

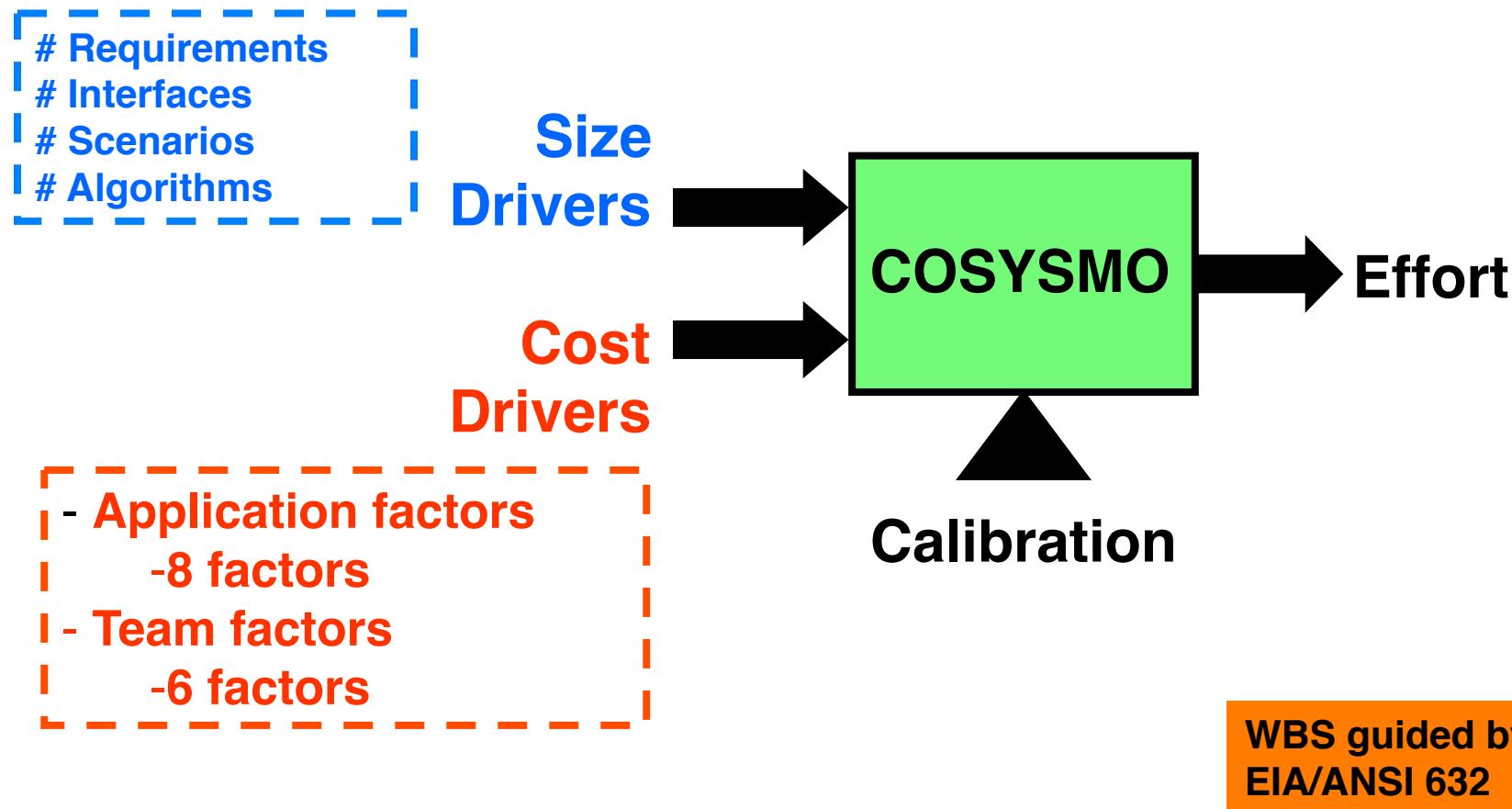
AIR
LAND
SEA
SPACE
CYBER

COSYSMO **Calibration** **and Next Steps**

Tim Christopherson
Engineering Fellow
Raytheon Missile Systems

In collaboration with Dr Ricardo Valerdi
Associate Professor
University of Arizona

June 25, 2013


Overview

- COSYSMO Model
 - COSYSMO Cost Drivers
 - COSYSMO Data Sources
 - COSYMO Cost Estimating Relationship
- RMS Calibration of COSYSMO
 - 5-Step Calibration Process
 - Project Methodology
 - Results
- On-Going Work

The authors wish to acknowledge the participation of Raytheon Missile Systems employees Barbara Christianson and John Whiteside who assisted in data collection, cost modeling, and analysis of this project

COSYSMO Model

How much systems engineering effort is needed on projects?

COSYSMO Cost Drivers (14)

UNDERSTANDING FACTORS

- Requirements understanding
- Architecture understanding
- Stakeholder team cohesion
- Personnel experience/continuity

COMPLEXITY FACTORS

- **Level of service requirements**
 - *Used in RMS calibration*
- **Technology Risk**
 - *Evaluated by RMS but not used*
- # of Recursive Levels in the Design
- Documentation Match to Life Cycle Needs

OPERATIONS FACTORS

- # and Diversity of Installations/Platforms
- Migration complexity

PEOPLE FACTORS

- Personnel/team capability
- Process capability

ENVIRONMENT FACTORS

- Multisite coordination
- Tool support

Raytheon Missile Systems (RMS) calibration only used
Level of Service Requirements
(second largest Effort Multiplier Ratio)

Academic COSYSMO Calibration Sources

Raytheon	<i>Intelligence & Information Systems (Garland, TX)</i>
Northrop Grumman	<i>Mission Systems (Redondo Beach, CA)</i>
Lockheed Martin	<i>Transportation & Security Solutions (Rockville, MD)</i> <i>Integrated Systems & Solutions (Valley Forge, PA)</i> <i>Systems Integration (Owego, NY)</i> <i>Aeronautics (Marietta, GA)</i> <i>Maritime Systems & Sensors (Manassas, VA; Baltimore, MD; Syracuse, NY)</i>
General Dynamics	<i>Maritime Digital Systems/AIS (Pittsfield, MA)</i> <i>Surveillance & Reconnaissance Systems/AIS (Bloomington, MN)</i>
BAE Systems	<i>National Security Solutions/ISS (San Diego, CA)</i> <i>Information & Electronic Warfare Systems (Nashua, NH)</i>
SAIC	<i>Army Transformation (Orlando, FL)</i> <i>Integrated Data Solutions & Analysis (McLean, VA)</i>

COSYSMO Cost Estimating Relationship

$$PM_{NS} = A \cdot \left(\sum_k (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right)^E \cdot \prod_{j=1}^{14} EM_j$$

Where:

PM_{NS} = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical project data

k = {REQ, IF, ALG, SCN}

w_x = weight for “easy”, “nominal”, or “difficult” size driver

Φ_x = quantity of “k” size driver

E = represents diseconomy of scale

EM = effort multiplier for the j_{th} cost driver. The geometric product results in an overall effort adjustment factor to the nominal effort

Cost Drivers ($\prod_{j=1}^{14} EM_j$) affect only the A coefficient, not E

Difficult form to calibrate


RMS Calibration of COSYSMO

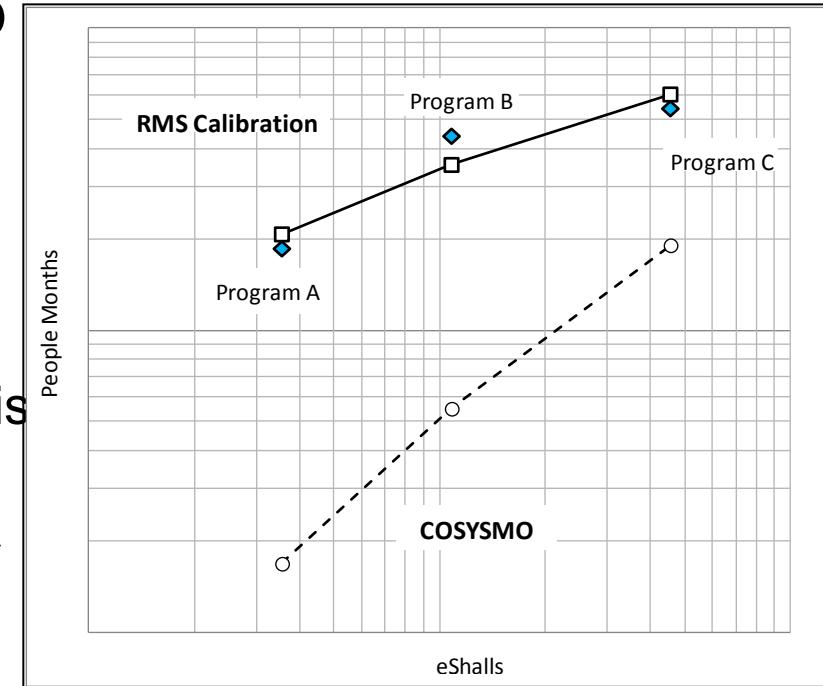
- Valerdi moved to Tucson to teach at the University of Arizona
 - Fall, 2011
 - Christopherson suggested local calibration of COSYSMO as a work project
- Goal was to calibrate local values for A and E that matched actual costs of RMS programs
 - Had to re-write the equation so that the cost drivers could be used to calibrate both A and E parameters
 - Cost drivers scale the size drivers in new equation
 - Standard learning curve format (a^*x^e) where x = eShalls scaled by cost drivers
 - Simple linear regression methodology (in logarithms) solves for both A and E

$$PM_{NS} = A \cdot \left(\left(\sum_k w_e \Phi_e + w_n \Phi_n + w_d \Phi_d \right) \cdot \prod_{j=1}^{14} EM_j \right)^E$$

COSYSMO equation re-written in standard learning curve format

5-Step Calibration Process

Project Methodology



- Data collection
 - Initial pilot test developed given very short time constraint
 - Only used the requirements size driver representing the left side of the Vee
 - Initial pilot provided proof of concept (Dec 2011)
 - Added remaining size drivers and cost drivers in early 2012
 - Down sized to just one cost driver (Level of Service Requirements)
 - Coupling of Key Performance Parameters (KPPs) was significant for RMS
 - Added systems test hours representing right side of the Vee as final iteration
 - Test and Evaluation of requirements
- Used weighting factors from academic COSYSMO
 - Delphi method deemed as best information source on the topic
 - Used Bayesian calibrated weights for both size drivers and cost drivers
 - Valerdi (2005) Dissertation Table 54 for size drivers and Table 55 for cost drivers

Three iterations of 5-Step Calibration Process

Results

- A and E calibrated for RMS actuals
 - Significantly different than COSYSMO
 - $R^2 = 89\%$ for small sample size
- COSYSMO did not include any missile programs
 - RMS SE definition includes Specialty Disciplines (e.g., Cost Engineering, Risk Mgmt) and other processes
- RMS' methodology appears fairly consistent across programs
 - Flatter slope than COSYSMO
- Reduced version accurately predicts systems engineering effort
 - Not all cost drivers are necessary when homogenous programs exist

Project successfully
demonstrates local
calibration

On-Going Work

- RMS currently developing new Productivity Metric for Systems Engineering using the calibrated model
 - Past metric used only requirements as Systems Engineering tasks
 - New method measures how hours are spent using all COSYSMO size drivers
 - Requirements, Interfaces, Scenarios, and Algorithms
 - Actual hours are then compared to locally calibrated model estimate
 - Includes the one cost driver (Level of Service Requirements)
- Right side of the Vee (Test and Evaluation) work with Raytheon Integrated Defense Systems (IDS)
 - Adjust size and cost drivers to accommodate T&E considerations
 - Develop new size and cost drivers that are relevant to T&E
 - Propose a systems engineering effort allocation for T&E tasks
 - Incorporate reuse considerations related to T&E

Summary

- COSYSMO local calibration methodology demonstrated
 - Equation was re-written as a learning curve
 - Solved for local costs at RMS using simple linear regression methodology
 - New equation allows cost drivers to influence both A and E parameters
 - Still contains the “spirit” of the cost drivers
 - Cost drivers scale the size drivers in new equation
- On-going work includes the following:
 - Systems Engineering productivity metric project
 - Uses four size drivers and one cost driver to represent SE work
 - IDS project focusing on right side of Vee
 - Test and Evaluation

COSYSMO can be calibrated for local business methodology