
rick.dove@parshift.com, attributed copies permitted 1

INCOSE IS14
Las Vegas, NV, USA

30 June – 3 July, 2014

Fundamentals of Agile Systems Engineering – Part 2
(Agile Systems-Engineering)

 Rick Dove

Paradigm Shift International, and
Stevens Institute of technology

Ralph LaBarge
Johns Hopkins University/APL

rick.dove@parshift.com, attributed copies permitted 2

Agile?
To many, the word Agile, with a capital A, is used as a noun, referring to a
family of software development processes adhering to a set of principles
published as the Agile Software Development Manifesto in 2001.

To the INCOSE Agile Systems and Systems Engineering WG, the word
agile has a small a, and is an adjective referring to a system’s capability
for operational adaptability in an uncertain and unpredictable evolving
environment.

Operational adaptability may be needed
in the systems engineering process

and
in the systems engineering product

rick.dove@parshift.com, attributed copies permitted 3

Reminding Part 1…

http://awespendo.us/animemangacomics/kermit-at-the-doctor/

A system’s “bone structure” is depicted in the Agile Architecture Pattern.
All truly agile systems have the same basic structure and strategy.
Knowing this will change the way you “see” and evaluate a system.

rick.dove@parshift.com, attributed copies permitted 4

Here’s a Box of Bones

ERECTOR=MECCANO

rick.dove@parshift.com, attributed copies permitted 5

Here is a System-Construction-Kit System
this agile architecture pattern provides adaptable structure (Agile 101)

Motors Gears/Pulleys

Infrastructure evolution

System assembly

Module mix evolution

Module readiness

User ConOps
Product ConOps
Safety Standards

Interconnect Standards

Infrastructure

Helicopter Mobile Radar Plane

Modules/Components

Rules/Standards

Integrity
Management

Active

Passive

Product Manager

Owner/Builder

Product System Eng.

Retail Distributors

Radio Control Standards

Wheels Structural Material
Joiners, Axles,

Small Parts Tools

rick.dove@parshift.com, attributed copies permitted 6

Two different operational environments
defining necessary agile counterpoint for the

systems they encompass

Process
Operational Environment

Uncertain
Risky

Unpredictable
Variable

Product
Operational Environment

Uncertain
Risky

Unpredictable
Variable

Engineered
System

in Operation

Engineering
System

in Operation

You can’t have
an agile development process

if you don’t build an agile product

rick.dove@parshift.com, attributed copies permitted 7

Research
Concept

Development
Production
Utilization

Research
Concept

Development
Production

Research
Concept

Development
Research
Concept Research

Research Concept Development Production Utilization Support Retirement

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Depicts constant evolution
of all prior ISO/IEC 15288 life cycle stages

as the life cycle progresses through maturity

Framework of agile system engineering
life cycle mode

rick.dove@parshift.com, attributed copies permitted 8

“Classic” Scrum
Ken Schwaber, Jeff Sutherland. 2011. The Scrum Guide. www.scrum.org/

Jeff Sutherland, Ken Schwaber. 2007. The Scrum Papers: Nuts, Bolts and Origins of an Agile Process. Scrum Foundation. http://scrumfoundation.com

“Scrum’s roles, artifacts, events, and rules are immutable,
and although implementing only parts of Scrum is possible, the result is not Scrum.

Scrum exists only in its entirety, and functions well as a container
for other techniques, methodologies, and practices.” (Schwaber and Sutherland 2013)

Diagram: Sutherland & Schwaber 2007

rick.dove@parshift.com, attributed copies permitted 9

Essence

The explicit essence of successful Scrum is effortful learning through
active collaborative communication.
Effortful learning is a self-motivated process that continuously identifies
the next thing to learn after successfully accomplishing the last learning
objective.

The implicit essence of successful Scrum, however, is the ability to
effectively adapt the process and the product to what has been learned.
This means changing what is being done in product development and
changing how it is being done in the team’s working process – which
requires an agile (adaptable) architecture of both product and process to
be effective.

rick.dove@parshift.com, attributed copies permitted 10

Classic Scrum: an Agile Architecture Pattern (AAP) Structure
suitable for agile SW development, but not for agile systems-engineering …

Infrastructure evolution

System assembly

Module mix evolution

Module readiness

Safety
Security
Signals

Sockets

Infrastructure

Sprint 2 Sprint n Sprint 1

Modules/Components

Rules/Standards

Integrity
Management

Active

Passive

Product Owner (PO)

Scrum Master

PO with Team Collaboration

Developers

Product Owners Developers Scrum Masters Stakeholders

Service
Retrospective Change

Product Backlog

Planning, I&I Sprint, Review
Daily Scrum, Retrospective
Full Info Transparency
Scrum Master

Process Rules & ConOps

… because the RSA is different for an agile systems-engineering process,
and the Scrum AAP strategy is inadequate for systems engineering

rick.dove@parshift.com, attributed copies permitted 11

Enterprise IT-Infrastructure Design

Fab #1

People
Soft Apps

My
Projects

Other
Apps MyFab Oracle

11i Apps
Other

dBases

Fab #n A&T #1 A&T #n

Adexa
Planner

XML Enterprise Bus
A&T =

Assembly & Test Plant

Oracle
ERP dB

Fab =
Foundry Plant

•  = Bus Interface Module (BIM)
•  = Extract/Transfer/Load (ETL) Interface Modules
•  MyProjects = Web-accessible strategic-project portfolio manager
•  MyFab = Web-accessible operations transparency

www.parshift.com/Files/PsiDocs/Rkd050324CserPaper.pdf

rick.dove@parshift.com, attributed copies permitted 12

Encapsulated Development Process

- Designed to Accommodate Requirements Evolution

3-Phases

Template

Alpha

Beta ……..

……..

V2 V2

 bsa bsa V2 V2

……..

……..

……..

V3 V3

IT IT V3 V3

V3 V3

……..

60 days

Develop
Architecture
and Design

Develop
Business Rules

and Specs

Manage
Outsourced

Development

Conduct
Testing and

User Training

Days
0-90

91-180

181-270

Days
60-90

150-180

240-270

 bsa bsa

 bsa bsa

 bsa

 bsa

 bsa

Proj.
Mgr

 bsa

120 days

Prog.
Mgr

V2 V2
 bsa bsa IT IT

 ssa

 ssa

ssa

www.parshift.com/Files/PsiDocs/Rkd050324CserPaper.pdf

rick.dove@parshift.com, attributed copies permitted 13

CubeSat Agile Architectural Pattern

Chassis

Infrastructure evolution

System assembly

Module mix evolution

Module readiness

Infrastructure

JHU/APL

Integrity
Management

Active

Passive

Cal Poly SLO

Satellite Builder

COTS Developers & CPSLO

COTS Suppliers

Electronics Communications

Auburn
University

Sensors Power

Modules/Components

Safety
Security
Signals

Sockets

Rules/Standards
Service

University
of Colorado

System Examples of Increasing Complexity and Chronological Order

CP SLO: Cal Poly San Luis Obispo

rick.dove@parshift.com, attributed copies permitted 14

JHU/APL Multi-Mission Bus Demonstration (MBD)

CubeSat specifications say nothing about the system-engineering
process that will develop and assemble a mission specific CubeSat at any
of the many organizations that do these projects.
Given the financial and window-of-opportunity risks associated with
terminal deployment of a system that cannot be returned for replacement,
correction, or design update, a common systems-engineering process
would likely be some variation of a traditional waterfall engineering
process, with big upfront planning and design.
A group at Johns Hopkins University Applied Physics Laboratory (JHU/
APL) thought differently. Maybe because they had to.
“The Multi-Mission Bus Demonstration (MBD) is a Johns Hopkins
University Applied Physics Laboratory program to demonstrate a
government sponsored mission in the standardized 3U (10 x 10 x 30 cm)
CubeSat form factor. …
With vicious cost and schedule control, the MBD project is providing a
classified DoD payload that will revolutionize the mission area and
provide an operationally relevant capability to the war fighter. …
The MBD space vehicles will cater to mission operation versatility and
rapid response launch capabilities.”

rick.dove@parshift.com, attributed copies permitted 15

An Agile Systems-Engineering Example
Project uncertainty was rooted in the combination of a small physical envelope
constraint, high technical capability requirements, an unprecedented low budget,
and an unprecedented short program duration.

This was recognized by the MBD sponsor, who was willing
to make compromises and accept more risks than the
typical NASA mission “in order to balance cost, schedule,
and reliability while still meeting all mission requirements.
To meet the dramatically constrained volume, costs and
schedule while increasing functionality more than ever seen
in a CubeSat format, new designs and concepts needed to
be created, developed, and manufactured. …

The MBD spacecraft is designed with all the complex and critical subsystems
found within a typical earth observing multi-instrument satellite.”Couched in the
UURV framework outlined in Part 1:
• Unpredictability: Appetite for stakeholders to stay the course when things look
uncoordinated, or when unresolved development issues are allowed to persist.
Cultural adjustment of engineers working outside their standard procedures.
• Uncertainty: what requirements to use as technical drivers, what technical path
to take, how changed subsystem dependencies will interrupt momentum, what
untraditional decisions will have to be made, what SME expertise will be needed.
• Risk: it can’t be, or doesn’t get, done within the constraints.
• Variation: nothing relevant foreseen.

rick.dove@parshift.com, attributed copies permitted 16

The MBD program used sprints with one-day durations, while classic Scrum
typically uses sprints one to four weeks in duration.
Sprint Planning, Daily Scrum, Sprint Review and Sprint Retrospective meetings
were combined into a single “Round-Up” meeting at the start of each work day.
The MBD Program Manager assumed the role of Product Owner. The program
implemented six parallel agile development efforts for the Payload, Electrical,
Software, Mechanical, Ground & Navigation Control, and Avionics subsystems of
the MBD satellite.
Each development team lead performed a role similar to a Scrum Master for their
subsystem, but also acted as a Development Team member at the system level.
Thus the MBD agile process implementation was similar to a Scrum of Scrums
with a sprint length of one day.
The need to design, develop and test custom hardware, such as the deployable
solar array, required the MBD team to coordinate very short duration software
development sprints (1 day) with longer duration hardware development sprints
(1 month or more).
When custom hardware was required, the MBD team built two prototypes for each
hardware element. Each of the hardware prototypes was integrated into the two
satellites being built during the program. To the extent possible prototype
hardware items were used as production items in the final satellites, even if that
required rework such as cutting printed circuit board traces and adding wires to
implement a design change.

APL’s Scrum-like development process

rick.dove@parshift.com, attributed copies permitted 17

Huang, Philip M., Andrew A. Knuth, Robert O. Krueger, Margaret A. Garrison-Darrin. 2012.
Agile hardware/software systems engineering

for critical military space applications
In SPIE Defense, Security, and Sensing, pp. 83850F-83850F. International Society for Optics and Photonics.

APL’s Scrum-like
satellite development process

rick.dove@parshift.com, attributed copies permitted 18

Landmark Events
The first perspective came in 1981 with the publishing of Systems
Thinking, Systems Practice, (Checkland 1981), questioning the
application of rigid systems engineering practices to a class of systems
that don’t appear amenable to logical thinking, yet they are pervasive in
the systems around us that have multiple stakeholders in various
evolving states of satisficing for the moment. Checkland went beyond
questioning, offering an alternative approach now known as soft systems
methodology.
The second (chronologically) perspective came in a 1986 Harvard
Business Review paper, The New New Product Development Game
(Takeuchi and Nonaka 1986), acknowledged in (Sutherland and Schwaber
2007: 6) as sparking the thoughts that led to Scrum. That paper profiled a
general process that engineered breakthrough innovative products
composed more of hardware than of software, and exposed the role of
what they called “subtle management”, which affected product outcome
by working behind the scenes to constantly rebalance diversity within the
development teams. This concept is ignored by Scrum, yet crucial to the
success of a rapid agile learning process.
The third perspective came in 1988 with the publication of A Spiral Model
for Software Development and Enhancement (Boehm 1988). This marked
a new turn of thought, offering an iterative, incremental alternative to the
sequential waterfall approach, subsequently refined in a fundamental
view (Boehm 2000).

rick.dove@parshift.com, attributed copies permitted 19

Oversimplifying

Checkland put a focus on people.
Takeuchi and Nanoka put a focus on product.

Boehm put a focus on process.
All were concerned with uncertain and unpredictable engineering efforts.
Each of these developments in the ‘80s gave legitimacy to, and spurred
interest in, questioning the old ways and exploring new paths; paths
meant to deal with uncertain and unpredictable operational environments.

rick.dove@parshift.com, attributed copies permitted 20

Subsequent Events
At the turn of the millennium three more bodies of synergistic relevant
thought emerged.
The first perspective came early in 2001 with the publishing of “Response
Ability – the Language, Structure, and Culture of the Agile Enterprise
(Dove 2001); which organized the agile systems research findings of the
‘90s into domain-independent enabling fundamentals for agility in
engineered systems of any kind.
The second perspective came later that same year with the publication of
Agile Software Development with Scrum (Sutherland and Beedle);
detailing a systems engineering management process for agile software
development, and reviewed in this article for its agile enabling core.
The third perspective came in 2002 published as Agile Software
Development Ecosystems (Highsmith 2002); notable for its sane and
revealing coverage of the principle software development practices
sharing the agile family name at that time.

There is no pretention that the six events referenced encompass all of the

thought that needs consideration for
developing an agile systems-engineering life cycle model,

nor suggestion that seminal new thinking won’t continue to emerge.

rick.dove@parshift.com, attributed copies permitted 21

And Now the CAB Shows High Interest
Workshop held 3 days ago (29 June)

Purpose
To clearify the true nature of the Top 5 needs

1) SE Professional development
2) Agile/Expedited methods
3) Effective Trade Studies
4) Product lines, re-use
5) Better Value proposal for INCOSE and Systems Engineering

Status
No clear updated documentation of the needs – many thoughts but no
identified way forward (SE professional development is an exception)

Result from the break-out
A better understanding of the need which shall be used in the future
integration/interaction with the TechOps and IOB.

rick.dove@parshift.com, attributed copies permitted 22

Clarifying the Issues in CAB Agile Priority
(eight people)

•  Short cycle constant evolution – i.e., counter-IED “systems”
•  Long cycle constant evolution – i.e., 20-year design/build period for

complex plants, with all factors continuously evolving.
•  Integrating agile approach concepts with planned approach concepts.
•  Meaningful WIP measures when an agile approach is employed.
•  How to pivot a project effectively when feedback dictates a path change.
•  Dealing with hardware design/build timeframes and sunk costs.
•  Guidance on when/where to use an agile approach.
•  Clarity/consistency on what agile means independent of the software

practice.
•  Systems as works in process after deployment (maintaining

improvement “backlog”)
•  Case studies.

rick.dove@parshift.com, attributed copies permitted 23

Agile SE Life Cycle Model – Domain Independent

The life cycle model must take into account at least three different types of
systems engineering (Sheard 2000):
• Discovery (very high complexity in problem space)
• Programmatic (complexity in solution space and possibly organizational)
• Approach (complexity in variation of applications, and possibly product lines)
Developing an agile systems-engineering life cycle model might start with the
framework displayed above, take guidance from ISO/IEC 15288 and 5000.02, and
move toward identifying fundamental principle-based activities and processes
that provide agility, independently as well as collectively, across all stages that
warrant an agile approach.
This model might justify the application of these principles, activities, and
processes by identifying common systems-engineering environmental situations
in need of agile response capability. Ideally, the model would be supported with
case studies in a variety of systems engineering domains.

Research
Concept

Development
Production
Utilization

Research
Concept

Development
Production

Research
Concept

Development
Research
Concept Research

Research Concept Development Production Utilization Support Retirement

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Framework for an agile system engineering life cycle model
www.parshift.com/s/140630IS14-AgileSystemsEngineering-Part2.pdf

rick.dove@parshift.com, attributed copies permitted 24

Life Cycle Model – Making it Happen
A method called Realsearch, so called because it employs real people solving real
problems in real time, was employed to refine and socialize the original agile
systems fundamentals discovered and organized in the nineties.
It is a process of traveling, structured, collaborative 2.5-day workshops that visit
host sights by invitation, engages first in a collaborative exercise of situation
analysis on local examples of agile process, then engages in collaborative
identification of principles employed locally that enable agile capability, and
finally engages in an exercise that applies what has been learned to an open
problem in need of an agile process solution. Host companies will absorb costs.
A series of such workshops is being planned by the AS&SE working group
beginning in 2015, designed to converge on a fundamental agile systems-
engineering life cycle model applicable to the INCOSE community. Interest in
hosting workshops and participation as traveling members should be referred to
dove@parshift.com.

rick.dove@parshift.com, attributed copies permitted 25

 Project: Agile Life Cycle Model
Deliverable: Description of domain-independent core processes and activities.
This is discovery, not invention: what fundamentals fit all needs.
Focus is on fundamental and universal principles
regardless of the agile practice employed (spiral, Scrum, whatever).
On-site hosted 2-1/2 day structured workshops.

• Analyze two different development processes employed by host.
• Identify fundamental principles, processes, activities
that enabled effective SE under conditions of uncertainty and
unpredictability.

• Identify forces and barriers that have to be mitigated/accommodated.
• Apply abstracted knowledge to a host-presented area in need.

Visit a variety of maybe 10-12 host sites.
Traveling participants should attend at least three workshops.
Hosts absorb workshop costs.
Takes place in 2015 and maybe spills into 2016.
Value proposition for participants/hosts:
applied action learning – real people working on real problems in real time.

 Express interest in hosting workshops and participation as traveling members
dove@parshift.com.

