272 Newcastle & =
+ Universjty BANG & OLUFSEN BO C C/ M P A S S 'I“%"“““‘

Maintaining Emergence in Systems of
Systems Integration: a Contractual

Approach using SysML

Jeremy Bryans;
John Fitzgerald; Richard Payne
(Newcastle University, UK)

Klaus Kristensen
(Bang & Olufsen, DK)

Overview N

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

« Case study

* Modelling

* Analysis

» Conclusions and future work

Overview NG

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

» Case study

* Modelling

* Analysis

* Conclusions and future work

24t Annual INCOSE International Symposium

Systems of Systems NS

Las Vegas, NV
June 30 - July 3, 2014

50 ——800————800———1000———1100——1200——£300——1400—1500—
[—ISverdlovsk DDS\ Warszawa Pa;
LI atundbor PetiEng, National
alu e ng. National
[__Finmark [Leningr: [__JLuxembourg xﬁ)Kon\gswusmrh
20— g5 B0 —————350—————400 430 ————— 500 ————
Mellem OJParis DR&m I [Midland Reg. T3 Milano 3 Lyon
ClFécamp L Lille 1 Hilversum) Welsh Regional T3 _FPrag
ClLyon 3 E‘{ankfgrl] Bologna 3 _Leipzig T2 _Trendelag
ebenhayn] Lisburn C3_Toulouse T Bruxelles
=] Nat. T P-Parislen T _ScottishRegionalC]_Firenze
] _HMarseille
3 Munchen
=) R%m 1 2 Mad
[} Kuldiga T3 Toulouse 3 _Stockholm
=) =3 w 1 _Hamburg 1 Paris RT.T.
T Niirnberg T West Reg.C_] London Regional [Sottens
[m) ennes J_Strasburg T3 North Regional
=] riick] Konigsberg 1 Berlin 3 Kdin
17 18 19 20 21 22 23 24 25 26 27 28 35

P ——
Zees. DJR Schenect. Dav.GSP | |Reykjavik Moskva
Dav. GSG| [Zees.DJQ Dav.GSJ Paris TPA2| |Dav.GSE GSN Rom)
B. Brook | [Eindh. Pittsb. Zees. DJB-DJL| | Tokio Zees.DJD
| Wayne Dav. GSO- ofi Paris Mot BP

Breslau

Beglite
39

— ﬁe‘;,\‘in_?age: Theredmonkey, Wikimedia Commons

Systems of Systems INCOSE

Las Vegas, NV
June 30 - July 3, 2014

* Multiple content sources, DRMs,

« Multiple devices from multiple
manufacturers

* Mobile and concurrent systems

Can we ensure consistent “user

experience” as devices, content,

DRM, etc., change?

Systems of Systems (SoS) g

Las Vegas, NV
June 30 - July 3, 2014

« Assembly and integration of
independent systems that
collectively offer a new
(“emergent”) service on
which value and reliance is
placed.

* Independence

 Distribution 5o
« Evolution T T
« Emergence

[) Model_based SOS LE Device Transport Layer
Engineering as a way of o

«block» «block» «block»

m a Ste ri n g CO m p I eX i ty White-Box AV Device Grey-Box AV Device Network

SoS Engineering Challenges A&

Las Vegas, NV
June 30 - July 3, 2014

* Independence and autonomy of constituent systems
— Constituent systems evolve at the behest of their owners

— Response: Collaborative SoS modelling by contractual (assume,
commit) interface specification

« Complexity of confirming/refuting SoS-level properties
— Verification of emergence

— Response: verified refinement for engineering of emergent
properties; simulation tools allow exploration for unanticipated
behaviours

« Semantic heterogeneity (integrating models)

— Wide range of interacting features in models (e.g. location, time,
concurrency, data, communication)

— Response: extensible semantic basis

COMPASS Technology

INCOSE

Las Vegas, NV
June 30 - July 3, 2014

1

(«Fault Activation Views {faultsOfinterest = Complete F:
Initiate Rescue Fault Activation [Fauit 1] J

CC: Call Centre - Radio System ERU1:ERU

«Fault Activation»
Fault 1 activation

®
«Start Recoverys
Start Recovery 1

actions
MERGE1(r) =
(dcl e: set of ERUId @ e := findldleERUs();
(do
e = {} -> DECISION2(r)

e <> {} ->

(dcl e1: ERUId @ e1 =
allocateldleERU(e, r); MERGE2(e1, r))
end)) ...
process InitiateRescue = CallCentreProc ||
SEND_CHANNELS |] RadioSystemProc ||
RCV_CHANNELS |] ERUsProc

>O

I o\ O

(SoS || STOP) [= £-(SoS)

Symphony?

SysML modelling
 Guidelines for Requirements,
Architecture, Integration

* SoS Modelling profiles, e.g.
Fault-Error-Failure

* Architectural patterns and
extensible frameworks

Formal Modelling Language
* CML allows representation of
behavioural semantics of the SoS

» Supports contract specification

» Describes functionality, object-
orientation, concurrency, real-time,
mobility.

» Can be extended to new paradigms

Tool-supported
Analysis

* Model-checker

» Automated proof

* Test generation

» Simulation

* Model-in-Loop Test
 Exploration of design space

Overview N

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

« Case study

* Modelling

* Analysis

* Conclusions and future work

24t Annual INCOSE International Symposium

AV SoS Case Study

Las Vegas, NV
June 30 - July 3, 2014

"_
=,

« CSsare heterogeneous and may evolve (through
software or firmware upgrades)

 New CSs may be integrated into SoS at any time

« CSs may be legacy or non-B&O systems

FfN?}E

Int

AV SoS Case Study

& o
[)

Las Vegas, NV
June 30 - July 3, 2014

0

« Challenge: verifying emergence — can a single “leader”
be established to maintain global clock, SoS
architecture, streaming details, ...?

Overview N

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

» Case study

* Modelling

* Analysis

* Conclusions and future work

24t Annual INCOSE International Symposium

Modelling Approach INCOS

Las Vegas, NV
June 30 - July 3, 2014

 Use SoS-ACRE — COMPASS Requirements
Engineering guidelines

« Define SoS composition and contracts in SysML
using Contracts Pattern

Requirements Definition

rdv B&O Partial RequirementsJ

«requirement»
B&O User Experience

D T

{incomplete}

«requirement»

consistent experience is provided.

The SoS must support audio and visual data streaming
from one source device to one or more target devices

«requirement» «requirement»
Availability and consistency of the system configuration Audio/visual streaming Remotely-located content-browsing
id# id# id#
R1 R2 R3
txt txt txt
CSs may join or leave the network at any time and a

The SoS must support browsing of
remotely-located media content

R

«requirement»
Identification of a single leader in SoS

id#
R1.1

txt
The SoS must identify a single
leader in the network.

«requirement»
Constituent system integration

id#
R1.2

txt
New constituent systems must be
able to join the SoS at any point.

P

«requirement»
White-box integration

R1.2.1

id#

«requirement»
Grey-box integration

id#
R1.2.2

txt txt

INCOSE
|mW

Las Vegas, NV
June 30 - July 3, 2014

Constituent systems developed by

Some constituent systems not developed
B&O must be able to join the SoS.

by B&O must be able to join the SoS.

The Contracts Pattern

Las Vegas, NV
June 30 - July 3, 2014

 What is a contract?

— A description of the “minimum” behaviour that a
CS must exhibit in order to be part of an SoS

 What is the Contract Pattern?

— Collection of viewpoints for modelling the
contracts of a So0S

— Defined and implemented using SysML
— Notation agnostic

See also: Bryans, J.; Fitzgerald, J.; Payne, R.; Miyazawa, A;
Kristensen, K. SysML Contracts for Systems of Systems, In
Proceedings of IEEE SoSE 2014

Contractual SoS Definition View N

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»

«Contractual SoS»
AV Contractual SoS

!

1.7

1

«block»
«Contract»
AV Device

«block»
«Contract»
Transport Layer

¢

1

1

1

«block»
«Contract»
LE Device

«block»
«Contract»

Streaming Device

1

«block»
«Contracty
Browsing Device

Las Vegas NV
June 30 - July 3, 2014

Contract Conformance View

«Contract Conformance Viewy)
ccv AV SoS Constructs

«block»
«SoS»
AV SoS

«conformsTo»

«block»

«Contractual SoS»
AV Contractual SoS

1

1

«block»
«Constituent System»

«conformsTo»

«block»
«Constituent System»
Network

l«conformsTo»

«block»
«Contract»
Transport Layer

«block»
«Contract»
AV Device

«block»
«Constituent System»
Hifi

«block»
«Constituent System»
Content Provider

NCOSE

NCOSE
MW

Las Vegas, NV
June 30 - July 3, 2014

AV Contractual SoS

Transport
Layer

AV Device

AV Device

AV Device

Defining a Contract

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»

«Contractual SoS»
AV Contractual SoS

!

1.% 1
«block» «block»
«Contracty «Contracty
AV Device Transport Layer
1

«blocky»

«Contract»
LE Device

1

«block»
«Contract»

Streaming Device

«block»
«Contracty
Browsing Device

Las Vegas, NV
June 30 - July 3, 2014

LE Device Contract Definition View INCOS

Las Vegas, NV
June 30 - July 3, 2014

«Contract Definition View»
cdv Partial LE Contract Definition

«block»
«Invariant»
inv2

«block»
«Contract»
LE Device

otherLeaders <= card dom mem
values

id

mem
highest_strength
highest_strength_id
otherLeaders

«block»
«Operation»

myCS changeClaim

amlLeader parameters
operations newClaim : Claim

update postcondition

Init myCS.c = newClaim
flushState

flushMemory
flushSummary
maxStrength

precondition
myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> =>(newc = <leader> or newc = <follower>) and
maxStrengthld myCS.c = <leader> => newc = <undecided> and
changeClaim myCS.c = <follower> => newc = <undecided>

incStrength return
amlLeader 0
receiveMessages

LE Device Contract Protocol View N

Las Vegas, NV
June 30 - July 3, 2014

«Contract Protocol View»
cpv LE Contract Protocol

- .
LE Device
- - A
Election [otherLeaders > 1 OR otherLeaders = 017_ﬂ
Follower

do : changeClaim
do : sendMessages

[not isLeader]/

[otherLeaders = 1]/

Undecided
\do : changeCIaimJ

/send on incStrength[otherLeaders = 1]/

/send init E Ul

[isLeader]/

Leader

[otherLeaders>1]/ do : changeClaim
do : sendMessages
Listener

-
o—— — Ready w Update
@o : receiveMessagesJ do : update

flushState/send o

Overview N

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

» Case study

* Modelling

* Analysis

* Conclusions and future work

24t Annual INCOSE International Symposium

Model-based Analysis

Las Vegas, NV
une 30 - July 3, 2014

* Translate SysML contract model to formal
notation COMPASS Modelling Language
(CML)

— Contracts are defined in terms of
communicating processes

— Processes contain datatypes, variables,
operations and actions

* Verify requirement of emergent behaviour
using CML tool Symphony

* Formal semantics allows range of formal analyses

Analysing the Model

Las Vegas, NV
June 30 - July 3, 2014

«Contractual SoS Definton View| rocess LE De 3 e = 3 . at
csdv AV SoS Contracts p - Vl c - 1 . n © O O Debug - LE_INCOSE/INCOSE-1.2.1_INCOSEpape: | - The Symphony IDE - x/University.... w”
e o G E@R 244N Ol [E 2400 Qv - Gy
«Contractual SoS»
R begin Qs)| 2| o et Mo] @ st ot
= | £ “INCOSE-1.2.1_INCOSEpaper.cmi EZ‘ = B O observable Event hi. %8| T O
— 253 actions ¥
1.7] o 254 ek
R Biod a ct i0ons 255 Off = onlid -> (Undecided /_\ offlid -> flushState();0ff) | rock
«Contract» «Contracts 256 tock
AV Device Transport Layer O'F'F ' . d U d . d d / \ 'F'F I . d 257 Listener = ReceiveData;update();OutputData m::
= — 238 leaderClaim O.rue
on:l > (ndecide —_ o :1 259 ReceiveData = (n_rec!id?s?dat ->write(s,dat);Receivedata) | || o7t
) 260 tock.
_ . 261 Outputbata = leaderClaim!idtisleader -> Skip
) — > flushState();0ff) & =
Bl 1|1 ok] . M . 263 SendCS = (I11 t in set dom mem @ [{}] n_send!id!timyCS ->
«Col - . 264
<CoractConoctors Vi Und ded = ch 1 d ded
LE v AV Conracuel 5o Comectns] ndecide changeClaim(<undecided> B} 265 Undecided = changeClaim(<undecided>);Listener;
| & 266 C
«block» - . S l d & d 267 [isleader]& Leader
Conracun 525+ Listener;([isleader Leader 8 =
AV Contractual SoS 269 [not isleader] & Follower = Do
o ot [] 270) Event Selection
“Cortrach Contrach 271
AV Device AV Device 272 Leader = changeClaim(<leader>);SendCS;Listener; I;:I:“
s 273 C leaderClaim, Ltrue
o o [not isleader]& Follower) a4 [leaders > 01 & Undecided S e
275 i] oif0
LEDevieo [[l Lepeice d 276 [leaders = @] & incStrength();Leader onz
Leader = .. o >
«Contract «Contract 279 Follower = changeClaim(<follower>)/*;SendCS*/; FlushState()
semerg e [] . [srwans o Follower = .. ¢
«Contact e 281 [leaders >1 or leaders=0] & Undecided
cay Partel LE Co| L N t 282
= 283 [leaders = 1] & Follower Console
) «Contract» «Contracts istener e 284
— Streaming Device [[Streaming Device 2 =
«Convac]) Console 23| & Tasks s [&&EE =8 - = o
e LE INCOSE [CML Model) CML Debugger
" values T T T Waiting for environment on : tau, n_send.0.l.mk_CS(<leader>, 0), off.0, on.2, delnit, tock
e Waiting for environment on : tau, n_send.@.1.mk_CS(<leader>, @), of on.2, delnit, tock
ghest stength En = o Waiting for environment on : tau, n_send.0.1.mk_CS(<leader>, 8), off.0, on.z, deInit, tock
ighest_strengih 1 «Operation «Operations «Operations Waiting for environment on : tau, n_send.0.1.mk_CS(<leader>, 0), off.@, on.2, delnit, tock
mycS changeClaim write incStrength cess Tr‘a ns po r‘t Layer‘ = Waiting for environment on : tau, n_send.0.1.mk_CS(<leader>, 0), off.@, on.2, deInit, tock
amieader Parameters Parameters Parameters Waiting for environment on : leaderClaim.1.true, n_send.0.1.mk_CS(<leader>, 0), Off.0, on.2, deln|
operaions newGiaim : Giim - LE 19, dat- DATA o),
update ‘postcondition postcondition ‘postcondition 1n
it e myCS ¢ = newClaim s i)
e recondition precondition precondition
maxsengt, myCS.c = <leader> => newc = <undeced> and o rewm n rewm e
emsos] <Contract Protocol View
2] et comaa o end
On
[Election [otherLeaders > 1 OR otherLeaders = 0)/

e process AllLEDevices = .
|| i in set le ids @ (LE_ Device(i)) * Analyse leader election

I emergent behaviour

e— process AVSoS= AllLEDevices « Simulate execution of model
—— | e [I{|interface_channels|}|] :
@ FaneportLayer * Model checking

Undecided

do : changeClaim,

CML Model Simulation L T

Las Vegas, NV
June 30 - July 3, 2014

f'onc?@mbug -Al:E_':I-MCgSE/INCOSE.—II.:.1_INCOSEpaper;T;; *n;; fy;:.p:h(o‘.nt |3§'- /U'sers/.n:f':‘oG(;D:opbf:x/Universily...) [) U Se d Sym p h O n y S i m u I ato r to
execute traces of CML

Q Quick Access 259 | EJoML ghisabelle BBPOG %5 Debug Mc Model Checker

) “INCOSE-1.2.1_INCOSEpaper.cml 32 = O | observable eventhi... 2 = O
h> actions ::o d |
: OFF = ontid -> (Undecided /_\ offtid -> FlushState(;0FF) [lock mo e
;;? Listener = ReceiveData;update();OutputData x; im0
S8 eaderClaim.O.true
:_ﬂ ReceiveData = (n_rec!id?s?dat ->write(s,dat);ReceiveData) | "0"(: i MOdeI does not meet
260 ock
kbt- OutputData = leaderClaim!id!isleader -> Skip ock . t R1 1
. sendCs = (111 t in set dom mem @ [{}] n_send!iditimycs -> | - Event req u I remen .
:n: Undecided = changeClaim(<undecided>);Listener; History
,kx ([isleader]& Leader - Can have more than One
iw E]not isleader] & Follower CML p= Outline | T CMLEv... 83 I d
270 b) Model Event Selection e a e r
;k; Leader = changeClaim(<leader>);SendCS;Listener; :::n
o7 (E;eaaers » 0] & Undecided e s 0 — However, qu|ck|y resolved
;}; [leaders = @] & incStrength();Leader on.2
A — | t model or i t
‘» Follower = changeClaim(<follower>)/*;Send(S*/;flushState(): A Nﬁx:“ nCO rreC mo e Or InCO rreC
280 C X vallia e 1
,:. [leaders >1 or leaders=0] & Undecided req u I rement?
_\k geaders = 1] & Follower Conse Events
=s-s} * New CSs may be added and

LE_INCOSE [CML Model] CML Debugger

Waiting for environment on : tau, n_send.9.1.mk_CS(<leader>, @), off.0, on.2, delnit, tock
Waiting for environment on : tau, n_send.@.1.mk_CS(<leader>, @), off.@, on.2, deInit, tock
Waiting for environment on : tau, n_send.@.1.mk_CS(<leader>, @), off.0, on.2, delnit, tock
Waiting for environment on : tau, n_send.®d.1.mk_CS(<leader>, @), off.d, on.2, delnit, tock
Waiting for environment on : tau, n_send.@.1.mk_CS(<leader>, @), off.@, on.2, delnit, tock
Waiting for environment on : leader(loim.1 +rue, n _sepd 2.1 mk _CS(<leader>, 0), off.®, on.2, del

Analysis Status

emergent behaviour
maintained

<z -
K\Q\,, 7 5" ol -
SN 3 S — —

Overview NG

Las Vegas, NV
June 30 - July 3, 2014

« Systems of Systems

« Case study

* Modelling

* Analysis

 Conclusions and future work

24t Annual INCOSE International Symposium

Conclusions

Las Vegas, NV
June 30 - July 3, 2014

» Established need for contractual definition of
constituent systems

* Defined and demonstrated contracts pattern
with industrial proof of concept study
— Using SysML and CML

* Demonstrated analysis of CS contracts to
ensure required emergence is maintained
— Simulation of CML model

— Resulting in clarification of requirements

Future Work

Las Vegas, NV
June 30 - July 3, 2014

 Integrate SoS engineering frameworks
— e.g. fault modelling and analysis, testing

 Enhance contract pattern

— non-functional properties and security
features

* Modelling SoS-level contracts in pattern
« Consequences of contract composition
* Automated contract conformance

CCMPASS INCOSE

COMPASS SUMMER SCHOOL

New Developments in Model-Based SoS Engineering
Radisson Blu Edwardian Vanderbilt, London,

17-18 September 2014

Learn about the COMPASS 1 artisansruio
methods and tools: F

 Architectural SoS modelling !

in SysML & CML Anaiyss Pugin
« The Symphony tool
* Model-based testing ﬁ

More information:
http://www.compass-research.eu/summerschool.html

24 Annual INCOSE International Symposium

INCO

Las Vegas, NV
June 30 - July 3, 2014

;25 Newcastle
University

john.fitzgerald@ncl.ac.uk W @NclFitz
richard.payne@ncl.ac.uk W @riffio

CCMPASS

wWww.compass-research.eu
www.compass-research.eu/summerschool.html

24 Annual INCOSE International Symposium

COMPASS Tool Architecture N

Las Vegas, NV
June 30 - July 3, 2014

W
P

Theorem
Prover Plugin

SysML-to-CML
Translation
1.} artisanStudio’
Proof Obligation
Generator
Model Checker FORMULA
Plugin
Static Fault

Analysis Plugin

Interpreter
Plugin

RT-Tester
Plugin

I
RT-Tester
I

24t Annual INCOSE International Symposium

Contract Pattern - Ontology “&*

Las Vegas, NV
June 30 - July 3, 2014

odv Ontology Definition View [Contracts Concepts]J

SoS * * Contractual SoS
conforms to =
1.% 1

is composed of V
is composed of V

2.. = conforms to e * 2..
Constituent System Contract *
| | I e — ¥s composed of =
Y
State Variable
* Port 1.7 . .
is constrained by V
1 1.*
State Invariant
- exposes V
-lis connected to
1.% Operation
* Interface

precondition : Expression
postcondition : Expression

Protocol

-sdis connected to

Contract Pattern - Views

Name
Contractual SoS
Definition
Contract
Conformance

Contract
Connections

Contract Definition

Contract Protocol

INCOSE
mtq:wgpnalrs Mposium

Las Vegas; NV
June 30 - July 3, 2014

Overview

Identifies the contracts which comprise the
Contractual SoS

Denotes the contracts each CS conforms to

Shows connections and interfaces between
contracts

Defines operations, state variables and
state invariants of a contract

Protocol specification of a contract

=
INCOSE
A"

Las Vegas, NV
June 30 - July 3, 2014

Contract Pattern — Viewpoint Definitions

 Define the model elements on a view and
their relationships

» Consistent with ontology

vdv Viewpoint Definition View [Contractual SoS Definition Viewpoint]J vdv Viewpoint Definition View [Contract Definition Vie‘”p"i"']J vdv Viewpoint Definition View [Contract Protocol Viewpoint]J
Contract Definition Viewpoint| Contract Protocol Viewpoint]
’Contractual SoS Definition Viewpoint‘ P
1
1
1
1
1 1

~has 4 Contract 1 hashe et
[e] e cporins

------ use operations
B * N B and attributes

1.%
State Variable Operation from contract)
1
has
1 1.* A

. Vv Viewpoint Defintion View [Contract Connections Viewpoint] is constrained by ¥

vdv Viewpoint Definition View [Contract Conformance Viewpoint]
i Contract Conformance Viewpoint
Constituent System State Invariant

1

~tis composed of * Contractual SoS 1 is composed of e

1 1
SoS * * Ci SoS
conforms to e
1.* 1

is composed of V is composed of v

2. 2. 2. 2.

Constituent System | * M| Contract
conforms to =

Why Contracts May Help

Las Vegas, NV
June 30 - July 3, 2014

« S0Ss present significant challenges

— CS integration: cannot justifiably rely on the behaviour of the
CSs

— Bound behaviours that can be relied upon without over-
constraining them

— Promote desirable and limit undesirable emergent behaviours
» Contractual description of CSs

— CSs free to choose the way in which they meet these contracts

— Free to adhere to other contracts

« We present a definition of a contract as a SysML pattern

|®E

InfggnationaliSymposium
A

Proof of Concept Study

Las Vegas, NV
June 30 - July 3, 2014

« Based on a Bang & Olufsen (B&O) home Audio
Visual (AV) network linking multiple AV devices.

* The network exhibits the characteristic properties
of a SoS;

— Constituent systems are heterogeneous and may
evolve (through software or firmware upgrades),

— New CSs may be integrated into SoS at any time

— CSs may be legacy or non-B&O systems, potentially
limiting their controllability within the SoS.

Proof of Concept Study

Las Vegas, NV
une 30 - July 3, 20

* To provide the B&O user experience, need a
global ‘leader to maintain global clock, SoS
architecture, streaming details, ...

* The ability to elect a leader may be
considered an emergent behaviour of SoS

* Require that all AV devices in the SoS
conform to several contracts

— Use contract pattern to model the SoS, its CSs
and the contracts of the SoS

y 3, 2014

ontractual

SoS Definition View R

INCOSI

Int sium

Q

Las Vegas, NV
June 30 - July 3, 2014

AV Contractual SoS

«Contractual SoS Definition View»
csdv AV SoS Contracts

«block»
«Contractual SoS»
AV Contractual SoS

1..* 1

«block» «block»
«Contract» «Contract»
AV Device Transport Layer

1 1
«block» «block»
«Contract» «Contract»
LE Device Streaming Device

1

«block»
«Contract»
Browsing Device

AV Device

Transport
Layer

AV Device

AV Device

Contract Conformance View "

Las Vegas, NV
June 30 - July 3, 2014

«Contract Conformance View»
ccv AV SoS Constructs

«block» I «block»
«SoS» | conformsTo» L «Contractual SoS»
AV SoS AV Contractual SoS
1
1 1 1 1
«block» «block» «block» «block»
«Constituent System» «Constituent System» «Constituent System» «Constituent System»

TV Network Hifi Content Provider

[
[

[

«block» I
«Contract» I
[

[

I«conformsTo» I Transport Layer

«block»
———————— «Contract» - - - -
AV Device

LE Device NG

Las Vegas, NV
June 30 - July 3, 2014

process LE Device = 1 : nat @

begin

actions
Off = on!id -> (Undecided / \
off!id -> flushState () ,;0ff)

Undecided = changeClaim(<undecided>) ;Listener;

([1sleader] & Leader

[]

[not 1sleader] & Follower)

Follower =

Leader =

LE Device — CML model

ln@qﬁﬁiiiiig?ﬁmn

Las Vegas, NV
June 30 - July 3, 2014

process LE Device = i : nat @
begin
state

id : NODE_ID := i
mem: map NODE_ID to CS :=

{cid |-> mk_CS(<off>, 0) | cid in set node_ids \ {id}}
inv dom mem = node_ids \ {id} and dom mem <> {}

highest strength : STRENGTH := 0
highest strength_id : NODE ID := 0
inv highest strength_id in set (dom mem union {id})

leaders : nat := -1
inv leaders <= card dom mem

myCS : CS := mk_CS(<off>, 0)

myNeighbours:seq of NODE ID := [i|i in set dom mem@i <>id]
isleader : bool := false
operations

Init: () ==> ()

Init() ==

(
id := i;
flushsState()

)

flushState: () ==> ()
flushState () ==
(
mem := {cid|->mk_CS(<off>,0) |cid in set node_ids\{id}};
highest strength 0;
highest strength_id := if id=0 then 1 else O0;
leaders := -1;
myCS := mk_CS(<off>, 0)
)

write: NODE_ID * DATA ==> ()
write(n,dat) ==
(
if is_TL_MSG(dat) then mem(n) := mk CS(<off>,0) else
mem(n) := dat
)
pre i in set dom mem
post mem(i) = dat or mem(i).c = <off>

update: ()==>()
update () ==

leaders:= card{n|n in set dom mem @ mem(n).c = <leader>};
highest strength := maxStrength();
highest strength_id := maxStrengthID();

isleader := amlIleader ()
) amILeader2:
post leaders>0=>mem(highest strength_id) .s=highest_strength amILeader2 ()
(
maxStrength: () ==> nat return (leaders = 0) or highest strength < myCS.s
maxStrength() ==
()
dcl strs : set of nat := {cs.s|cs in set rng mem @
cs.c = <leader>} Q@ return maxSet(strs,0) whoIsHighest: () ==> NODE_ID
) wholIsHighest ()==
(
maxStrengthID : () ==> NODE_ID return highest_strength id
maxStrengthID() ==)
(
dcl minId : NODE_ID, maxStrIds : set of NODE_ID @ actions
(
if id = 0 Off = on!id -> (Undecided /_\ off'!id -> flushState() ;Off)
then minId :

else minId
maxStrIds := {n | n in set dom mem @ mem(n).s =

highest strength and mem(n).c = <leader>};
return maxSet (maxStrIds,minId)

)

changeClaim: CLAIM
changeClaim(newc) ==
(
dcl currStr : STRENGTH := myCS.s @
myCS := mk_CS(newc, currStr)
)
pre myCS.c = <off> => newc = <undecided> and
myCS.c = <undecided> => newc = <leader> or
newc = <follower> and myCS.c = <leader> =>
newc = <undecided> and
myCS.c = <follower> => newc = <undecided>

incStrength: ()==>()
incStrength() ==
(
if myCS.s < ulp
then myCS := mk_CS(myCS.c, myCS.s+1)
)
pre myCS.s < ulp g
post myCS.s = myCS~.s + 1
end
amILeader: () ==> bool

amILeader() ==

return (leaders = 0) or highest strength < myCS.s
)

Listener = ReceiveData;update () ;OutputData

ReceiveData = (n_rec'!id?s?dat ->write(s,dat) ;ReceiveData)
[_ n_timeout _> Skip

OutputData = leaderClaim'!id'!isleader -> Skip

SendCS = (||| t in set dom mem @ [{}] n_send!id't!myCS ->
skip)

Undecided = changeClaim(<undecided>) ;Listener;
([isleader] & Leader

[1

[not isleader] & Follower)

Leader = changeClaim(<leader>) ;SendCS;Listener;
([leaders > 0] & Undecided

[1
[leaders = 0] & incStrength() ;Leader)

Follower = changeClaim(<follower>)/*;SendCS*/;flushState() ;
Listener; ([leaders >1 or leaders=0] & Undecided

[1
[leaders = 1] &)

init -> Init(); (Off/_\deInit->Skip)

In

Verifying Contract Conformance

Las Vegas, NV
June 30 - July 3, 2014

« Contract Conformance Viewpoint. informal
* How to verify this conformance?
« SysML may be translated to the formal notation CML

« CML refinement could be used as means of checking
conformance.

SysML

<<Constituent System>>
CS1

conformsTo

I
|
|
|
|
v
<<Contract>>

Y

Verifying Contract Conformance &

Lan NV
uly 3, 2014

* Results may be reported to the engineer,
and recorded at the SysML level.

— Success: included on a Contract
Conformance Viewpoint as an evidence
model element

— Failure: a trace of the CS not permitted by the
contract (or vice versa) translated into a
SysML sequence diagram

