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INCOSE Patterns Working
Group

Formerly the Pattern-Based Systems
Engineering (PBSE) Challenge Team

Advance the availability of model-based System
Patterns and related PBSE resources

Promote the awareness of PBSE models and
resources, increasing the availability and
successful use of System Models across the life
cycle of systems



System Patterns

« System Patterns are configurable, re-usable
System Models that would otherwise be like

those expected and found in the practice of
MBSE

« Because they are configurable and re-usable
models of families or classes of systems, model-
based System Patterns involve some additional
methods and disciplines that extend the ideas of
MBSE (e.g., Pattern Management, Configuration
Rules, model minimality, etc.).



Introduction

Pattern Based Systems Engineering

— A disciplined and systematic approach to
maximize the effective use of intellectual
capital

MBSE with pattern based methods holds

significant promise

Example: testing of a safety critical aircraft

subsystem, namely the flight control

actuation system



Products
Pilot Controls
Flight Control Electronics 3

Inertial Sensors and IMU Side Stick Controls

Electromechanical (EM) Actuators

Electrohydrostatic (EHA) Actuators
Hydraulic Actuators '
Mechanical Actuators

Flight Control Computers Attitude and Heading
Components Reference Systems

Distributed Control Fly-by-Wire Primary Motor Drive
Aight Control Actuators

Leading Edge Flap Horizontal Stabilizer Wingfold Geared Engine Inlet Guide

6 http://www.moog.com/literature/Aircraft/Moog_AG_Aircraft_Capabilities_Brochure_Jun2012.pdf



Challenges

Significant Cost,
Especially for Safety
Critical Systems MBSE Focus
Area for This Effort
Requirements [System Verification]

And Validation

Architecture System Integration

Component Test

Typical MBSE Focus

Areas Implementation
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Opportunities

» Cut costs by reducing the testing effort
without sacrificing effectiveness

 Move verification activities earlier in the
design cycle to help minimize risk

» Take advantage of automation capabilities
of modern computer tools



Model-Based Workflow

System Design

: Model Based Requirement
R t o
Beaqslg;elr:sﬂtz Analysis, Design, Derivation and
and Architecture Flowdown

-

|

Lower Level
Requirements

System mo
real-time simulator

Simulation allows parallel test

Real-Time Simulation

i - an-aml all

» Develop and

del ported to = ;’i
== debug test
Same user interface as = procedures and

scripts before
integration

* Find functional
problems early

+ Utilizes procedures
and scripts
developed in
simulation and dry
run in integration i

» Formal Verification of

AUl InteS:"rat'onSimulated Controllers  Simulated Actuators

requirements

* Modular, scalable lab
to accommodate any
type of system
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Real Actuato?s, Real Controllelzg‘,w

+ Common, reconfigurable
development and verification lab
architecture

+ Capable of running with
simulations up to full system

hardware and anything in between




MBSE and Patterns

» A strong model foundation is needed to
develop robust system patterns

 The S*Metamodel is a generic information
model that can be used to represent
systems

— Consistent representation
— Can be mapped to tool of choice
— Robust data model for representing patterns

10
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A Robust Data Model for Representing Systems



PBSE: Pattern-Based Systems
Engineering
« Systems Engineering patterns are
reusable, configurable system models

— Based on S* Metamodel

TS

Product / System
Configurations

System Pattern

12 Class Hierarchy



MBSE Test Representation

Product in Application Environment

External Requirements Allocated
. Actor3 | T to Product System
* External A )
Requirements Allocated) Actol it v Sz
to External Actors Product System " Actor4
] External
Actor 2
,,,,,, Behavior Expected of Product
777777777777777777777 System During Test, for
omparison by Test Syste
R > Test System
Simulation Behavior ™ Product System >
Allocated to Test Syste _ (System Under Test)

Product in Test Environment
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Testing Pattern

act [Package] Testing [Testing] /

Test Start

Creat Test Pre-
Conditions

Execute Test Steps Collect Test Data

Post-Test Actions

-y

Analyze Test Data

-y

—
Generate Test Repo

TestEnd

—
N

Template Tests




Application Example

e Scenario

— Uncommanded motion of a flight control
surface (aileron, rudder, etc.) can have
catastrophic aircraft effects

* This example is for a test that verifies the
system’s ability to detect and mitigate a
fault condition that causes uncommanded
surface motion

15
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Surface Transient




Test Definition

Expected “envelope” for
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CE1_LR_VotedActPosition

Test Simulation

Required Transient
Upper and Lower
Bounds

0.1,

0.08

0.06

0.04

0.02

-0.02

-0.04t

CE1_LAR _VotedActPosition

\ \

N

\
AN
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2
N?/malized Results

e T
// Recorded Data
— Upper Bound rr
/ Lower Bound
r [ [ [ r 1 1 [
0 0.5 1 1.5 2. 3 3.5 4 4.5 5

Test Procedure: BO211 -
Test Case; Qooo1 -
Variahle: CE1 _LFf

Fesult: Pass

Motes:
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Automated Test Procedure
Generation

Human
readable tes
procedure Is
generated
from test
vectors,
requirements
links, and
descriptive
metadata

Figure 1:60211_ 00001 Test Inputs

1 Introduction
This document describes the test equipment, conditil
system level tests on the actuation system

2 Referenced Documents
There are no referenced documents.

3 RequirementsLinked

Reguirement ID

Procedure Number_Case Number

#IR_48

60210_00001, 60210_00003, 60211_0000:

#IR_4s

60210_00003, 60211_00001

#R_50

60210_00003, 60211_00001

Table 1: Requirements Linked

4 TestProcedures

4.1 Procedure 60211: Valve Hardover Left H
Procedure Summary
Test the ability of the control software todetect a DDV hardd |

system accordingly.
4.1.1 Case00001: Valve Position Feedback Inverted

Test Objective
®  Testthe ability of the software to detect a valve current command inversiol
reconfigure the system toa safe state.

Test Methodology/Description
Command the system toa normal operational state andthe Left Flaptoa position o

Inject a valve current command inversion fault and a simultaneous step position col
system time to respond.

Remove the fault

Expected Response: Following the faultinjection, the Inline Current Monitors on all
the inversion condition and report a fallure after 20 milliseconds frames. At this tinf

NMOOGC CAGE CODE Page 3

4697

Figure 2:60211_ 00001 Expected Outputs
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Automated Test Reports

* Vectors translated

oer\

LabScreens) \H O ~ & X || @ AutomationDesk Block Rep... ‘

[F=3 (O =X

Into a format that

IS readable by the:
test system

Pass/Fail results
are generated
based on the
expected output
vectors
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0.0 | I |

-05

0 1 2 3 4 5

¥' Passed IsInsideBounds

IsInsideBounds( LowerBound <= capturedSignal <= UpperBound )

CE1 LR VotedActPosition

IsInsideBounds : LowerBound <= capturedSignal <= UpperBound

010 ([ capturedSignal

I~ LowerBound
I~ UpperBound

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

¥' Passed IsinsideBounds
IsInsideBounds( LowerBound <= capturedSignal <= UpperBound )

- sigName: CE1_LR_VotedActPosition
- Length: 3
- signalPathName: master/Model Root/Outputs/CE1/<CE1_LR_VotedActPosition>
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Summary and Conclusions

Applying the presented MBSE methods to
verification testing has reduced system
testing effort by more than 25%

The presented MBSE methods provide
spatial and temporal flexibility in test
development

Potential exists to realize greater benefits
through the application of S* patterns
across other areas of the development life
cycle
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