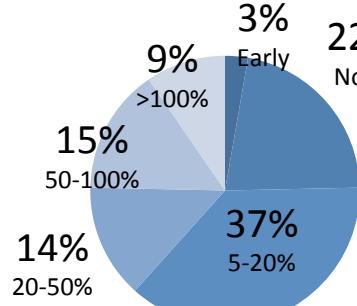



*Fairly evenly split  
over 20 years*

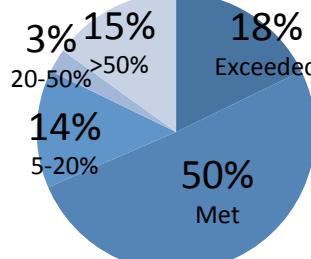
*Over 80%  
used PERT-type  
planning and used  
Risk Management;  
only 10-20% used  
Agile or used Lean*



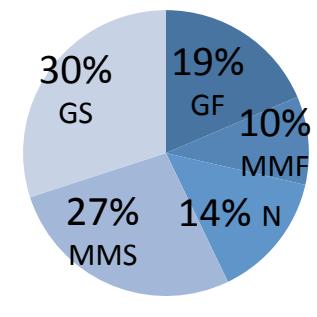

# Outcomes


**Q8: Deliver Product**




**Q9: Cost Overrun**




**Q10: Schedule Delay**



**Q11: Performance Shortfall**



**Q12: Subjective Success**



*Only about ¼ met cost and schedule, but 70% met performance; > ½ a success*

## Independent (39 Questions)

- Project Characteristics (17)
- System Characteristics (10)
- Environment Characteristics (11)
- Cognitive characteristics (1)

## Dependent

(5 questions: Project Outcomes)

- Cost
- Schedule
- Performance
- Deliver product
- Subjective Success



# Complexity Variables

- Did the complexity of 2 variables correlate in the same direction? (green; yellow=0, red=no)
- Did a complexity variable correlate in the same direction as an outcome (i.e., worse)?



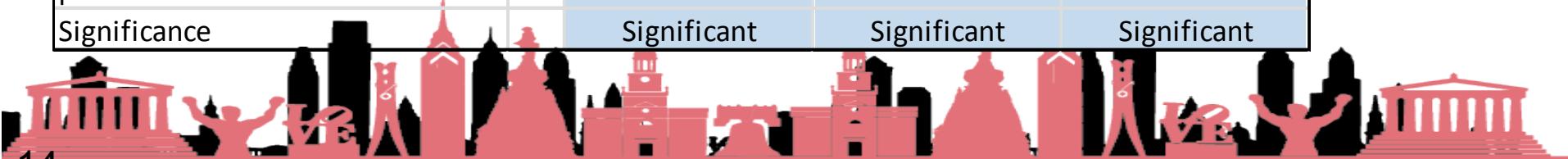
# Significance, Unsorted

# Coherence

|                               | Diff -> | 32 | 13 | 33 | 16d | 10 | 9  | 12 | 36 | 38e | 16e | 5 | 16n | 24 | 38b | 4 | 19 | 38f | 11 | 31 | 28 | 37 | 6 | 18 | 23 | 38h | 8 | 27 | 25 | 17 | 1 | 38d | 15 | 29 | 30 | 35 | 34 | 38a | 20 | 22 | 38g | 38c | 21 | 7a | 7b | 14a | 14b | 14c | 14d | 26 |
|-------------------------------|---------|----|----|----|-----|----|----|----|----|-----|-----|---|-----|----|-----|---|----|-----|----|----|----|----|---|----|----|-----|---|----|----|----|---|-----|----|----|----|----|----|-----|----|----|-----|-----|----|----|----|-----|-----|-----|-----|----|
| Split by v                    |         |    |    |    |     |    |    |    |    |     |     |   |     |    |     |   |    |     |    |    |    |    |   |    |    |     |   |    |    |    |   |     |    |    |    |    |    |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 32 Cognitive Fog              |         | S  | VS | S  | S   | VS | VS | S  | S  | S   | S   | S | S   | S  | S   | S | S  | VS  | VS | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 13 Replanning                 |         | VS | VS | S  | S   | VS | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | VS  | VS | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 33 Estimates Right            |         | VS | VS | S  | S   | VS | VS | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | VS | VS | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 16d Requirements Difficult    |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 10 Schedule Delay             |         | S  | VS | VS | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 9 Cost Overrun                |         | S  | VS | VS | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 12 Subjective Success         |         | VS | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 36 Stakeholder Conflict       |         | VS | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38e Stakeholder Involvement   |         | VS | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 16e Requirements Easy         |         | VS | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 5 Life Cost                   |         | S  | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 16n Requirements Nominal      |         | S  | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 24 Changes Limbo              |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 4 Annual Cost                 |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 19 Tech-C&S Rqts Conflict     |         | S  | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38f Stakeholder Relationships |         | S  | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 11 Performance Shortfall      |         | VS | S  | VS | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 31 Experience Level           |         | VS | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 28 No. Decision Makers        |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 37 Needs Changed              |         | S  | VS | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 6 Relative Size               |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 18 Technical Rqts Conflict    |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 23 No. Subcontractors         |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38h System Behavior Known     |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 8 Delivered Product           |         | VS | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 27 Staff Skills               |         | S  | S  | VS | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 25 Schedule Dependency        |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 17 Architecture Precedence    |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 1 Domain                      |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 88d Acquire Projects Systems  |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 15 No. Subsystems             |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 29 No. Government             |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 30 No. Contractors            |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 35 No. Sponsors               |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 34 Priorities Short Term      |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38a Mission Environment       |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 20 Expectations Easy          |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 22 Operational Evolution      |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38g New Capability            |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 38c Scale of Users            |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 21 TRLs                       |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 7a Start Year                 |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 7b Finish Year                |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 14a Use PERT                  |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 14b Use Risk Mgmt             |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 14c Use Agile                 |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 14d Use Lean                  |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |
| 26 Planned-Agile              |         | S  | S  | S  | S   | S  | S  | S  | S  | S   | S   | S | S   | S  | S   | S | S  | S   | S  | S  | S  | S  | S | S  | S  | S   | S | S  | S  | S  | S | S   | S  | S  | S  | S  | S  |     |    |    |     |     |    |    |    |     |     |     |     |    |

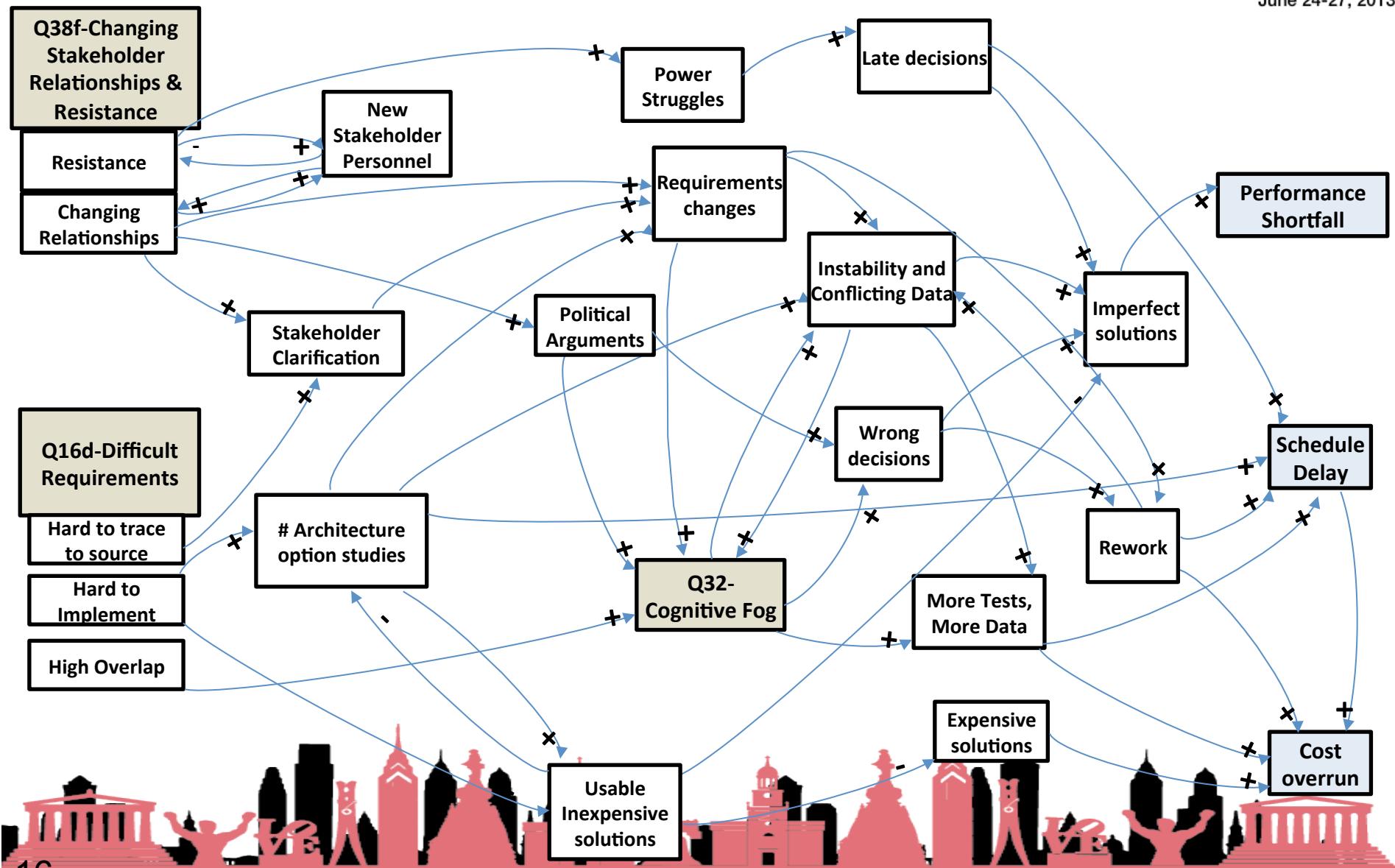
# Research Statement

- **Research Question:** Does complexity predict project failure?
- **Hypothesis:** Programs characterized by higher numbers of “difficult” \* requirements, higher cognitive overload and more complex stakeholder relationships demonstrate significantly higher performance issues (cost overrun, schedule delay, and performance shortfall).

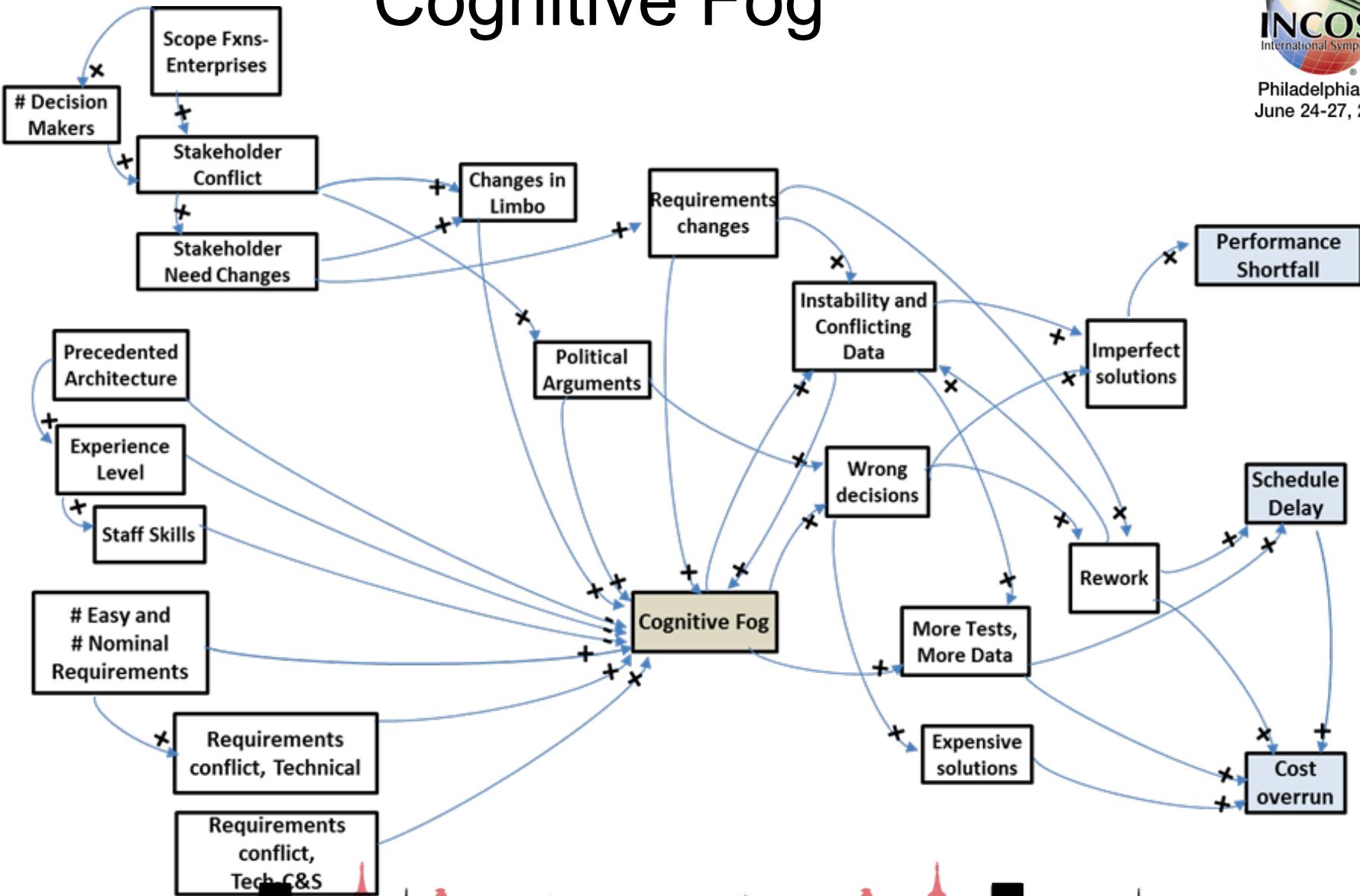

\*“Difficult” is defined by COSYSMO (Valerdi 2008)



# Hypothesis Variables vs. Outcomes


| Complexity Variable            | N  | Outcome Variable |             |                |
|--------------------------------|----|------------------|-------------|----------------|
|                                |    | Cost             | Schedule    | Performance    |
|                                |    | Overrun          | Overrun     | Shortfall      |
| Q16d—Requirements Difficult    |    |                  |             |                |
| Low (Under 100) mean           | 57 | 3.37             | 3.30        | 2.26           |
| High (Over 100) mean           | 12 | 5.00             | 4.64        | 3.60           |
| p-value                        |    | 0.00027          | 0.00165     | 0.00163        |
| Significance                   |    | Very (p<0.001)   | Significant | Significant    |
| Q32—Cognitive Fog              |    |                  |             |                |
| Low (D-SD) mean                | 33 | 3.03             | 2.97        | 2.00           |
| High (A-SA) mean               | 19 | 3.89             | 4.11        | 3.53           |
| p-value                        |    | 0.0395           | 0.0120      | 0.00074        |
| Significance                   |    | Significant      | Significant | Very (p<0.001) |
| Q38f—Stakeholder Relationships |    |                  |             |                |
| Low (Stable) mean              | 20 | 3.30             | 3.11        | 2.15           |
| High (Resistance) mean         | 16 | 4.50             | 4.19        | 3.27           |
| p-value                        |    | 0.0209           | 0.0243      | 0.0245         |
| Significance                   |    | Significant      | Significant | Significant    |

Means:  
 1 = better  
 2 = +/- 5%  
 3 = worse 5-20%  
 4 = worse 20-50%  
 5 = worse 50-100%  
 c&s only:  
 6 = worse >100%




|     |                           | Delivered Product | Performance Shortfall | Subjective Success | Replanning | Cost Overrun | Schedule Delay |
|-----|---------------------------|-------------------|-----------------------|--------------------|------------|--------------|----------------|
|     |                           | 8                 | 11                    | 12                 | 13         | 9            | 10             |
| 14d | Use Lean                  |                   |                       | Sig                |            |              |                |
| 29  | No. Government            |                   | Sig                   |                    |            |              |                |
| 38h | System Behavior Known     |                   | Sig                   | Sig                |            |              |                |
| 31  | Experience Level          | Sig               | Sig                   | Sig                |            |              |                |
| 38f | Stakeholder Relationships |                   | Sig                   | Sig                | Very Sig.  | Sig          | Sig            |
| 32  | Cognitive Fog             | Sig               | Very Sig.             | Very Sig.          | Sig        | Sig          | Sig            |
| 16d | Requirements Difficult    |                   | Sig                   | Sig                | Sig        | Very Sig.    | Sig            |
| 33  | Estimates Right           |                   | Very Sig.             | Sig                | Very Sig.  | Very Sig.    | Very Sig.      |
| 36  | Stakeholder Conflict      | Sig               |                       | Sig                | Sig        |              | Sig            |
| 14a | Use PERT                  |                   | Sig -                 |                    | Sig -      |              |                |
| 38e | Stakeholder Involvement   |                   |                       | Sig                | Sig        | Sig          | Sig            |
| 18  | Technical Rqts Conflict   |                   |                       | Sig                |            |              | Sig            |
| 1   | Domain                    |                   |                       | Sig                | Sig        |              |                |
| 16n | Requirements Nominal      |                   |                       |                    | Sig        | Sig          | Sig            |
| 19  | Tech-C&S Rqts Conflict    |                   |                       |                    | Very Sig.  | Sig          | Sig            |
| 16e | Requirements Easy         |                   |                       |                    | Sig        | Sig          |                |
| 25  | Schedule Dependency       |                   |                       |                    | Sig        | Sig          |                |
| 4   | Annual Cost               |                   |                       |                    | Sig        | Sig          |                |
| 23  | No. Subcontractors        |                   |                       |                    | Sig        | Sig          |                |
| 38b | Scope Function-Enterprise |                   |                       |                    | Sig        | Sig          |                |
| 6   | Relative Size             |                   |                       |                    | Sig        |              | Sig            |
| 27  | Staff Skills              |                   |                       |                    | Sig        |              | Sig            |
| 14b | Use Risk Mgmt             |                   |                       |                    | Sig -      |              | Sig -          |
| 37  | Needs Changed             |                   |                       |                    | Very Sig.  |              | Sig            |
| 28  | No. Decision Makers       |                   |                       |                    | Sig        |              |                |
| 5   | Life Cost                 |                   |                       |                    |            | Sig          | Sig            |
| 24  | Changes Limbo             |                   |                       |                    |            | Sig          | Sig            |
| 26  | Planned-Agile             |                   |                       |                    |            | Sig -        |                |

# How Do Top 3 Complexity Variables Lead to Outcomes?



# Cognitive Fog



# Summary

- Project outcomes (cost, schedule, performance) do go up and down with many “complexity variables”
- Three variables predict all three outcomes (both project success and system success); 20 more predict one or the other
- A focus on complexity probably is useful to improve systems engineering
  - But not oversimplified to one variable, or additive



# Advertisement:

- Complex Systems Working Group (CxSWG) has just written a ***Complexity Primer***
- Review comments being adjudicated
- 9 pages, non-academic
- For Joe/Jo Ordinary Systems Engineer (JOSE) and manager
- Longer and better cited papers next
- Need your help including what topics



# BACKUP SLIDES



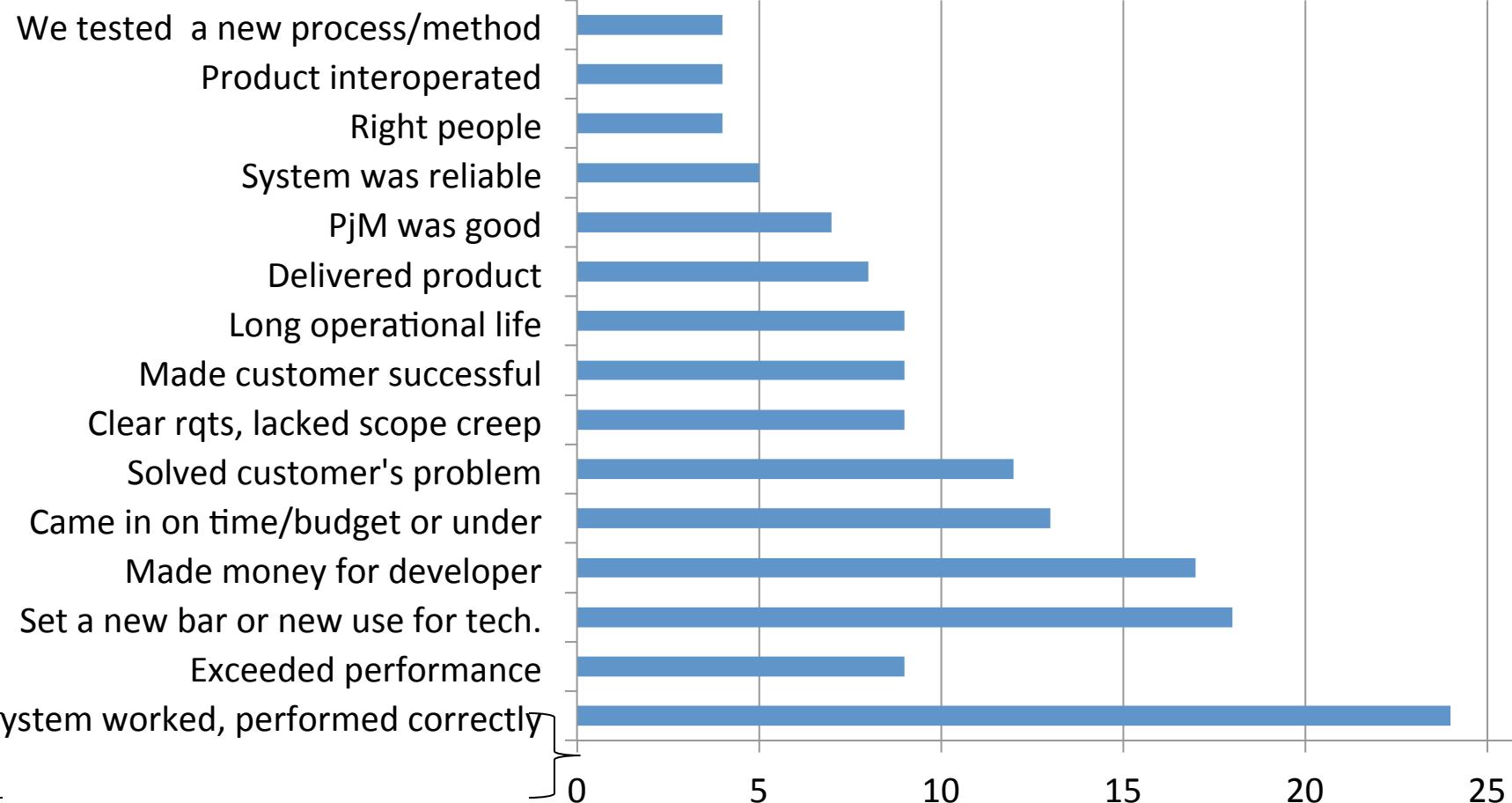
# Wording of Questions

Q32 'The project frequently found itself in a fog of conflicting data and cognitive overload.' Do you agree with this statement?

(1)Strongly Agree (2)Agree (3)Neutral (4)Disagree (5)Strongly Disagree

Q16d. "Approximately how many system-level requirements did the project have initially? Difficult requirements are considered difficult to implement or engineer, are hard to trace to source, and have a high degree of overlap with other requirements. How many system requirements were there that were Difficult?"

(1)1-10 (2)10-100 (3)100-1000 (4)1000-10,000 (5)Over 10,000


Q38."Where did your project fit, on a scale of Traditional, Transitional, or Messy Frontier, in the following eight attributes?"

38f. Stakeholder relationships: (1) Relationships stable; (2) New relationships; (3) Resistance to changing relationships.



# Success Criteria

## Criterion/ Number of respondents mentioning\*

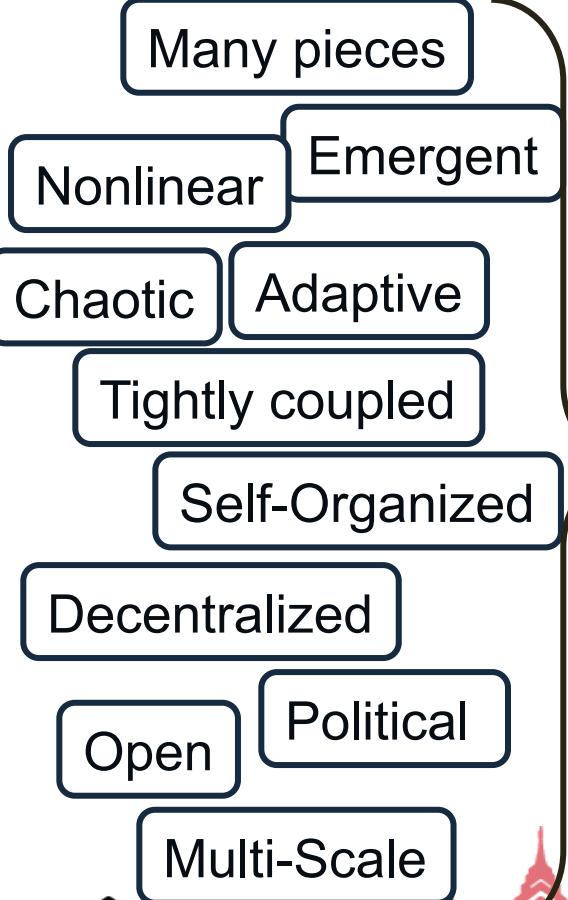


\* (Either + or - : We succeeded because we did, or we failed because we did not.)

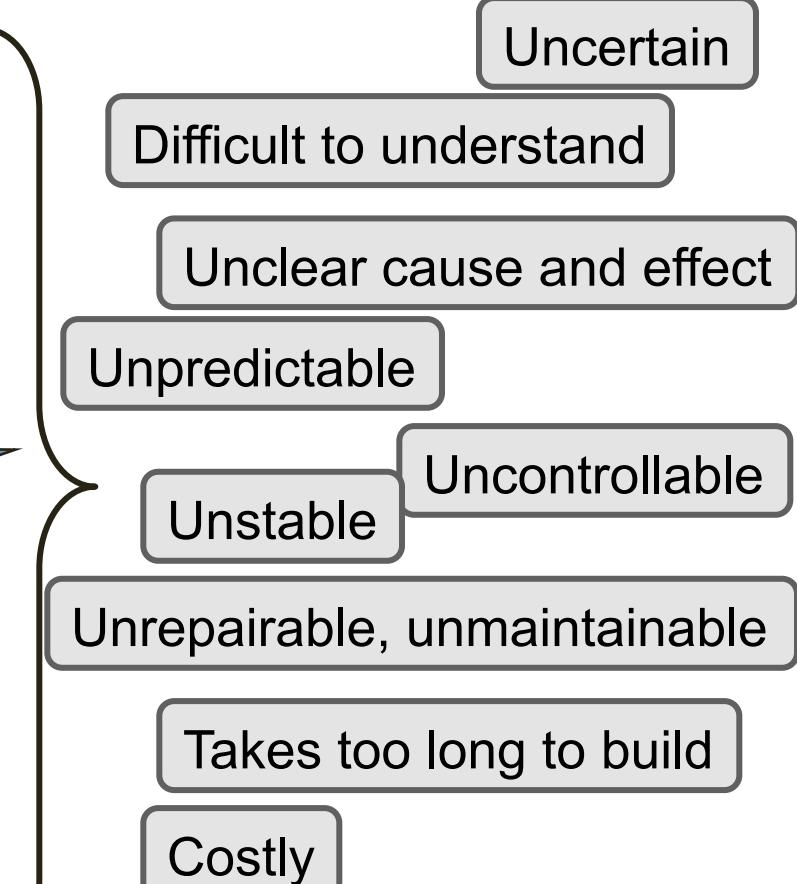
# Research Impact

- How does this research complement the existing body of knowledge?
  - Interprets scientific definitions of complexity, as organized into a taxonomy, for engineering use
  - Identifies which measures work well to measure complexity on practical programs
  - Identifies those entities whose complexity must be measured, and identifies measures of complexity for them, that can be measured early- and mid-program
  - Identifies which measures of complexity actually track together and which seem to be opposite the others
- What has this research demonstrated?
  - Difficult requirements, stakeholder relationships, and amounts of confusion and conflicting data influence all outcomes: cost, schedule, and performance
  - 20-25 other variables also support the evaluation of complexity of systems, development programs, and the environment




# Potential Areas of Future Inquiry

|                                      |                             |                                                        |                          |                                         |
|--------------------------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------|
| Project management surprises         | Socio-political complexity  | Changeability Theory                                   | Benefits of Complexity   | Model stability                         |
| Boundaries and spatial inhomogeneity | Maintenance and improvement | Allocation of complexity to technical system vs people | Complexity reduction     | Terminology                             |
| Additional measures                  | Quantification              | Entropy                                                | Interdependencies        | Representation of complexity            |
| Measure specification                | Conway's law                | Guided evolution                                       | Allocation of complexity | Complexity Referent                     |
| Heuristics                           | Systems engineering process | Relationship of complexity to causes and effects       | Inherent Models          | Kinds of systems engineering complexity |
| Knee of the curve                    |                             |                                                        | Unintended consequences  | Uncertainty                             |




# Complexity Characteristics

## Technical Characteristics/ System Characteristics/ Objective Complexity



## Cognitive Characteristics/ Subjective Complexity



# Early and Late Indicators

| Beginning of Program            |
|---------------------------------|
| Q1—Domain                       |
| Q4—Annual cost                  |
| Q6—Relative Size                |
| Q7a—Start Year                  |
| Q15—No. Subsystems              |
| Q16e—Requirements Easy          |
| Q16n—Requirements Nominal       |
| Q16d—Requirements Difficult     |
| Q17—Architecture Precedence     |
| Q18—Technical Rqts Conflict     |
| Q19—Tech-C&S Rqts Conflict      |
| Q20—Expectations Easy           |
| Q23—No. Subcontractors          |
| Q25—Schedule Dependency         |
| Q27—Staff Skills                |
| Q29—No. Government              |
| Q30—No. Contractors             |
| Q31—Experience Level            |
| Q38b—Scope Function-Enterprises |
| Q38d—Acquire Projects Systems   |
| Q38h—System Behavior Known      |

| Middle                         |
|--------------------------------|
| Q5—Life Cost                   |
| Q24—Changes Limbo              |
| Q26—Planned-Agile              |
| Q32—Cognitive Fog              |
| Q34—Priorities Short Term      |
| Q36—Stakeholder Conflict       |
| Q38e—Stakeholder Involvement   |
| Q38f—Stakeholder Relationships |
| Q37—Needs Changed              |
| Q13—Replanning                 |

| End                       |
|---------------------------|
| Q7b—Finish Year           |
| Q8—Deliver Product        |
| Q9—Cost Overrun           |
| Q10—Schedule Delay        |
| Q11—Performance Shortfall |
| Q12—Subjective Success    |
| Q22—Operational Evolution |
| Q33—Estimates Right       |

# Outcome Variables

| #  | Variable                                                               | Low Complexity     | High Complexity              | Pol | Split (N of split variable)                                                      |
|----|------------------------------------------------------------------------|--------------------|------------------------------|-----|----------------------------------------------------------------------------------|
| 8  | Delivered Product: Assume more complex projects less likely to deliver | 1 Yes              | 2 No                         | 1   | Choice 1 yes (64) vs. Choice 2 no(12)                                            |
| 9  | Cost Overrun                                                           | 1 Below cost       | 6 >100% over plan            | 1   | Choices 1-2 <Under budget to within 5% (19) vs. Choices 4-6 >20% over (32)       |
| 10 | Schedule Delay                                                         | 1 Early            | 6 > 100% late                | 1   | Choices 1-2 On time or early (18) vs. Choices 4-6 Over 20% late (28)             |
| 11 | Performance Shortfall                                                  | 1 Higher than spec | 5 < 50% of spec or cancelled | 1   | Choices 1-2 Per spec or better (50) vs. Choices 4-5 More than 20% shortfall (13) |
| 12 | Subjective Success: Assume complexity = failure.                       | 5 Great Success    | 1 Great Failure              | -1  | Choices 1-2 Failure (20) vs. Choices 4-5 Success (40)                            |

# Complexity Types and Entities



| Type | SS                                                          | System is constructed of many elements                     | Environment includes by many elements in many structures     | Cognitive                                                          |
|------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| SS   | Project is constructed of many tasks and teams              | System behavior emerges from connected elements            | Environmental behavior results from interacting elements     | Mind is taxed by many elements and many problems                   |
| SC   | Project outcomes emerge from connected tasks and teams      | System structure has diversity and inhomogeneity           | Environmental structures are diverse and inhomogeneous       | Mind has difficulty predicting emergence from many interactions    |
| SI   | Project has diverse and inhomogeneous tasks and teams       | System behavior can change rapidly                         | Environmental behavior can change rapidly                    | Mental models are simpler without diversity and inhomogeneity      |
| DS   | Project behavior can change rapidly                         | System and its behavior can evolve significantly over time | Environment and its behavior evolve significantly over time  | Mind has difficulty predicting nonlinear and rapid change          |
| DL   | Project and its behavior can evolve significantly over time | System may have socio-political factors                    | Environment is heavily influenced by socio-political factors | Human mind has difficulty envisioning evolution to different forms |
| SP   | Project is greatly influenced by socio-political factors    |                                                            |                                                              | Engineers frequently are not strong in sociopolitical areas        |

