
Extending eFFBD formalism
to task model

Daniel Prun

Ecole National de l’Aviation Civile
Interactive Computing Lab

24th Annual INCOSE International Symposium

HSI
•  Human System Integration (HSI)

–  “a set of processes for integrating human related considerations
within and across all system elements” (DOD – Defense Acquisition Handbook
2010)

–  Objective: to bring human centered disciplines and concerns
into SE processes to achieve an optimal system performance.

•  Human Factor (HF) engineering

–  Is one principal consideration of HSI
–  Consists to understand human capabilities and to take them into

account during the entire system life-cycle.
–  A recommended method: task analysis

SE and HF
•  System Engineering and Human Factors remain 2

separated disciplines
–  Historic: They do not have a common shared origin
–  Focus:

•  SE is centered on functionalities and physical components
•  HF is centered on usability and humans

–  Organization: They are performed by different teams
–  Techniques: They use different formalisms (task model, eFFBD,

SYSML …)

•  But they share some similar objectives:
–  Identify / analyze / classify tasks & functions
–  Decide best allocation on humans and automated components
–  At the higher level, build an optimized system

Consequences
•  Short term:

–  Risk of inconsistencies
–  Extra cost due to work duplication, redundancies
–  Extra cost due to inter team coordination, formalism

transformation…

•  Long term:
–  User needs not fully understood and elicited
–  Global system not optimized between human and automated

parts
–  System engineering considered as an interdisciplinary approach

is hard to be put in practice
=> Failure of HSI ?

Our objective (general)
•  Objective?

–  to reduce the gap between SE and HF

•  How?
– We think that one of the main restriction lies in

the different formalisms used
– So we tried to mix some best used formalisms
– By extending eFFBD to task models

Do you know eFFBD?
•  eFFBD:

–  extended Functional Flow Block Diagram

•  History:
–  50’s: FFBD introduced by TRW
–  60’s: widely used by NASA
–  90’s: eFFBD (Long 95)
–  08: formal semantic (Seidner 08)

•  Still widely used for:
–  Supporting functional analysis
–  Sharing information
–  Teaching

July

eFFBD
•  Basic element: function

–  “task, action, or activity performed to achieve a
desired outcome” (EIA 1999)

•  Basic operators:

Alternative

Parallelism
Loop

Sequence

July

Do you know task model?
•  Basic element: task

–  “activities required to achieve a goal” (ISO 9141
Ergonomics of human-system interaction, Part 210)

–  “what a user is required to do, in term of actions and/or cognitive
processes to achieve an objective”

•  Basic operators:
T1 [] T2

Choice
T1 |=| T2

Order Independency
T1 ||| T2
Concurrency

T1 [> T2
Interruption

T1 |> T2
Suspend/resume

T1*
Iteration

T1 >> T2
Enabling

[T1]
Optional

July

Comparison
T1 [] T2

Choice

T1 |=| T2
Order

Independency

T1 ||| T2
Concurrency

T1*
Iteration

T1 >> T2
Enabling

[T1]
Optional

Alternative

Parallelism

Sequence

Loop

Alternative+sequence

Alternative

July

Comparison
•  Result :

–  3 control operators are missing in eFFBD:

•  Remark: “kill” ≈ “Interruption”
–  eFFBD has a “kill” operator: “when the execution of the last

function of a kill branch finishes then all other functions
performed in parallel are stopped.”

–  Semantic of task model “Interruption” operator is broader than
“kill” operator: parallel functions can be stopped at any time (not
necessarily when the last function finishes).

T1 [> T2
Interruption

T1 |> T2
Suspend/resume

July

Our objective (refined)
•  Introduction of 3 new operators to eFFBD:

–  Disable (for interruption)
–  Suspend
–  Resume

•  eFFBD+Disable+Suspend+Resume= xFFBD

•  Our definition must be done according to 3 axis:
–  Graphic: define what these operators look like
–  Syntax: define how to use them in an eFFBD
–  Semantic: define what do they mean

July

Starting point
•  eFFBD formal semantic defined in Seidner 08

•  An eFFBD is defined by a tupple :

),,,,,,,,(00 KIncountAIN βαε =

Nodes:
•  Function
•  And
•  Or
•  It
•  …

Arcs
Items

Max number of iteration
Initial item amount

Initial node Functions duration

Kill arcs

July

Starting point
•  eFFBD semantic:

),,,(0 →= NsSε

State:
•  Current activity for each node
•  Number of current iterations
•  Number of items
•  Elapsed time for each function

Initial state Transition rules from a state to another:

•  Inactive
•  Enabled
•  Executing
•  Executed

()
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=ʹ

ʹ∧=∧∈

∧=

⇔ʹʹʹʹ⎯→⎯

tyNextActivinA
PexecutingnAFCnor

onPreConditienablednA
vICAvICA F

n

)(
)(

)(
),,,(),,,(

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=∧∈

⎪
⎩

⎪
⎨

⎧

∉⇒=

≠∩

∪∉

=

otherwise
))((if

Ø)(if

inactive
enablednAFCnexecuting

FCnenabledA(n)
ANDnPost
LPITn

executed

tyNextActivi

out

outout

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

⇒∈

⇒∈

⇒∈

ʹ⇒≥∧∈

⇒<∧∈

⇒∈

⇒∈

⇒∪∪∈

=

−

−

−

−

−

−

F

OUTLPout

OUTITout

INITin

INITin

INORin

OUTANDout

geninoutin

PFCn
PLPn
PITn

PncountnCITn
PncountnCITn

PORn
PANDn

PLPORANDn

onPreConditi
))()((

))()((

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤

+=ʹ

=ʹ
⎩
⎨
⎧

ʹ

∈ʹ
=ʹʹ∈∀

=ʹ

)()()(
)(

otherwise)(
)(if

)(,'

nnvn
nProdII

CC
nA

nPostnenabled
nANn

P

n

F

βα

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎩
⎨
⎧

=ʹ

==ʹ
∈∀

−=ʹ∧≥

=ʹ

ʹ=ʹʹ∈∀

=

otherwise)()(
if0)(

)()(

)()(,'

fvfv
nffv

FCf

nConsIInConsI
CC

nAnANn

P

n

F

July

Disable operator
•  Syntax:

–  an arc can tagged as disable using the keyword “dis”.

•  Construct rule:
–  a disable arc must belong to a AND structure

•  Informal semantic:
–  when the target node of the “disable” arc starts its

execution, then all functions belonging to the others
branches of the AND structure are interrupted

July

Disable operator
•  xFFBD:

Disable arcs

),,,,,,,,,(00 DisKIncountAIN βαε =ʹ

New transition from a state to another

),,,(0 →=ʹ NsSε

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎩
⎨
⎧

=ʹ

==ʹ
∈∀

−=ʹ∧≥

=ʹ

⎪
⎩

⎪
⎨

⎧

ʹ

∪∈ʹ

∪∈ʹ

=ʹʹ∈∀

=

otherwise)()(
if0)(

)()(

otherwise)(
),(),((\)(if

))(\),(),((\),(if
)(,' out

out

_

fvfv
nffv

FCf

nConsIInConsI
CC

nA
andnCnandCandPrenexecuted

andPreandnCnandCandandCninactive
nANn

P

outin

outinoutin
n

DisF

The next formula describes the behavior of a node preceded by a disable arc: if n is a
currently enabled function node, preceded by a disable arc, then inputs are consumed and
elapsed time is set to 0 and nodes of other branches are set to inactive (or to executed is it is a
predecessor of a outAND node)

July

Disable operator

1

Washing

DoSomething
PressStop

DoSomethingElse

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rinsing
Spining

July

Suspend / Resume operators
•  Syntax:

–  an arc can tagged as suspend (resp. resume) using the
keywords “sus” (resp. “res”).

•  Construct rules:
–  suspend and resume arcs must belong to a AND structure

–  for each suspend (resp. resume) arc, there is exactly one
resume (resp. suspend) arc belonging to the same AND branch.

–  Suspend arc must precede its corresponding Resume arc.

July

Suspend / Resume operators
•  Informal semantic:

–  when the target node of the “suspend” arc starts its
execution, then all functions belonging to the others
branches of the and structure are suspended.

–  a suspended node has neither time progression, nor
resource consumption and production.

–  when the origin node of the “resume” arc finishes its
execution, then all functions belonging to the others
branches of the and structure are resumed to the
state and time progression reach at suspension time.

July

Suspend / Resume operators
•  xFFBD:

),,,,,,,,,,(00 SusResKIncountAIN βαε =ʹ

Suspend arcs Resume arcs),,,(0 →=ʹ NsSε

State:
•  Current activity for each node
•  Memorized activity for each node
•  Number of current iterations
•  Number of items
•  Elapsed time for each function

New transition from a state to another

•  Inactive
•  Enabled
•  Executing
•  Executed
•  Suspended

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎩
⎨
⎧

=ʹ

==ʹ
∈∀

−=ʹ∧≥

=ʹ

⎪
⎩

⎪
⎨

⎧

ʹ
⎩
⎨
⎧

≠ʹ

∪∈ʹ
ʹ

=ʹʹ∈∀

⎩
⎨
⎧

ʹ

∪∈ʹ
=ʹʹ∈∀

=

otherwise)()(
if0)(

)()(

otherwise)(
)(

)),(),((\),(
if)(

)(,'

otherwise)(
)),(),((\),(if

)(,'

_

fvfv
nffv

FCf

nConsIInConsI
CC

nM
suspendednMand

andnCnandCandandCn
nA

nMNn

nA
andnCnandCandandCnsuspended

nANn

P

outinoutin
n

outinoutinn

SusF

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤

+=ʹ

=ʹ

⎪
⎩

⎪
⎨

⎧

ʹ

∈ʹ

∪∈ʹʹ

=ʹʹ∈∀

=ʹ

)()()(
)(

otherwise)(
)(if

)),(),((\),()(
)(,'

Re_

nnvn
nProdII

CC
nA

nPostnenabled
andnCnandCandandCnifnM

nANn

P

outinoutin
n

sF

βα

July

Suspend / Resume operators

1

Washing

DoSomething
OpenDoor
AddClothe
CloseDoor

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rinsing
Spining

DoSomethingElse

July

Implementation
•  LEXE (Light Experimental Xffbd Editor)

–  A tool to build, visualize and simulate xFFBD
–  A demonstrator: implement the syntax and semantic described

above
–  An academic tool: open, developed in Java/Swing, can be easily

modified.

July

Conclusion
•  We have a good starting framework: graphic, syntax and

semantic

•  Target:
–  We have used it on small systems: improvement of interaction

between SE and HF looks promising
–  To be used on big size systems

•  A first step in a bigger project:
–  In INCOSE IS 2012, we defined xFFBD as an ambitious project

aiming at developing eFFBD to provide to system designers an
enriched functional language

(xFFBD: towards a formal yet functional modeling language for system designers)
–  A lot of other improvements remain to be done…

