

Quantifying Systems Engineering Reuse

Gan Wang
BAE Systems

Ricardo Valerdi
University of Arizona

Garry J. Roedler
Lockheed Martin

Mauricio Pena
Boeing

**A Jolly Old (INCOSE) Fellow
Congratulations, Garry!**

Discussion Points

- Problem and motivations
- Generalized Reuse Framework
 - *Design With Reuse*
 - *Design For Reuse*
- Quantifying the Reuse Framework in COSYSMO
- Calibrating the model
- Conclusion and future work


It's amazing how quickly your garage, closets and basement can fill up with items you no longer use.

*We've got a solution...
Let other people use them!*

Contrastable Manners of Reuse

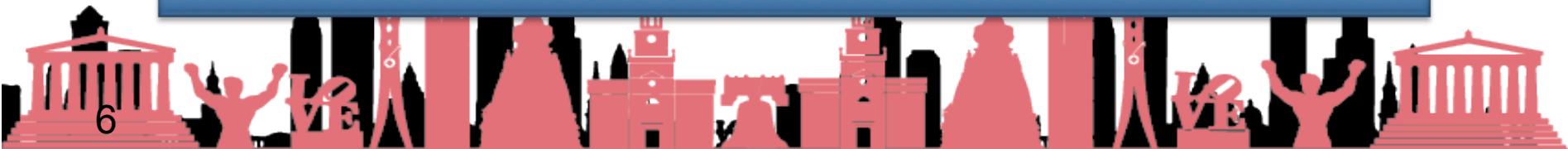
- Ad Hoc / Opportunistic Reuse
 - Search & discover reusable resources
 - Adapt to current application
 - Deal with problems
 - E.g., “Code scavenging”
- Planned / Systematic Reuse
 - Strategy, portfolio and roadmap
 - Explicit processes and standards
 - Investment in reusable resources

Problem & Motivations

- Reuse has been focusing on leveraging previous artifacts in order to save labor, with an inherent *assumption* that there's something there to reuse in the first place
- However, product line decision makers today need to consider:
 - Cost to develop artifacts
 - How to materialize the artifacts in future products
 - Modifications or additional costs required
 - Cost vs. benefit
- We want to be able to assess not only the effort to *leverage* but also the effort to *invest*
- The goal is an effective tool for design sensitivity analysis and product line investment decisions

Two Fundamental Reuse Processes

Development For Reuse (DFR)


- Producer's View
- Production of reusable resources

Development With Reuse (DWR)

- Consumer's View
- Consumption of reusable resources

Key is How to Plan and Balance Both in a Development Project

Contrasting DWR and DFR

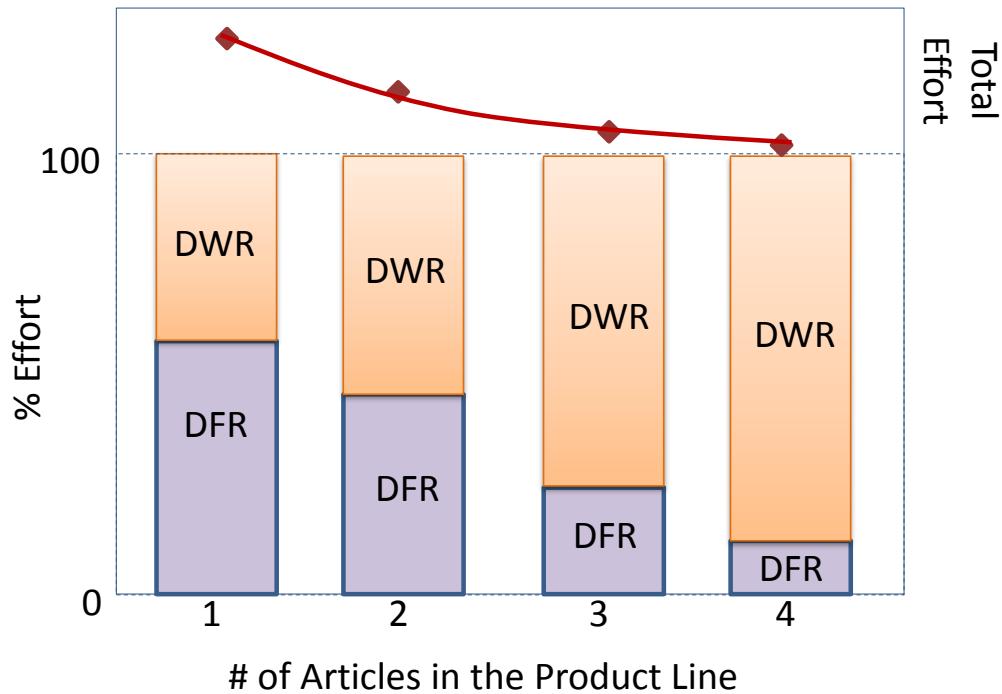
	Development with Reuse (DWR)	Development for Reuse (DFR)
Role	Consumer	Producer
Purpose	Consumption of reusable resources	Production of reusable resources
Goal	<ul style="list-style-type: none"> Improving product quality Cost savings Time to market 	<ul style="list-style-type: none"> Investment for future benefits Product line, lifecycle strategies
Challenges	<ul style="list-style-type: none"> Discovery of what to reuse Decisions on how to tailor and integrate 	<ul style="list-style-type: none"> Plans for how to reuse Design for reusability Means to verify
Reusability	<ul style="list-style-type: none"> If ad hoc, then generally low If planned, then generally high 	<ul style="list-style-type: none"> Generally high, if done right

Developing for Product Line In a Project

- Project activities in two-fold:
 - Develop & deploy target system
 - Invest in product line (for future target systems)

Total Project Effort

=

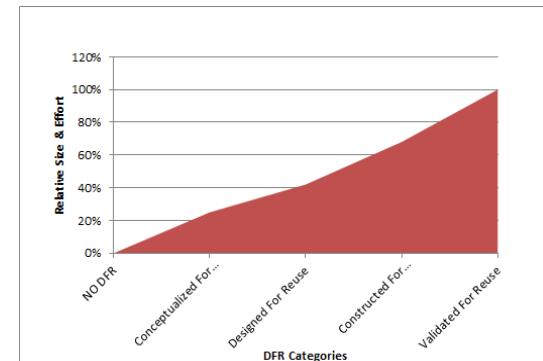
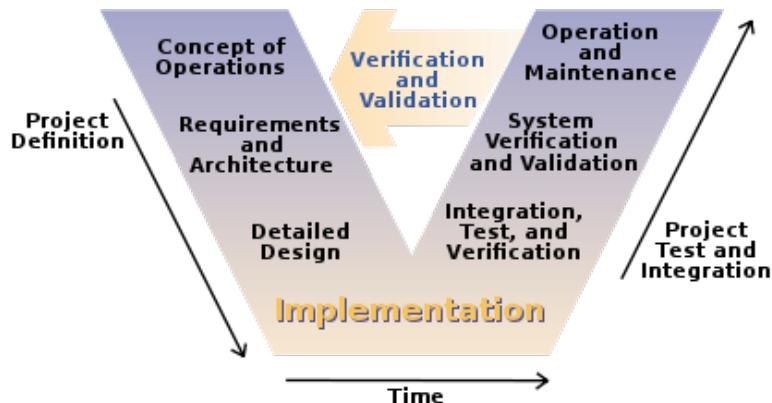
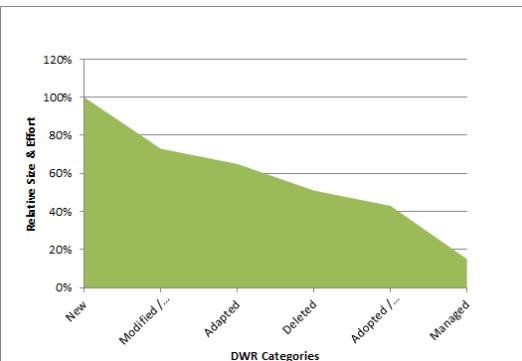

DWR Effort

+

DFR Effort

Product Line Benefits of Reuse

Investments in Development for Reuse (DFR) are leveraged to reduce Product Line Cost

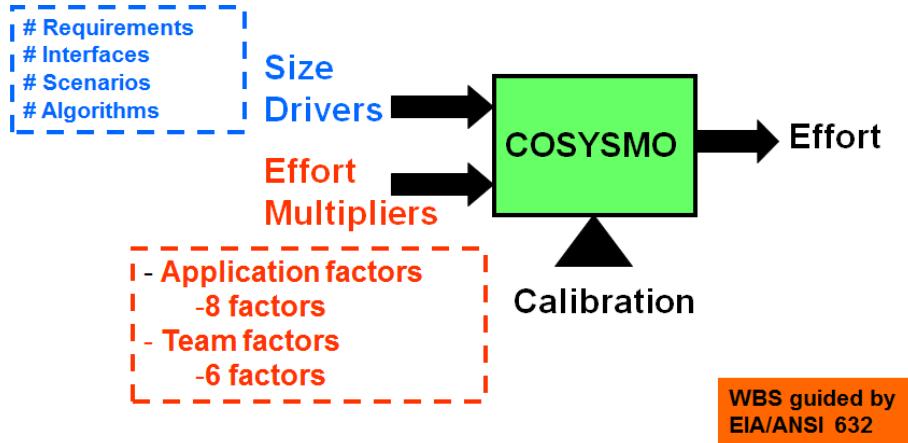



Reuse Framework - Definitions

- **DWR Categories:**

- New
- Modified / Implemented
- Adapted
- Deleted
- Adopted / Integrated
- Managed

- **DFR Categories:**

- No DFR
- Conceptualized For Reuse
- Designed For Reuse
- Constructed For Reuse
- Validated For Reuse



Interfacing DWR and DFR

Reusability from DFR Produces	Reusable Resources	Reused by DWR with Effort
<i>Conceptualized for Reuse</i>	System Concept Definition	<ul style="list-style-type: none"> • <i>New</i>
<i>Conceptualized for Reuse</i>	Logical Architecture	<ul style="list-style-type: none"> • <i>New</i>
<i>Designed for Reuse</i>	Physical Architecture (intended for built to print)	<ul style="list-style-type: none"> • <i>New</i>, if architectural modification required • <i>Implemented</i>, if no modification required
<i>Constructed for Reuse</i>	Constructed Product/Component	<ul style="list-style-type: none"> • <i>Modified</i>, if architectural modification required • <i>Adapted</i>, if tailoring needed for integration • <i>Adopted</i>, if only integration and testing required
<i>Validated for Reuse</i>	Validated Product/Component	<ul style="list-style-type: none"> • <i>Modified</i>, if architectural modification required • <i>Adapted</i>, if tailoring needed for integration • <i>Adopted</i>, if only integration and testing required • <i>Managed</i>, if limited testing required

COSYSMO

• COSYSMO

- CONstructive SYStems Engineering Cost MOdel
- Parametric Estimate of the Systems Engineering Effort
- Covers full systems engineering lifecycle
- Originally developed by Dr. Ricardo Valerdi and Dr. Barry Boehm at USC

- Inception of COSYSMO 1.0
 - Valerdi, R., The Constructive Systems Engineering Cost Model (COSYSMO), PhD Dissertation, University of Southern California, May 2005.
- Introduced the Reuse Model Extension to COSYSMO 2.0
 - Wang, G., Valerdi, R., Ankrum, A., Millar, C., and Roedler, G., "COSYSMO Reuse Extension," Proceedings of the 18th INCOSE International Symposium, June 2008.
 - Fortune, J. Estimating Systems Engineering Reuse with the Constructive Systems Engineering Cost Model (COSYSMO 2.0). Ph.D. Dissertation. University of Southern California. December 2009
 - Wang, G., Valerdi, R., Fortune, J., "Reuse in Systems Engineering," IEEE System Journal, v4, No.3, 2010.
- Marching to COSYSMO 3.0 (work in progress...)
 - Fortune, J. and Valerdi, R., "Considerations for Successful Reuse in Systems Engineering," AIAA Space 2008, San Diego, CA, September 2008.
 - Wang, G. and Rice, J., "Considerations for a Generalized Reuse Framework for System Development," Proceedings of the 21st INCOSE International Symposium, June 2011.
 - Peña, M. Quantifying the Impact of Requirements Volatility on Systems Engineering Effort. Ph.D. Dissertation. University of Southern California. August 2012.
 - Fortune, J. and Valerdi, R., "A Framework for Systems Engineering Reuse," Systems Engineering, 16(2), 2013.

Quantifying Reuse Framework in Extended COSYSMO (3.0)

$$Project\ Effort = DWR\ Effort + DFR\ Effort$$

$$PM_{DWR+DFR} = A_1 \cdot \left[\sum_k \left(\sum_r w_r (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right) \right]^{E_1} \cdot CEM_1$$
$$+ A_2 \cdot \left[\sum_k \left(\sum_q w_q (w_{e,k} \Psi_{e,k} + w_{n,k} \Psi_{n,k} + w_{d,k} \Psi_{d,k}) \right) \right]^{E_2} \cdot CEM_2$$

Where:

PM_{DWR} = effort in Person Hours/Months (Nominal Schedule)

A₁ = DWR constant derived from historical project data

k = {REQ, IF, ALG, SCN}

r = {New, Implemented, Modified, Deleted, Adopted, Managed}

w_r = weight for defined levels of size driver reuse

w_x = weight for “easy”, “nominal”, or “difficult” size driver

Φ_x = quantity of “k” size driver

E₁ = represents diseconomy of scale in DWR

CEM₁ = composite effort multiplier for DWR

Where:

PM_{DFR} = effort in Person Hours/Months (Nominal Schedule)

A₂ = DFR constant derived from historical project data

k = {REQ, IF, ALG, SCN}

q = {Conceptualized, Designed, Built, Validated}

w_r = weight for defined levels of size driver reuse

w_x = weight for “easy”, “nominal”, or “difficult” size driver

Φ_x = quantity of “k” size driver

E₂ = represents diseconomy of scale in DFR

CEM₂ = composite effort multiplier for DFR

Example Scenario #1 – Modification of Fielded System

Modification of Fielded System:

- *There are 20 heritage requirements that were previously Designed for Reuse and are satisfied through the existing physical architecture*
- *The customer has decided to delete 10 requirements and levy 5 requirements that have not been previously analyzed*
- *The deletion of the requirements results in the modification of 3 of the 5 heritage interfaces*
- *There are no changes to the 3 heritage algorithms.*

DWR

COSYSMO System-level Cost Drivers:

New system requirements: 5

Modified system requirements: 20

Deleted system requirements: 10

New system interfaces: 3

Modified system interfaces: 2

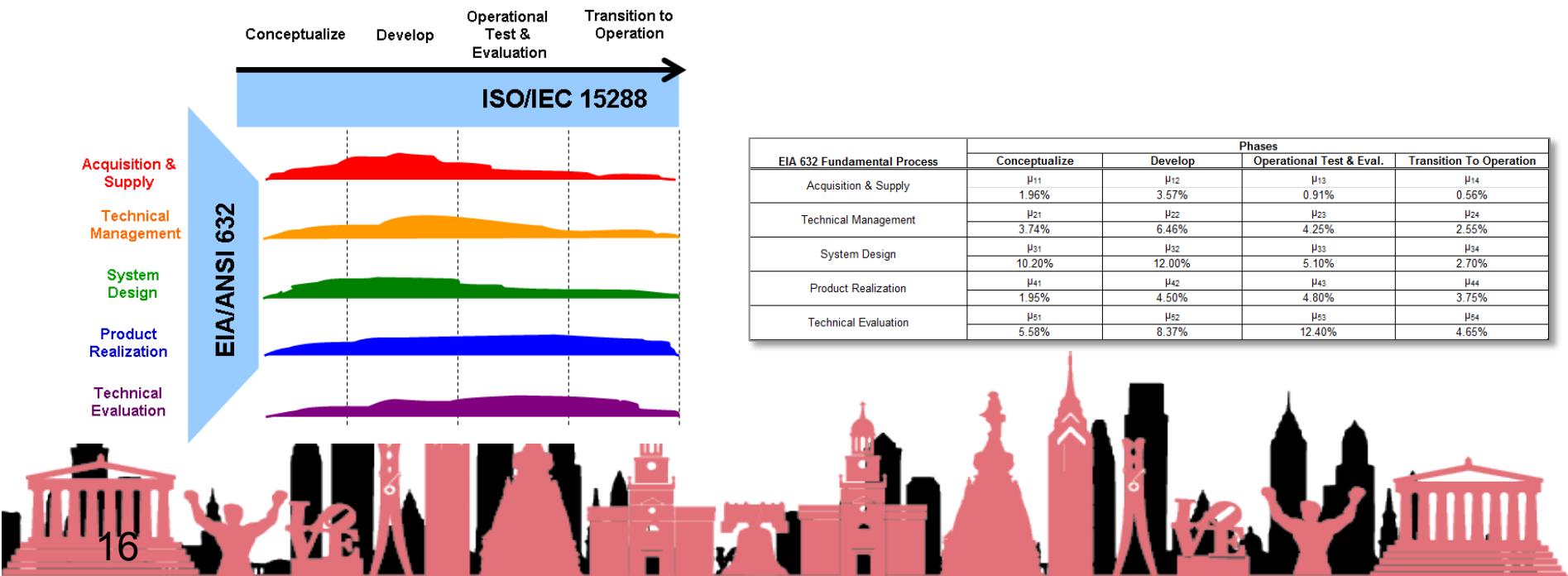
Adopted algorithms: 3

Example Scenario #2 – Refactoring For Reuse

Standard API Development:

- *Generalize existing functionalities and services into reusable libraries with standardized APIs during the development of the current system, encapsulating*
 - *25 system requirements*
 - *7 system interfaces*
 - *2 system critical algorithms*
 - *And can potentially impact one operational sequence*

DFR


COSYSMO System-level Cost Drivers:

- Validated for Reuse Requirements: 25*
- Validated for Reuse Interfaces: 7*
- Validated for Reuse Algorithms: 2*
- Adopted Op. Scenario: 1*

Determining the Coefficients

$$\begin{aligned}
 PM_{DWR+DFR} = & A_1 \cdot \left[\sum_k \left(\sum_r w_r (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right) \right]^{E_1} \cdot CEM_1 \\
 & + A_2 \cdot \left[\sum_k \left(\sum_q w_q (w_{e,k} \Psi_{e,k} + w_{n,k} \Psi_{n,k} + w_{d,k} \Psi_{d,k}) \right) \right]^{E_2} \cdot CEM_2
 \end{aligned}$$

Delphi in Progress

- To correlate the reuse categories to SE activities

Participants Needed!

Categories of Reusable Artifacts Coming Out of the DFR Process	==>	NA	Concept / CONOPS	Logical Architecture	Physical Architecture	Developed Product Component	Deployed in End System
EIA/ANSI 632 Process	EIA/ANSI 632 Task	No DFR	Conceptualized For Reuse	Designed For Reuse	Constructed For Reuse	Validated For Reuse	
Acquisition and Supply	1. Product Supply				x	x	
	2. Product Acquisition				x	x	
	3. Supplier Performance				x	x	
	4. Process Implementation Strategy			x	x	x	
	5. Technical Effort Definition	x	x	x	x	x	
	6. Role and Organization	x	x	x	x	x	
	7. Technical Plans	x	x	x	x	x	
Directives	8. Directives	x	x	x	x	x	
	9. Assess Against Plans and Schedules	x	x	x	x	x	
	10. Assess Against Requirements	x	x	x	x	x	
	11. Technical Reviews	x	x	x	x	x	
	12. Comes Management	x	x	x	x	x	
	13. Information Dissemination	x	x	x	x	x	
	14. User Requirements	x	x	x	x	x	
	15. Other Stakeholder Requirements	x	x	x	x	x	
	16. System Technical Requirements	x	x	x	x	x	
	17. Logical Solution Representations	x	x	x	x	x	
	18. Physical Solution Representations			x	x	x	
	19. Specified Requirements			x	x	x	
	20. Implementation				x	x	
	21. Position to Use					x	
	22. Suitability Analysis					x	
	23. Feasibility Analysis	x	x	x	x	x	
	24. Risk Analysis	x	x	x	x	x	
	25. Cost Analysis	x	x	x	x	x	
Technical Evaluation	26. Requirements Statements Validation	x	x	x	x	x	
	27. Acquirer Requirements Validation	x	x	x	x	x	
	28. Other Stakeholder Requirements Validation	x	x	x	x	x	
	29. System Technical Requirements Validation	x	x	x	x	x	
	30. Design Solution Verification	x	x	x	x	x	
	31. End Product Verification				x	x	
	32. Enabling Product Readiness					x	
	33. End Products Validation					x	

Conclusion

- Described a generalized Reuse Framework with two complementary processes – DFR and DWR
- Defined a quantitative cost estimating relationship in extended COSYSMO
- Improved ability to conduct comprehensive cost trades for investment decisions and product line management
- Work in progress in calibrating the model
- Please join us by participating the Delphi
 - If interested, leave your business card with us at the end of this presentation!

Questions and Comments

Contacts:

Gan Wang
BAE Systems
Reston, VA

gan.wang@baesystems.com

Ricardo Valerdi
University of Arizona
Tucson, AZ
rvalerdi@arizona.edu

Garry J. Roedler
Lockheed Martin
Philadelphia, PA
garry.j.roedler@lmco.com

Mauricio Pena
Boeing
El Segundo, CA
mauricio.e.pena@boeing.com

