
Architectural	
 Modelling	
 Pa2erns	

for	
 Systems	
 of	
 Systems	

Claire Ingram, Richard Payne, John Fitzgerald
Newcastle University, UK

July

1.  Context: SOSs and the COMPASS
project

2.  Architectural challenges for SoSs
– What is an architecture?
– What is a pattern?

3.  Modelling patterns for SoSs
– Architectural patterns

4.  Future work

Outline	

July

§  SoSs are comprised of elements
that are themselves independent
systems

§  Often exhibit:
•  Operational & managerial

independence
•  Distribution
•  Emergence
•  Evolution

§  Challenging aspects include:
•  Operational & Managerial

Independence of Constituent
Systems

•  Complexity of confirming/refuting
SoS-level properties

•  Semantic heterogeneity

Emergency	
 Response	
 (Insiel)	

Independent	
 services,	
 seen	
 as	
 one	
 system	
 by	

“end	
 user”.	
 	

Ensure	
 confidenCality,	
 response	
 Cmes,	
 etc?	

Audio/Video	
 (Bang	
 &	
 Olufsen)	

Independent	
 networks,	
 devices,	
 content	

services.	
 Ensure	
 a	
 consistent	
 “SoS	
 experience”	

Systems	
 of	
 Systems	
 (SoSs)	

July

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

Initiate Rescue Fault Activation [Fault 1]
«Fault Activation View» {faultsOfInterest = Complete Failure of the Radio System}

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

: Radio System

: Process
message

«Fault Activation»
: Fault 1 activation

: Process
message

«Fault Activation»
: Fault 1 activation

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«erroneous»
: Drop message

«Error Detection»
: Error 1 detection

«Failure Event»
: Target not attended

«Start Recovery»
: Start Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»
: End Recovery 1

[idle ERU]

[no idle
ERU]

[higher
criticality]

[lower
criticality]

Architectural	
 Modelling	

• 	
 	
 SoS	
 Modelling	
 Frameworks	
 	

• 	
 …	
 instanCated	
 to	
 domains	

• 	
 SoS	
 Modelling	
 paAerns	
 &	

profiles,	
 e.g.	
 Fault-­‐Error-­‐Failure	
 	

• 	
 Guidelines	
 on	
 negoCaCon,	

requirements,	
 integraCon,	
 test,	

etc.	

Tool-­‐supported	
 V&V:	
 	

• 	
 ExploraCon	
 of	
 Design	
 Space	

• 	
 Efficient	
 verificaCon	
 by	
 model-­‐
checking	
 and	
 proof	

• 	
 Test	
 generaCon	

• 	
 SimulaCon	

• 	
 Tools	
 Robustness	

• 	
 Conformance	
 during	
 evoluCon,	

and	
 emergence	
 	

Underpinning	
 Formalisms	

• 	
 	
 Behavioural	
 semanCcs	
 of	
 SoS	

• 	
 Tight	
 link	
 to	
 modelling	
 frameworks	

• 	
 Cope	
 with	
 mulCple	
 paradigms.	
 	

• 	
 ComposiConal	
 Design	
 	

• 	
 Dynamic	
 response	
 to	
 adaptaCon	
 &	

evoluCon	

• 	
 Covering	
 cyber	
 elements,	
 physical,	

human,	
 economic,	
 social,	
 …	
 	

process	
 CallCentreProc	
 =	
 begin	

acKons	

	
 MERGE1(r)	
 =	
 	

	
 	
 (dcl	
 e:	
 set	
 of	
 ERUId	
 @	
 e	
 :=	
 findIdleERUs();	
 	

	
 	
 	
 (do	
 e	
 =	
 {}	
 -­‐>	
 DECISION2(r)	
 	
 	
 |	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 e	
 <>	
 {}	
 -­‐>	
 	
 (dcl	
 e1:	
 ERUId	
 @	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 e1	
 :=	
 	
 allocateIdleERU(e,	
 r);	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MERGE2(e1,	
 r))	

	
 	
 	
 end))	
 …	
 	

	

process	
 IniCateRescue	
 =	
 	

CallCentreProc	
 [|	
 SEND_CHANNELS	
 |]	
 	

RadioSystemProc	
 	
 [|	
 RCV_CHANNELS	
 |]	
 ERUsProc	

www.thecompassclub.org

July

1.  Context: SOSs and the COMPASS
project

2.  Architectural challenges for SoSs
– What is an architecture?
– What is a pattern?

3.  Modelling patterns for SoSs
– Architectural patterns

4.  Future work

Outline	

July

What	
 is	
 an	
 architecture?	

An architectural design may address:
•  System structure: major components of the

system, their organisation and structure.
•  System behaviour: “dynamic response of the

system to events, providing a basis for reasoning
about the system.”

•  System layout: physical layout & packaging of
the system.

Stevens	
 et	
 al.	
 1998	

July

•  Lack of full disclosure between CSs
•  Accurately predicting emergent behaviours
•  Long lifecycles, legacy or COTS components
•  Constituent systems (CSs) evolve with/without

the SoS
•  Lack of central decision-making authority
•  Multi-disciplinary, cross-domain
•  High requirement for availability, a volatile

operating environment

SoS	
 Architectural	
 Challenges	

July

These prompt questions such as:
–  How far do we need to control propagated changes?
–  What is the required level of assurance of emergent

behaviour?
–  Is there a central decision-making authority?
–  To what extent do we want separate concerns?
–  How important is resilience or adaptability?
–  Do we need a clear, traceable chain of command?

We need:
–  a basis for comparing alternative SoS architectures
–  a means of sharing and passing on experience

SoS	
 Architectural	
 ConsideraCons	

July

What	
 is	
 a	
 ‘pa2ern’?	

“A pattern describes a problem which occurs over and
over again in our environment, and then describes the
core of the solution to that problem, in such a way that
you can use this solution a million times over, without
ever doing it the same way twice”

Alexander et al., 1977

July

1.  Context: SOSs and the COMPASS
project

2.  Architectural challenges for SoSs
– What is an architecture?
– What is a pattern?

3.  Modelling patterns for SoSs
– Architectural patterns

4.  Future work

Outline	

July

Pa2erns	
 for	
 SoS	
 Models	

We use modelling pattern to mean a pattern that can

be applied to modelling aspects of a system, such
as architecture or interfaces

Developing a catalogue of patterns can:
•  Facilitate sharing lessons between SoS domains

–  Which SoS challenges does a pattern cope well with or
cope badly with?

•  Help us learn more about SoS contexts and
constraints
–  How and why does a particular pattern arise?
–  How does an architecture or control structure affect SoS

performance?

July

Pa2erns	
 for	
 SoS	
 Models	

•  Patterns observed in or
inspired by COMPASS SoSs:
–  Centralised
–  Service-oriented
–  Publish-subscribe
–  Pipe & Filter
–  Supply Chain
–  Reconfigurable Control
–  Infrastructure Grid
–  Blackboard

July

Pa2erns	
 for	
 SoS	
 Models	

•  Patterns observed in or
inspired by COMPASS SoSs:
–  Centralised
–  Service-oriented
–  Publish-subscribe
–  Pipe & Filter
–  Supply Chain
–  Reconfigurable Control
–  Infrastructure Grid
–  Blackboard

July

Centralised	

•  Central point of control
•  “Hub” connected to other CSs, responsible for

delivering SoS behaviour
•  Hub typically developed specifically for SoS
•  Some CSs may be legacy/COTS, or purpose-built
•  May or may not force all CSs to communicate

through the hub(s)
•  Subtypes:

–  Fully centralised
–  Distributed-centralised
–  Hierarchical-centralised

July

Centralised	

SoS considerations
•  Centralised control/management
•  Can track and/or log where decisions are

made
•  Re-use existing systems
•  If CSs communicate only through the hub,

SoS can become loosely coupled
•  Permits verification in early design stages

July

Reconfigurable	
 Control	
 	

•  Dynamic reconfiguration requires some provisions:
–  CS functionality and (optionally) QoS must be specified
–  Alternatives are available for these functions
–  SoS can monitor current performance

•  Metadata used to describe the functions CS offer
•  A policy details when and how to reconfigure SoS

–  Lists necessary functions and minimum performance
for each

–  Lists conditions under which action taken
–  Can provide prioritisation

•  Explicit reconfiguration control CS can monitor CS
functionality & performance to decide on actions

July

Reconfigurable	
 Control	
 	

Centralised	
 Decentralised	

July

Pipe	
 &	
 Filter	

•  Data or materials processed from input form to
output form

•  Filters represent the processing steps
•  Pipes represent connections between Filters
•  Filters are independent, do not share state or

know each other’s identities
Garlan & Shaw 1996, Buschmann et al. 1996

SoS considerations
•  Unsynchronised evolution is possible
•  Dynamic reconfiguration is possible
•  May or may not have central control

Filter
Pipe

July

Supply	
 Chain	
 	

A specialised pipe-and-filter
•  Suppliers/integrators are the “filters”
•  Logistics acts as a “pipe”
Differences with pipe-and-filter:
•  Logistics shares internal state and participate

actively
•  CSs may be aware of the final goal
•  CSs may be aware of internal status of their peers
•  CSs are also capable of generating input to be

returned upstream

Supplier

Logistics

Integrator

July

Infrastructure	
 Grid	
 	

•  Delivers critical civil infrastructure, e.g., power, water, roads,
communications, etc.

•  Divided into fixed geographical regions, each operated by an
autonomous controller

•  CSs exchange flows with direct neighbours, and data with any
other CS

•  Optional central authority; regulations impose standardisation
•  May optionally be a hub for communications
Differences from pipe-and-filter:
•  CSs know identity of neighbours – tightly coupled
•  The flow may be bi-directional
•  CSs may share details of internal state

July

Infrastructure	
 Grid	
 	

Differences from pipe-and-filter:
•  CSs know identity of neighbours
•  The flow may be bi-directional
•  CSs may share details of internal state
Subtypes:
•  Fully decentralised: no organisation with overall

control
•  Partially decentralised: one organisation controls

an important proportion of infrastructure
•  Data-centralised: no overall authority, but there is

a central hub for data sharing

July

Reconfigurable	
 Control	
 	

SoS considerations:
•  Dynamic reconfiguration helps to provide

resilience
•  Performance optimisation facilitated
•  Allows for central authority
•  Should be partnered with a loosely-

coupled architecture

July

1.  Context: SOSs and the COMPASS
project

2.  Architectural challenges for SoSs
– What is an architecture?
– What is a pattern?

3.  Modelling patterns for SoSs
– Architectural patterns

4.  Future work

Outline	

July

SoS Architectural Considerations:
•  How far do we need to control propagated changes?
•  What is the required level of assurance of emergent

behaviour?
•  Is there a central decision-making authority?
•  How important is resilience or adaptability?
•  Do we need a clear, traceable chain of command?
We need:

–  a basis for comparing alternative SoS architectures
–  a means of sharing and passing on experience

Future	
 work	

July

Future	
 Work	

•  More patterns – develop a catalogue
•  SoS problems and means for assessing

different SoS patterns against them
•  Standardised approach for identifying,

collecting and documenting patterns
•  Better understanding of how and why SoS

patterns arise/are applied
•  Better understanding of weaknesses/risks

of each pattern

July

This work is part of the COMPASS project: research into model-based
techniques for developing, maintaining and analysing SoSs

thecompassclub.org

Claire.Ingram@ncl.ac.uk	

John.Fitzgerald@ncl.ac.uk	

Richard.Payne@ncl.ac.uk	

@_Claire_Ingram	

@NclFitz	

	
 	
 	
 @riffio	

July

Defining	
 systems	
 of	
 systems	

A system composed of other constituents, each of
which is an independent system in its own right
•  Operationally & managerially independent constituents
•  Geographically distributed
•  Continuously evolving
•  Exhibiting emergent behaviour

 “emergent”: global behaviour produced by the whole
SoS, can’t be produced by a single constituent alone

July

Three major technical challenges:
•  Independence and autonomy of constituent systems

–  Constituent systems evolve at the behest of their owners
–  Response: Collaborative SoS modelling by contractual (rely,

guarantee) interface specification
•  Complexity of confirming/refuting SoS-level

properties
–  Verification of emergence
–  Response: verified refinement for engineering of emergent

properties; simulation tools allow exploration for unanticipated
behaviours

•  Semantic heterogeneity (integrating models)
–  Wide range of interacting features in models (e.g. location, time,

concurrency, data, communication)
–  Response: extensible semantic basis

July

Service	
 Oriented	

•  Applications composed using third-party

services, offered by providers
•  Services produce a contract (a stand-

ardised service description and service-
level agreement)

•  Services do not share internal state,
making them stateless to the SoS

•  Each service possibly more than one
provider

July

Service	
 Oriented	

SoS considerations
•  Analysis of SoS emergent behaviour
•  Unsynchronised evolution is possible
•  Allows a central SoS authority
•  Cross-domain development
•  Separation of concerns
•  Support for redundancy
Suitable SoS types
•  Directed
•  Acknowledged

July

Publish-­‐Subscribe	

•  Two types:
– Content-Based Publish-Subscribe (EBPS):

subscribers describe type of content they wish
to receive

– Data-Centric Publish-Subscribe (DCPS):
messages are categorised using topics
provided by publishers

•  We focus on DCPS here

July

Publish-­‐Subscribe	

•  No central hub
•  Concepts:

–  Topic – a data-object in a given domain
–  Publisher – responsible for data distribution, uses a Data Writer

to publish data on a Topic
–  Subscriber – receives data on Topics, using a DataReader
–  Publishers & Subscribers have defined interfaces for interacting,

typed for a given Topic
–  Publisher, Subscriber, Topic, interfaces each have QoSPolicy

•  Any CS can be Publisher, Subscriber or both
•  CSs register/deregister on a Topic, to leave or join the

SoS

July

Publish-­‐Subscribe	

SoS considerations
•  Loose coupling between publisher &

subscriber
•  Subscribers don’t need to understand

publisher’s domain (and vice versa)
•  Redundant designs possible
•  No central manager
•  Monitoring performance may be difficult
Suitable SoS types
•  Collaborative

July

Blackboard	

•  Blackboard CS provides interface for reading/writing

data
•  Knowledge Source CSs write to/remove from the

Blackboard
•  Knowledge Sources work independently & in parallel
•  Control CS evaluates

solution & co-ordinates
Garlan & Shaw 1996
Buschmann et al 1996

July

Blackboard	

SoS considerations
•  Development of expert or knowledge based systems
•  Separation of concerns
•  Efficient problem-solving
•  Possible to support some degree of central authority
•  Loose coupling
•  Redundancy is possible
Suitable SoS types
•  Directed
•  Acknowledged
•  Collaborative

35	

