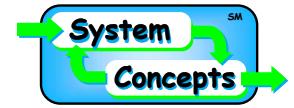

Foundational Aspects of System Complexity Reduction

**Joseph J Simpson
Mary J Simpson**

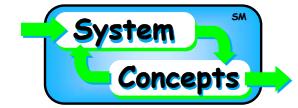
To Reduce Complexity


- **Reduce uncertainty**
- **Focus on a single system aspect, or organizing relationship**
- **Use two types of languages**
 - Natural language (informal)
 - Mathematics (formal)
- **Employ two structured interfaces**
 - Natural language to mathematics
 - Mathematics to system description

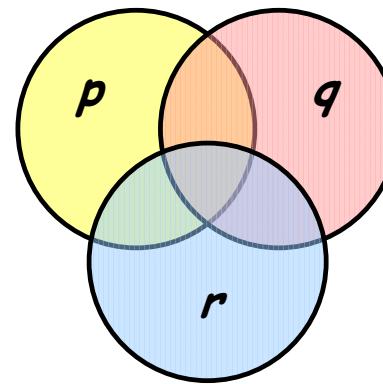
Language Types

The use of natural language as the object language can be a source of great system complexity

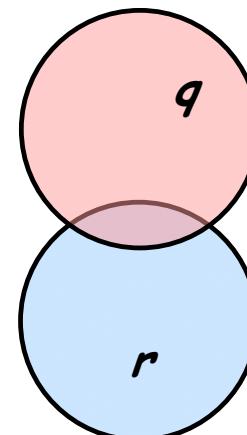
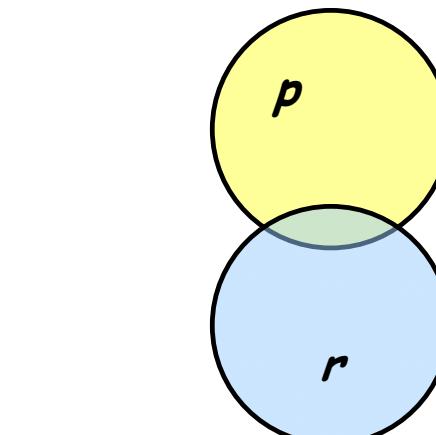
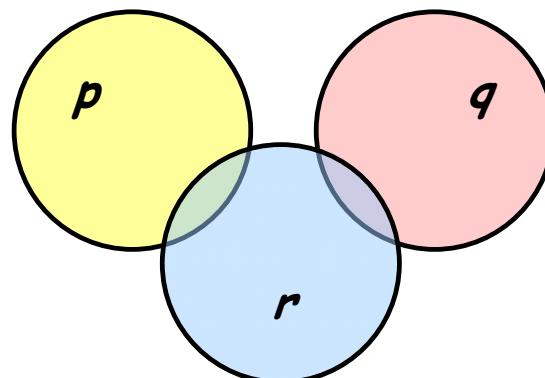
Four Example Applications

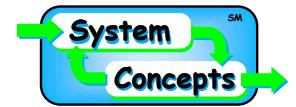

- **Ex. 1: Combs Filter**
 - Union Rule Configuration (rule reduction)
- **Ex. 2: Interpretive Structural Modeling (ISM)**
 - Augmented Model-Exchange Isomorphism
(pattern identification)
- **Ex. 3: Automated N-Squared Charts**
 - Evolutionary Computation (cognitive complexity reduction)
- **Ex. 4: Abstract Relation Types (ART)**
 - Information Theory (computational complexity reduction)
 - Structured Format and Approach (cognitive complexity reduction)

Ex. 1: Combs Filter - URC



- **Typical logic rules written with logical 'and' conjunction - Intersection Rule**
 - Binds **two or more** antecedents to the rule consequent
- **Combs Filter written with logical 'or' conjunction - Union Rule**
 - Binds **one** antecedent to a consequent
 - Provides access for alternative rule development and configuration
- **Boolean Reasoning**
 - Provides opportunity for methods other than Boolean Minimization




Intersection vs Union


Intersection Rule Configuration (p and q) then r

Union Rule Configuration (p then r) or (q then r)

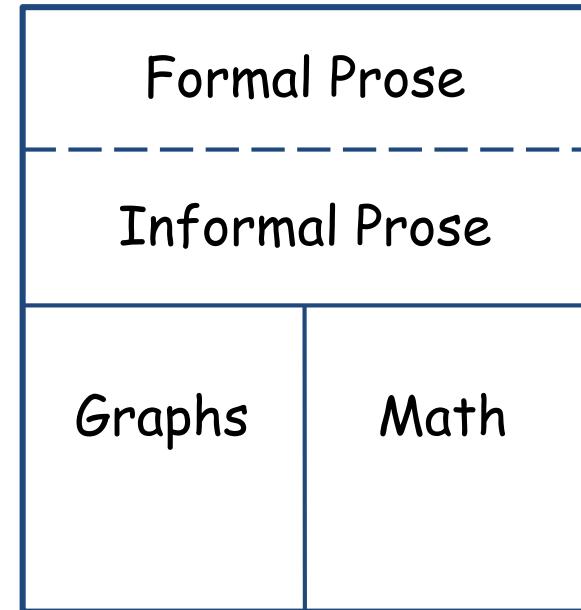
Union Rule Configuration

Ex. 2: Interpretive Structural Modeling (ISM)

Abstract Relation Type (ART)

Prose Description (text, words)

- Formal pattern
- Informal prose

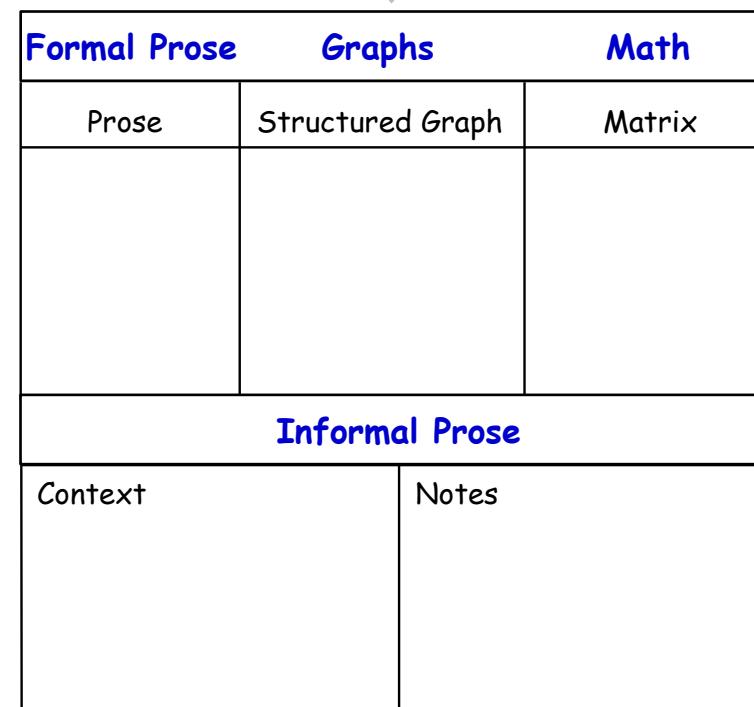
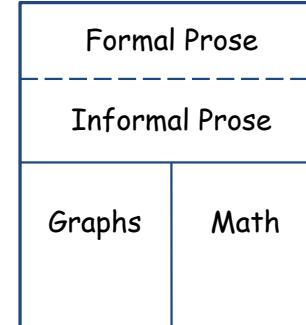

Graphic Representation

(directed graphs)

- Must have formal graphs
- Can also have informal graphs

Mathematics & Computer Representation

- Math equations
- Computer codes
- One or both



Augmented Model-Exchange Isomorphism

Abstract
Relation
Type

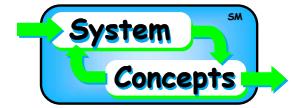
Reflected in

Augmented
Model
Exchange
Isomorphism

Typical ISM Relation

Prose	Structured Graph	Matrix																									
<p>Relation 'Connected-to'</p> <ul style="list-style-type: none"> • Reflexive • Symmetric • Transitive <p>RST-[1,1,1] v1.1</p>	<pre> graph TD A((A)) <--> B((B)) A((A)) <--> C((C)) B((B)) <--> A((A)) B((B)) <--> C((C)) C((C)) <--> A((A)) C((C)) <--> B((B)) D((D)) <--> B((B)) D((D)) <--> C((C)) </pre>	<table border="1"> <thead> <tr> <th></th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> </tr> </thead> <tbody> <tr> <th>A</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>B</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>C</th> <td>1</td> <td>1</td> <td>1</td> <td></td> </tr> <tr> <th>D</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>		A	B	C	D	A	1	1	1	1	B	1	1	1	1	C	1	1	1		D	1	1	1	1
	A	B	C	D																							
A	1	1	1	1																							
B	1	1	1	1																							
C	1	1	1																								
D	1	1	1	1																							
<p>Context</p> <ol style="list-style-type: none"> 1. Directional connections 2. Double directions 3. Self-connection required 		<p>Notes</p> <ol style="list-style-type: none"> 1. Shows transitive links 																									

Ex. 3: Automated N-Squared Chart


0	0	1	0	0	0	1	0	1
0	0	0	1	0	1	0	0	0
0	0	0	0	1	0	0	1	0
0	1	0	0	0	1	0	0	1
0	0	1	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0
1	0	1	1	0	0	0	0	0

No Obvious
Pattern;
Unordered

Ordered;
Obvious Patterns

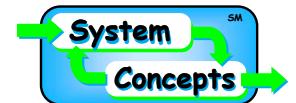
0	1	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	1	0	0	0
0	0	1	0	1	0	1	0	0
0	0	0	0	0	1	0	1	1
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	1	0

Evolutionary Computation

Ubiquitous, inexpensive computing power makes this approach more attractive now, than when computing power was very expensive

- Performs large scale search for best configuration
- Selects a small number of candidate configurations for expert review
- Uses one system configuration that is known at the beginning of the process

Remove From Computation


E	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	H	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	C	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	G	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	A	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	I	1	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	1	J	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	K	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	L	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	N	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	O	1	1	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	D	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	B	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	F	1	1	0	0	0	0	0	0	0

Compress

Expand

E	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	H	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	C	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	G	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	A	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	I	1	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	J	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	K	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	L	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	N	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	O	1	1	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	D	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	B	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	F	1	1	0	0	0	0	0	0	0

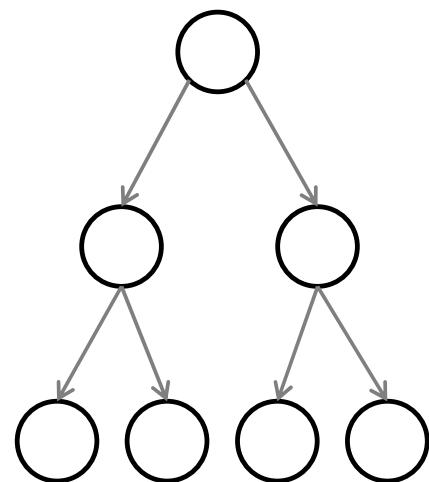
Compress Again

E	1	1	0	0	0	0	0	0	0	0
1	H	1	0	0	0	0	0	0	0	0
1	1	c	1	0	0	0	0	0	0	0
0	0	1	G	1	0	0	0	0	0	0
0	0	1	1	A	1	0	0	0	0	0
0	0	1	0	I	1	1	0	0	0	0
0	0	0	0	0	1	J	0	0	0	0
0	0	0	0	0	1	0	D	1	1	
0	0	0	0	0	0	0	1	B	1	
0	0	0	0	0	0	0	1	1	1	F

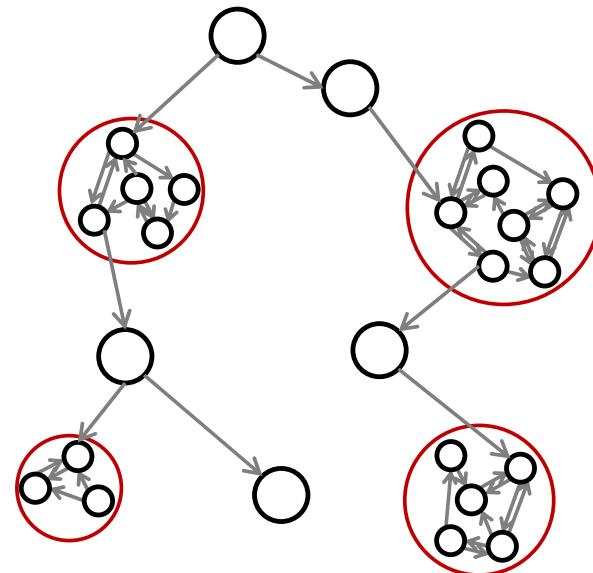
Compress C and D

C	1	0	0	0	0	
1	G	1	0	0	0	
1	1	A	1	0	0	
1	0	1	I	1	1	
0	0	0	1	J	0	
0	0	0	1	0	D	

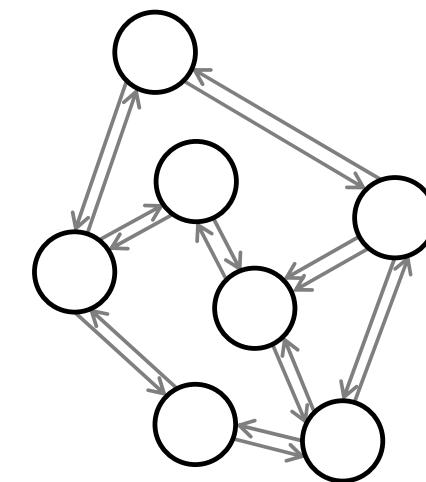
Expand C and D


Ex. 4: Use of Structured ART Format

Organizing Properties of Symmetry


Asymmetric

Hierarchy


Nonsymmetric

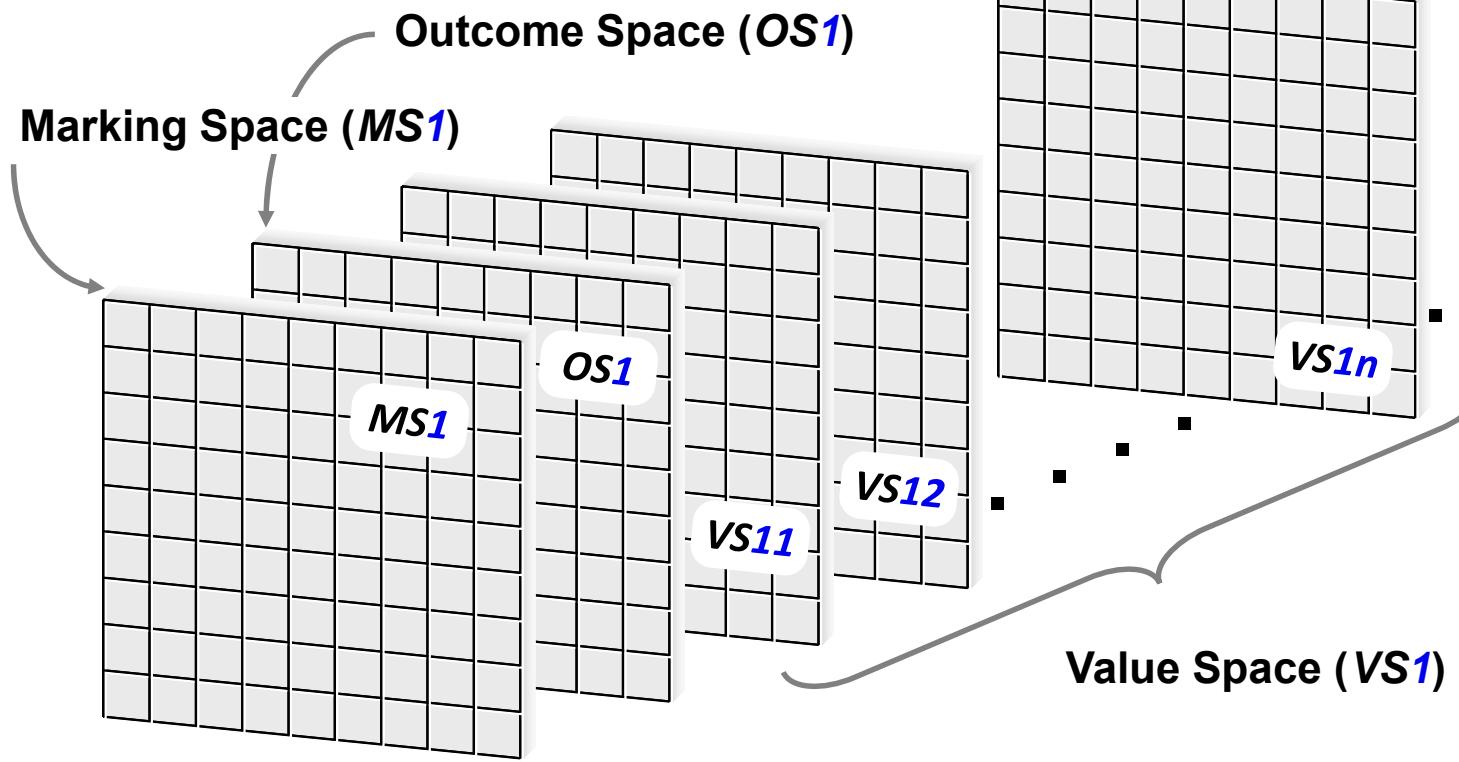
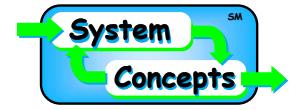
Combined Hierarchy & Network

Symmetric

Network

- Use logic rules to discover structure in an efficient manner
- Analyze structure

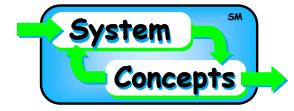
- Apply lattice and set partitioning rules to identify components
- Apply other techniques as needed



- Analyze for highest value configuration
- Filter out controlling structure
- Analyze structure

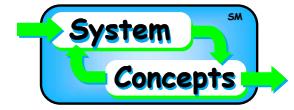
Information theory contributions to complexity reduction

- A message contains no information, if you already know the contents of the message
- A message contains information, if you do not know the contents of the message
- Computational effort should not be applied to messages that contain known information

Both cognitive and computational complexity are reduced


Structured ART Approach

Abstract Relation Type (ART) \equiv $F [MS, OS]$


Outcome Space (OS) \equiv $F [VS_1, VS_2, \dots, VS_n, VS_{n+1}, \dots]$

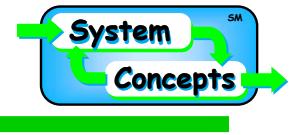
Summary

- **Combs Filter**
 - Great reduction in number of rules
- **Interpretive Structural Modeling (ISM)**
 - Cognitive and computational complexity reduction achieved using the proper approaches
- **Automated N-Squared Charts**
 - Cognitive complexity reduction
- **Abstract Relation Types (ART)**
 - Computational complexity reduction
 - Cognitive complexity reduction

Additional Information

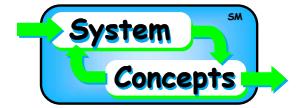
Additional information is available

- <http://systemsconcept.org/>
- <https://github.com/jjs0sbw>


To join in the discussion and activity

Contact jjs0sbw@gmail.com

This presentation hits the highlights

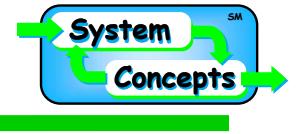

More detail in the Thursday tutorial

Sign up for the email newsletter

Questions?

Types of Questions

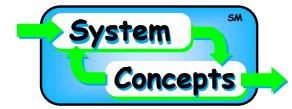
A Good Question


I understand the question, **and** I have an answer.

An Excellent Question

I understand the question; I have an answer -
and charts!

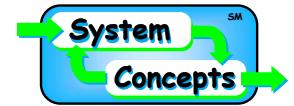
An Interesting Question


I have no idea what you are talking about...

Backup Slides

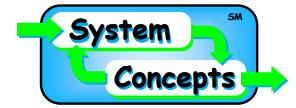
Exponential Rule Explosion

(The Curse of Dimensionality)



Number of rules (**N**) that have to be considered is equal to the number of values per antecedent (**a**) raised to the power of the number of antecedents (**b**)

$$N = a^b$$


N = Number of values per antecedent	a = Number of antecedents	b = Number of rules
5	1	5
5	2	25
5	3	125
5	4	625
5	5	3,125
5	6	15,625
5	7	78,125
5	8	390,625

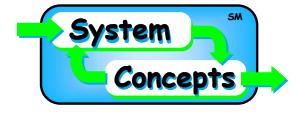
Exponential Rule Explosion - Example

Five Values per Antecedent - Two Antecedents		
Antecedent (AGE)	Values: <i>Youthful, Young, Middle-Aged, Mature, or Old</i>	
Antecedent (HEALTH)	Values: <i>Excellent, Good, Average, Below Average, or Poor</i>	
Rule 1 – If AGE is Youthful and HEALTH is Excellent		then premium is very low
Rule 2 – If AGE is Young and HEALTH is Excellent		then premium is low
Rule 3 – If AGE is Middle-Aged and HEALTH is Excellent		then premium is mod-low
Rule 4 – If AGE is Mature and HEALTH is Excellent		then premium is mod-low
Rule 5 – If AGE is Old and HEALTH is Excellent		then premium is moderate
Rule 6 – If AGE is Youthful and HEALTH is Good		then premium is low
Rule 7 – If AGE is Young and HEALTH is Good		then premium is mod-low
Rule 8 – If AGE is Middle-Aged and HEALTH is Good		then premium is mod-low
Rule 9 – If AGE is Mature and HEALTH is Good		then premium is moderate
Rule 10 – If AGE is Old and HEALTH is Good		then premium is mod-high
Rule 11 – If AGE is Young and HEALTH is Average		then premium is mod-low
Rule 12 – If AGE is Youthful and HEALTH is Average		then premium is mod-low
Rule 13 – If AGE is Middle-Aged and HEALTH is Average		then premium is moderate
Rule 14 – If AGE is Mature and HEALTH is Average		then premium is mod-high
Rule 15 – If AGE is Old and HEALTH is Average		then premium is mod-high
Rule 16 – If AGE is Youthful and HEALTH is Below-Average		then premium is mod-low
Rule 17 – If AGE is Young and HEALTH is Below-Average		then premium is Moderate
Rule 18 – If AGE is Middle-Aged and HEALTH is Below-Average		then premium is mod-high
Rule 19 – If AGE is Mature and HEALTH is Below-Average		then premium is mod-high
Rule 20 – If AGE is Old and HEALTH is Below-Average		then premium is high
Rule 21 – If AGE is Youthful and HEALTH is Poor		then premium is moderate
Rule 22 – If AGE is Young and HEALTH is Poor		then premium is mod-high
Rule 23 – If AGE is Middle-Aged and HEALTH is Poor		then premium is mod-high
Rule 24 – If AGE is Mature and HEALTH is Poor		then premium is high
Rule 25 – If AGE is Old and HEALTH is Poor		then premium is very high

Relational Algebra for UR

Formal logic transformation steps for IR to UR

• $(p \text{ and } q) \text{ then } r$	the initial Intersection Rule
• $\text{not } (p \text{ and } q) \text{ or } r$	by material implication
• $(\text{not } p \text{ or } \text{not } q) \text{ or } r$	by DeMorgan's law
• $\text{not } p \text{ or } (\text{not } q \text{ or } r)$	by association
• $(\text{not } q \text{ or } r) \text{ or not } p$	by commutation
• $(q \text{ then } r) \text{ or not } p$	by material implication
• $((q \text{ then } r) \text{ or not } p) \text{ or } r$	by addition
• $(q \text{ then } r) \text{ or } (\text{not } p \text{ or } r)$	by association
• $(q \text{ then } r) \text{ or } (p \text{ then } r)$	by material implication
• $(p \text{ then } r) \text{ or } (q \text{ then } r)$	by commutation
$(p \text{ then } r) \text{ or } (q \text{ then } r)$	the Union Rule


Intersection & Union Rule ‘Truth Tables’

$[(p \text{ and } q) \text{ then } r]$ is equivalent to $[(p \text{ then } r) \text{ or } (q \text{ then } r)]$

p	q	r	$(p \text{ and } q)$	$(p \text{ and } q) \text{ then } r$	$(p \text{ then } r)$	$(q \text{ then } r)$	$(p \text{ then } r) \text{ or } (q \text{ then } r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F
T	F	T	F	T	T	T	T
T	F	F	F	T	F	T	T
F	T	T	F	T	T	T	T
F	T	F	F	T	T	F	T
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

Types of Set Definition

Set Definition by Extension

All set members are enumerated

Set Definition by Intention

A set is described by listing the defining properties of the members