
Maintaining Emergence in Systems of
Systems Integration: a Contractual

Approach using SysML
Jeremy Bryans;

John Fitzgerald; Richard Payne
(Newcastle University, UK)

Klaus Kristensen
(Bang & Olufsen, DK)

24th Annual INCOSE International Symposium

www.compass-research.eu

July

Overview
•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

Overview
•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

Image: Theredmonkey, Wikimedia Commons

Systems of Systems

24th Annual INCOSE International Symposium

July

Systems of Systems

24th Annual INCOSE International Symposium

•  Multiple content sources, DRMs,
•  Multiple devices from multiple

manufacturers
•  Mobile and concurrent systems
Can we ensure consistent “user
experience” as devices, content,
DRM, etc., change?

July

Systems of Systems (SoS)
•  Assembly and integration of

independent systems that
collectively offer a new
(“emergent”) service on
which value and reliance is
placed.

•  Independence
•  Distribution
•  Evolution
•  Emergence

24th Annual INCOSE International Symposium

•  Model-based SoS
Engineering as a way of
mastering complexity

1..*

1..*

1

1

bdd [Package] SoS Structure
«block»

B&O AV SoS

«block»
LE Device

«block»
Transport Layer

«block»
Grey-Box AV Device

«block»
Network

«block»
White-Box AV Device

1..*

1..*

1

1

July

SoS Engineering Challenges
•  Independence and autonomy of constituent systems

–  Constituent systems evolve at the behest of their owners
–  Response: Collaborative SoS modelling by contractual (assume,

commit) interface specification

•  Complexity of confirming/refuting SoS-level properties
–  Verification of emergence
–  Response: verified refinement for engineering of emergent

properties; simulation tools allow exploration for unanticipated
behaviours

•  Semantic heterogeneity (integrating models)
–  Wide range of interacting features in models (e.g. location, time,

concurrency, data, communication)
–  Response: extensible semantic basis

24th Annual INCOSE International Symposium

July

COMPASS Technology

24th Annual INCOSE International Symposium

Formal Modelling Language
•  CML allows representation of
behavioural semantics of the SoS
•  Supports contract specification
•  Describes functionality, object-
orientation, concurrency, real-time,
mobility.
•  Can be extended to new paradigms

actions
 MERGE1(r) =
 (dcl e: set of ERUId @ e := findIdleERUs();
 (do
 e = {} -> DECISION2(r)
 |
 e <> {} ->
 (dcl e1: ERUId @ e1 :=
 allocateIdleERU(e, r); MERGE2(e1, r))
 end)) …
process InitiateRescue = CallCentreProc [|
SEND_CHANNELS |] RadioSystemProc [|
RCV_CHANNELS |] ERUsProc

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

Initiate Rescue Fault Activation [Fault 1]
«Fault Activation View» {faultsOfInterest = Complete Failure of the Radio System}

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

[idle ERU]

[no idle
ERU]

[higher
criticality]

[lower
criticality]

SysML modelling
•  Guidelines for Requirements,
Architecture, Integration
•  SoS Modelling profiles, e.g.
Fault-Error-Failure
•  Architectural patterns and
extensible frameworks

f1

(SoS || STOP) [= LE(SoS)
E

Tool-supported
Analysis
•  Model-checker
•  Automated proof
•  Test generation
•  Simulation
•  Model-in-Loop Test
•  Exploration of design space

July

Overview
•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

AV SoS Case Study

24th Annual INCOSE International Symposium

•  CSs are heterogeneous and may evolve (through
software or firmware upgrades)

•  New CSs may be integrated into SoS at any time

•  CSs may be legacy or non-B&O systems

July

AV SoS Case Study

24th Annual INCOSE International Symposium

•  Challenge: verifying emergence – can a single “leader”
be established to maintain global clock, SoS
architecture, streaming details, …?

July

Overview
•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

Modelling Approach
•  Use SoS-ACRE – COMPASS Requirements

Engineering guidelines
•  Define SoS composition and contracts in SysML

using Contracts Pattern

24th Annual INCOSE International Symposium

July

Requirements Definition

rdv B&O Partial Requirements
«requirement»

B&O User Experience

«requirement»

id#
R1

txt
CSs may join or leave the network at any time and a
consistent experience is provided.

Availability and consistency of the system configuration
«requirement»

id#
R2

txt
The SoS must support audio and visual data streaming
from one source device to one or more target devices

Audio/visual streaming
«requirement»

id#
R3

txt
The SoS must support browsing of
remotely-located media content

Remotely-located content-browsing

«requirement»

id#
R1.1

txt
The SoS must identify a single
leader in the network.

Identification of a single leader in SoS
«requirement»

id#
R1.2

txt
New constituent systems must be
able to join the SoS at any point.

Constituent system integration

«requirement»

id#
R1.2.1

txt
Constituent systems developed by
B&O must be able to join the SoS.

White-box integration
«requirement»

id#
R1.2.2

txt
Some constituent systems not developed
by B&O must be able to join the SoS.

Grey-box integration

{incomplete}

24th Annual INCOSE International Symposium

rdv B&O Partial Requirements
«requirement»

B&O User Experience

«requirement»

id#
R1

txt
CSs may join or leave the network at any time and a
consistent experience is provided.

Availability and consistency of the system configuration
«requirement»

id#
R2

txt
The SoS must support audio and visual data streaming
from one source device to one or more target devices

Audio/visual streaming
«requirement»

id#
R3

txt
The SoS must support browsing of
remotely-located media content

Remotely-located content-browsing

«requirement»

id#
R1.1

txt
The SoS must identify a single
leader in the network.

Identification of a single leader in SoS
«requirement»

id#
R1.2

txt
New constituent systems must be
able to join the SoS at any point.

Constituent system integration

«requirement»

id#
R1.2.1

txt
Constituent systems developed by
B&O must be able to join the SoS.

White-box integration
«requirement»

id#
R1.2.2

txt
Some constituent systems not developed
by B&O must be able to join the SoS.

Grey-box integration

{incomplete}

July

The Contracts Pattern
•  What is a contract?

– A description of the “minimum” behaviour that a
CS must exhibit in order to be part of an SoS

•  What is the Contract Pattern?
– Collection of viewpoints for modelling the

contracts of a SoS
– Defined and implemented using SysML
– Notation agnostic

See also: Bryans, J.; Fitzgerald, J.; Payne, R.; Miyazawa, A.;
Kristensen, K. SysML Contracts for Systems of Systems, In
Proceedings of IEEE SoSE 2014

24th Annual INCOSE International Symposium

July

Contractual SoS Definition View

24th Annual INCOSE International Symposium

!

!

!

1

1

1

1

1

1

1

1

1..*

1

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»
LE Device

«block»
«Contract»

Transport Layer

«block»
«Contract»

Browsing Device

«block»
«Contract»

Streaming Device

«block»
«Contract»
AV Device

1

1

1

1

1

1

1

1

1..*

1

July

!

1

1

1

1

1

1

1

1

«Contract Conformance View»
ccv AV SoS Constructs

«block»
«SoS»

AV SoS

«block»
«Constituent System»

TV

«block»
«Constituent System»

Network

«block»
«Constituent System»

Hifi

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»

Transport Layer

«block»
«Contract»
AV Device

«block»
«Constituent System»

Content Provider

1

1

1

1

1

1

1

1

«conformsTo»

«conformsTo»

«conformsTo»«conformsTo» «conformsTo»

Contract Conformance View

24th Annual INCOSE International Symposium

Transport
Layer

AV Device

AV Device

AV Device

AV Contractual SoS

July

Defining a Contract

24th Annual INCOSE International Symposium

!

!

!

1

1

1

1

1

1

1

1

1..*

1

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»
LE Device

«block»
«Contract»

Transport Layer

«block»
«Contract»

Browsing Device

«block»
«Contract»

Streaming Device

«block»
«Contract»
AV Device

1

1

1

1

1

1

1

1

1..*

1

July

1
1

1
1

1

1

1

1

1

1

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Contract»

values
id
mem
highest_strength
highest_strength_id
otherLeaders
myCS
amILeader

operations
update
Init
flushState
flushMemory
flushSummary
maxStrength
maxStrengthId
changeClaim
incStrength
amLeader
receiveMessages

LE Device

«block»
«Invariant»

dom mem = node_ids \ {id} and dom mem <> {}

inv1

«block»
«Invariant»

otherLeaders <= card dom mem

inv2

«block»
«Operation»

parameters
n: LE_Id, dat: DATA

postcondition
mem(n) = dat or mem(n).c = <off>

precondition
n in set dom mem

return
()

write

«block»
«Operation»

parameters
newClaim : Claim

postcondition
myCS.c = newClaim

precondition
myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> =>(newc = <leader> or newc = <follower>) and
myCS.c = <leader> => newc = <undecided> and
myCS.c = <follower> => newc = <undecided>

return
()

changeClaim

«block»
«Operation»

parameters
()

postcondition
myCS.s = myCS~.s + 1

precondition
myCS.s < 10

return
()

incStrength

1
1

1
1

1

1

1

1

1

1

{incomplete}

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Contract»

values
id
mem
highest_strength
highest_strength_id
otherLeaders
myCS
amILeader

operations
update
Init
flushState
flushMemory
flushSummary
maxStrength
maxStrengthId
changeClaim
incStrength
amLeader
receiveMessages

LE Device

LE Device Contract Definition View

24th Annual INCOSE International Symposium

1
1

1
1

1

1

1

1

1

1

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Contract»

values
id
mem
highest_strength
highest_strength_id
otherLeaders
myCS
amILeader

operations
update
Init
flushState
flushMemory
flushSummary
maxStrength
maxStrengthId
changeClaim
incStrength
amLeader
receiveMessages

LE Device

«block»
«Invariant»

dom mem = node_ids \ {id} and dom mem <> {}

inv1

«block»
«Invariant»

otherLeaders <= card dom mem

inv2

«block»
«Operation»

parameters
n: LE_Id, dat: DATA

postcondition
mem(n) = dat or mem(n).c = <off>

precondition
n in set dom mem

return
()

write

«block»
«Operation»

parameters
newClaim : Claim

postcondition
myCS.c = newClaim

precondition
myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> =>(newc = <leader> or newc = <follower>) and
myCS.c = <leader> => newc = <undecided> and
myCS.c = <follower> => newc = <undecided>

return
()

changeClaim

«block»
«Operation»

parameters
()

postcondition
myCS.s = myCS~.s + 1

precondition
myCS.s < 10

return
()

incStrength

1
1

1
1

1

1

1

1

1

1

{incomplete}

1
1

1
1

1

1

1

1

1

1

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Contract»

values
id
mem
highest_strength
highest_strength_id
otherLeaders
myCS
amILeader

operations
update
Init
flushState
flushMemory
flushSummary
maxStrength
maxStrengthId
changeClaim
incStrength
amLeader
receiveMessages

LE Device

«block»
«Invariant»

dom mem = node_ids \ {id} and dom mem <> {}

inv1

«block»
«Invariant»

otherLeaders <= card dom mem

inv2

«block»
«Operation»

parameters
n: LE_Id, dat: DATA

postcondition
mem(n) = dat or mem(n).c = <off>

precondition
n in set dom mem

return
()

write

«block»
«Operation»

parameters
newClaim : Claim

postcondition
myCS.c = newClaim

precondition
myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> =>(newc = <leader> or newc = <follower>) and
myCS.c = <leader> => newc = <undecided> and
myCS.c = <follower> => newc = <undecided>

return
()

changeClaim

«block»
«Operation»

parameters
()

postcondition
myCS.s = myCS~.s + 1

precondition
myCS.s < 10

return
()

incStrength

1
1

1
1

1

1

1

1

1

1

{incomplete}

July

LE Device Contract Protocol View

24th Annual INCOSE International Symposium

AV#SoS#

#

«Contract Protocol View»
cpv LE Contract Protocol

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

LE Device

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Update
do : update

Ready
do : receiveMessages

/send init
/send on

flushState/send off

[otherLeaders > 1 OR otherLeaders = 0]/

[not isLeader]/

[otherLeaders = 1]/

[isLeader]/

[otherLeaders>1]/

incStrength[otherLeaders = 1]/

July

Overview
•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

Model-based Analysis
•  Translate SysML contract model to formal

notation COMPASS Modelling Language
(CML)
– Contracts are defined in terms of

communicating processes
– Processes contain datatypes, variables,

operations and actions
•  Verify requirement of emergent behaviour

using CML tool Symphony
•  Formal semantics allows range of formal analyses

24th Annual INCOSE International Symposium

July

Symphony tool
•  Analyse leader election
emergent behaviour
•  Simulate execution of model
•  Model checking

Analysing the Model

24th Annual INCOSE International Symposium

process	LE_Device	=	i	:	nat	@		
begin	
		…	
		actions	
				Off	=	on!id	->	(Undecided	/_\	off!id		

	->	flushState();Off)		
				Undecided	=	changeClaim(<undecided>);		

	Listener;([isleader]&	Leader	
											 					[]		
							 					[not	isleader]&	Follower)																
				Leader	=	…	
				Follower	=	…	
				Listener	=	…	
end	
	
process	TransportLayer	=		
begin		
	…	
end	
	
process	AllLEDevices	=		
						||	i	in	set	le_ids	@	(LE_Device(i))		
	
process	AVSoS=	AllLEDevices	

	 							[|{|interface_channels|}|]	
	 							TransportLayer	

!

!

!

1

1

1

1

1

1

1

1

1..*

1

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»
LE Device

«block»
«Contract»

Transport Layer

«block»
«Contract»

Browsing Device

«block»
«Contract»

Streaming Device

«block»
«Contract»
AV Device

1

1

1

1

1

1

1

1

1..*

1

1
1

1
1

1

1

1

1

1

1

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Contract»

values
id
mem
highest_strength
highest_strength_id
otherLeaders
myCS
amILeader

operations
update
Init
flushState
flushMemory
flushSummary
maxStrength
maxStrengthId
changeClaim
incStrength
amLeader
receiveMessages

LE Device

«block»
«Invariant»

dom mem = node_ids \ {id} and dom mem <> {}

inv1

«block»
«Invariant»

otherLeaders <= card dom mem

inv2

«block»
«Operation»

parameters
n: LE_Id, dat: DATA

postcondition
mem(n) = dat or mem(n).c = <off>

precondition
n in set dom mem

return
()

write

«block»
«Operation»

parameters
newClaim : Claim

postcondition
myCS.c = newClaim

precondition
myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> =>(newc = <leader> or newc = <follower>) and
myCS.c = <leader> => newc = <undecided> and
myCS.c = <follower> => newc = <undecided>

return
()

changeClaim

«block»
«Operation»

parameters
()

postcondition
myCS.s = myCS~.s + 1

precondition
myCS.s < 10

return
()

incStrength

1
1

1
1

1

1

1

1

1

1

{incomplete}

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

«Contract Connections View»
ccv AV Contractual SoS Connections

«block»
«Contractual SoS»

AV Contractual SoS

«Contract»
: Transport Layer

«Contract»
: AV Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

«Contract»
: AV Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

«Contract»
: Transport Layer

«Contract»
: AV Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

«Contract»
: AV Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

«Contract»
: Streaming Device

«Contract»
: Browsing Device

«Contract»
: LE Device

rec

send

rec

send

AV#SoS#

#

«Contract Protocol View»
cpv LE Contract Protocol

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

LE Device

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Update
do : update

Ready
do : receiveMessages

/send init
/send on

flushState/send off

[otherLeaders > 1 OR otherLeaders = 0]/

[not isLeader]/

[otherLeaders = 1]/

[isLeader]/

[otherLeaders>1]/

incStrength[otherLeaders = 1]/

July

CML Model Simulation

24th Annual INCOSE International Symposium

•  Used Symphony simulator to
execute traces of CML
model

•  Model does not meet
requirement R1.1
–  Can have more than one

leader
–  However, quickly resolved
–  Incorrect model or incorrect

requirement?
•  New CSs may be added and

emergent behaviour
maintained

July

Overview

•  Systems of Systems
•  Case study
•  Modelling
•  Analysis
•  Conclusions and future work

24th Annual INCOSE International Symposium

July

Conclusions
•  Established need for contractual definition of

constituent systems
•  Defined and demonstrated contracts pattern

with industrial proof of concept study
– Using SysML and CML

•  Demonstrated analysis of CS contracts to
ensure required emergence is maintained
– Simulation of CML model
– Resulting in clarification of requirements

24th Annual INCOSE International Symposium

July

Future Work
•  Integrate SoS engineering frameworks

– e.g. fault modelling and analysis, testing
•  Enhance contract pattern

– non-functional properties and security
features

•  Modelling SoS-level contracts in pattern
•  Consequences of contract composition
•  Automated contract conformance

24th Annual INCOSE International Symposium

July

COMPASS SUMMER SCHOOL
New Developments in Model-Based SoS Engineering
Radisson Blu Edwardian Vanderbilt, London,
17-18 September 2014

More information:
http://www.compass-research.eu/summerschool.html

Learn about the COMPASS
methods and tools:
•  Architectural SoS modelling

in SysML & CML
•  The Symphony tool
•  Model-based testing

24th Annual INCOSE International Symposium

July

24th Annual INCOSE International Symposium

www.compass-research.eu
www.compass-research.eu/summerschool.html

john.fitzgerald@ncl.ac.uk	
richard.payne@ncl.ac.uk	

@NclFitz	
@riffio	

July

COMPASS Tool Architecture

24th Annual INCOSE International Symposium

July

Contract Pattern - Ontology

24th Annual INCOSE International Symposium

Ontology Definition View [Contracts Concepts]

2..*

1..*

2..*

1

*

1

*

1

1..*

1..*

*

1

*

1

*

1..*
*

1

*

1
1..*

*

*

*

*

1

**

**

odv Ontology Definition View [Contracts Concepts]

SoS

Constituent System Contract

Interface

Contractual SoS

State Variable

Operation

precondition : Expression
postcondition : Expression

Port

State Invariant

Protocol

2..*

1..*

is composed of

2..*

1
is composed of

*

1

owns

*

1

owns

1..*

1..*

exposes

*

1
has

*

1

has

*

1..*
is constrained by*

1

is connected to

*

1

is connected to

1..*

*

has

*

*
is composed of

*

1

has

**
conforms to

** conforms to

July

Contract Pattern - Views

24th Annual INCOSE International Symposium

Contract	Pa*ern	Viewpoints	
Name	 Overview	
Contractual	SoS	
DefiniAon	

IdenAfies	the	contracts	which	comprise	the	
Contractual	SoS	

Contract	
Conformance	

Denotes	the	contracts	each	CS	conforms	to	

Contract	
ConnecAons	

Shows	connecAons	and	interfaces	between	
contracts	

Contract	DefiniAon	 Defines	operaAons,	state	variables	and	
state	invariants	of	a	contract	

Contract	Protocol	 Protocol	specificaAon	of	a	contract	

July

Contract Pattern – Viewpoint Definitions

•  Define the model elements on a view and
their relationships

•  Consistent with ontology

24th Annual INCOSE International Symposium

Viewpoint Definition View [Contract Definition Viewpoint]

*

1

*

1

*

1..*

*

1

1

1

*

1

*

1

vdv Viewpoint Definition View [Contract Definition Viewpoint]

Contract Definition Viewpoint

Contract

Operation

State Invariant

State Variable
*

1 has

*

1has

*

1..*

is constrained by

*

1

1

1

*

1

*

1

Viewpoint Definition View [Contract Protocol Viewpoint]

1..*

*

1

1

vdv Viewpoint Definition View [Contract Protocol Viewpoint]

Contract Protocol Viewpoint

Protocol

Contract

1..*

*

has

1

1

A state
diagram (must
use operations
and attributes
from contract)

Viewpoint Definition View [Contractual SoS Definition Viewpoint]

1

1

*

1

1..*

1

vdv Viewpoint Definition View [Contractual SoS Definition Viewpoint]

Contractual SoS Definition Viewpoint

Contractual SoS

ContractConstituent System

1

1

*

1

1..*

1Viewpoint Definition View [Contract Connections Viewpoint]

1

1

*

1

*

1

1..* 1..*

*

1

*

1

*

*

2..*

1

*

1

1..*

1

1

1

1

1

vdv Viewpoint Definition View [Contract Connections Viewpoint]

Contract Connections Viewpoint

Contractual SoS

ContractConstituent System

PortInterface

1

1

*

1

owns

*

1 owns

1..* 1..*exposes

*

1

is connected to

*

1

is connected to

*

*is composed of

2..*

1 is composed of

*

1

1..*

1

1

1

1

1

All Diagrams

Viewpoint Definition View [Contract Conformance Viewpoint]

2..*

1..*

2..*

1

1

1

2..*

1

1

1

2..*

1

**

**

vdv Viewpoint Definition View [Contract Conformance Viewpoint]

Contract Conformance Viewpoint

SoS

Constituent System

Contractual SoS

Contract
2..*

1..*

is composed of

2..*

1

is composed of

1

1

2..*

1

1

1

2..*

1

**
conforms to

**
conforms to

July

Why Contracts May Help
•  SoSs present significant challenges

–  CS integration: cannot justifiably rely on the behaviour of the
CSs

–  Bound behaviours that can be relied upon without over-
constraining them

–  Promote desirable and limit undesirable emergent behaviours
•  Contractual description of CSs

–  CSs free to choose the way in which they meet these contracts
–  Free to adhere to other contracts

•  We present a definition of a contract as a SysML pattern

24th Annual INCOSE International Symposium

July

Proof of Concept Study
•  Based on a Bang & Olufsen (B&O) home Audio

Visual (AV) network linking multiple AV devices.
•  The network exhibits the characteristic properties

of a SoS;
–  Constituent systems are heterogeneous and may

evolve (through software or firmware upgrades),
–  New CSs may be integrated into SoS at any time
–  CSs may be legacy or non-B&O systems, potentially

limiting their controllability within the SoS.

24th Annual INCOSE International Symposium

July

Proof of Concept Study

•  To provide the B&O user experience, need a
global ‘leader’ to maintain global clock, SoS
architecture, streaming details, …

•  The ability to elect a leader may be
considered an emergent behaviour of SoS

•  Require that all AV devices in the SoS
conform to several contracts
– Use contract pattern to model the SoS, its CSs

and the contracts of the SoS

24th Annual INCOSE International Symposium

July

Contractual SoS Definition View

24th Annual INCOSE International Symposium

!

!

!

1

1

1

1

1

1

1

1

1..*

1

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»
LE Device

«block»
«Contract»

Transport Layer

«block»
«Contract»

Browsing Device

«block»
«Contract»

Streaming Device

«block»
«Contract»
AV Device

1

1

1

1

1

1

1

1

1..*

1

Transport
Layer

AV Device

AV Device

AV Device

AV Contractual SoS

July

Contract Conformance View

24th Annual INCOSE International Symposium

!

1

1

1

1

1

1

1

1

«Contract Conformance View»
ccv AV SoS Constructs

«block»
«SoS»

AV SoS

«block»
«Constituent System»

TV

«block»
«Constituent System»

Network

«block»
«Constituent System»

Hifi

«block»
«Contractual SoS»

AV Contractual SoS

«block»
«Contract»

Transport Layer

«block»
«Contract»
AV Device

«block»
«Constituent System»

Content Provider

1

1

1

1

1

1

1

1

«conformsTo»

«conformsTo»

«conformsTo»«conformsTo» «conformsTo»

July

LE Device
process LE_Device = i : nat @
begin
 …

 actions
 Off = on!id -> (Undecided /_\
 off!id -> flushState();Off)

 Undecided = changeClaim(<undecided>);Listener;
 ([isleader]& Leader

 []
 [not isleader] & Follower)

Follower = …

Leader = …

24th Annual INCOSE International Symposium

AV#SoS#

#

«Contract Protocol View»
cpv LE Contract Protocol

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

LE Device

Off

On
Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Election

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Undecided
do : changeClaim

Follower
do : changeClaim
do : sendMessages

Leader
do : changeClaim
do : sendMessages

Listener

Update
do : update

Ready
do : receiveMessages

Update
do : update

Ready
do : receiveMessages

/send init
/send on

flushState/send off

[otherLeaders > 1 OR otherLeaders = 0]/

[not isLeader]/

[otherLeaders = 1]/

[isLeader]/

[otherLeaders>1]/

incStrength[otherLeaders = 1]/

July

LE Device – CML model
process LE_Device = i : nat @
begin
 state
 id : NODE_ID := i
 mem: map NODE_ID to CS :=
 {cid |-> mk_CS(<off>, 0) | cid in set node_ids \ {id}}
 inv dom mem = node_ids \ {id} and dom mem <> {}

 highest_strength : STRENGTH := 0
 highest_strength_id : NODE_ID := 0
 inv highest_strength_id in set (dom mem union {id})

 leaders : nat := -1
 inv leaders <= card dom mem

 myCS : CS := mk_CS(<off>, 0)

 myNeighbours:seq of NODE_ID := [i|i in set dom mem@i <>id]

 isleader : bool := false

operations

 Init: () ==> ()
 Init() ==
 (
 id := i;
 flushState()
)

 flushState: () ==> ()
 flushState() ==
 (
 mem := {cid|->mk_CS(<off>,0)|cid in set node_ids\{id}};
 highest_strength := 0;
 highest_strength_id := if id=0 then 1 else 0;
 leaders := -1;
 myCS := mk_CS(<off>, 0)
)

 write: NODE_ID * DATA ==> ()
 write(n,dat) ==
 (
 if is_TL_MSG(dat) then mem(n) := mk_CS(<off>,0) else

 mem(n) := dat
)
 pre i in set dom mem
 post mem(i) = dat or mem(i).c = <off>

 update:()==>()
 update() ==

 (
 leaders:= card{n|n in set dom mem @ mem(n).c = <leader>};
 highest_strength := maxStrength();
 highest_strength_id := maxStrengthID();
 isleader := amILeader()
)
 post leaders>0=>mem(highest_strength_id).s=highest_strength

 maxStrength:() ==> nat
 maxStrength() ==
 (
 dcl strs : set of nat := {cs.s|cs in set rng mem @
 cs.c = <leader>} @ return maxSet(strs,0)
)

 maxStrengthID : () ==> NODE_ID
 maxStrengthID() ==
 (
 dcl minId : NODE_ID, maxStrIds : set of NODE_ID @
 (
 if id = 0
 then minId := 1
 else minId := 0;
 maxStrIds := {n | n in set dom mem @ mem(n).s =
 highest_strength and mem(n).c = <leader>};
 return maxSet(maxStrIds,minId)
)
)

 changeClaim: CLAIM ==> ()
 changeClaim(newc) ==
 (
 dcl currStr : STRENGTH := myCS.s @
 myCS := mk_CS(newc, currStr)

)
 pre myCS.c = <off> => newc = <undecided> and
 myCS.c = <undecided> => newc = <leader> or

 newc = <follower> and myCS.c = <leader> =>
 newc = <undecided> and
 myCS.c = <follower> => newc = <undecided>

 incStrength:()==>()
 incStrength() ==
 (
 if myCS.s < ulp
 then myCS := mk_CS(myCS.c, myCS.s+1)
)
 pre myCS.s < ulp
 post myCS.s = myCS~.s + 1

 amILeader: () ==> bool

 amILeader() ==
 (
 return (leaders = 0) or highest_strength < myCS.s

)

 amILeader2: () ==> bool

 amILeader2() ==
 (
 return (leaders = 0) or highest_strength < myCS.s

)

 whoIsHighest: () ==> NODE_ID
 whoIsHighest()==
 (
 return highest_strength_id
)

actions

 Off = on!id -> (Undecided /_\ off!id -> flushState();Off)

 Listener = ReceiveData;update();OutputData

 ReceiveData = (n_rec!id?s?dat ->write(s,dat);ReceiveData)

 [_ n_timeout _> Skip

 OutputData = leaderClaim!id!isleader -> Skip

 SendCS = (||| t in set dom mem @ [{}] n_send!id!t!myCS ->

 Skip)

 Undecided = changeClaim(<undecided>);Listener;
 ([isleader]& Leader
 []
 [not isleader] & Follower)

 Leader = changeClaim(<leader>);SendCS;Listener;
 ([leaders > 0] & Undecided
 []
 [leaders = 0] & incStrength();Leader)

 Follower = changeClaim(<follower>)/*;SendCS*/;flushState();

 Listener; ([leaders >1 or leaders=0] & Undecided
 []
 [leaders = 1] &)

 @ init -> Init();(Off/_\deInit->Skip)

end

24th Annual INCOSE International Symposium

July

Verifying Contract Conformance

24th Annual INCOSE International Symposium

•  Contract Conformance Viewpoint: informal
•  How to verify this conformance?
•  SysML may be translated to the formal notation CML
•  CML refinement could be used as means of checking

conformance.

July

Verifying Contract Conformance

•  Results may be reported to the engineer,
and recorded at the SysML level.
– Success: included on a Contract

Conformance Viewpoint as an evidence
model element

– Failure: a trace of the CS not permitted by the
contract (or vice versa) translated into a
SysML sequence diagram

24th Annual INCOSE International Symposium

