

25th anniversary
annual INCOSE
international symposium
Seattle, WA
July 13 - 16, 2015

Model-Based System Patterns for Automated Ground Vehicle Platforms

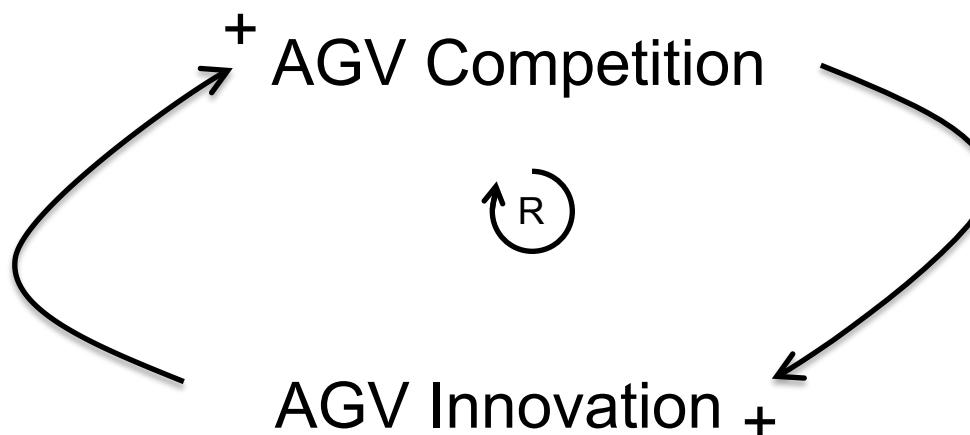
Troy Peterson
Booz Allen Hamilton
troy.peterson@incose.org

Bill Schindel
ICTT System Sciences
schindel@ictt.com

Agenda

- Automated Ground Vehicle Context
- Model Based Systems Engineering
- Pattern Based Systems Engineering
- AGV Diversity and Complexity
- AGV Model-Based Pattern
 - Vehicle Pattern
 - Embedded Intelligence Pattern
- Follow on Work
- Conclusions

Automated Ground Vehicle Context


Automated Ground Vehicle (AGV) platforms

- Are Rapidly and dramatically increasing in complexity
- Can change the way we develop, manage and interact with systems
- Fit the National Science Foundation (NSF) definition of Cyber Physical Systems (CPS) as “engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components”. With challenges that are both significant and far-reaching.

AGV Benefits	AGV Challenges
Efficiency / Adaptability	Efficiency / Adaptability
Safety / Trustworthiness/ Security	Safety / Trustworthiness/ Security
Situational Awareness / Data Available	Situational Awareness / Data Available
Undiscovered Opportunities	Undiscovered Risks

Is Autonomy Accelerating Innovation

- The need to manage the inherent complexity within AGVs is very relevant today and the complexity is only accelerating.
- Google's driverless cars are expected to hit the markets between 2017 and 2020.
- Automakers including GM, Ford, Nissan, Volkswagen, Mercedes Benz, Volvo, and Volvo Truck all have autonomous programs.

AGV Innovation Acceleration

The Boston Consulting Group's 2013 report on the most innovative companies noted that for the first time, there were more automakers than tech companies listed the top 20 (BCG, 2013).

One surprise, not noted in the study however, was how many of these companies were involved with ground vehicle automation.

For the first time, there are more automakers than tech companies in the top 20.

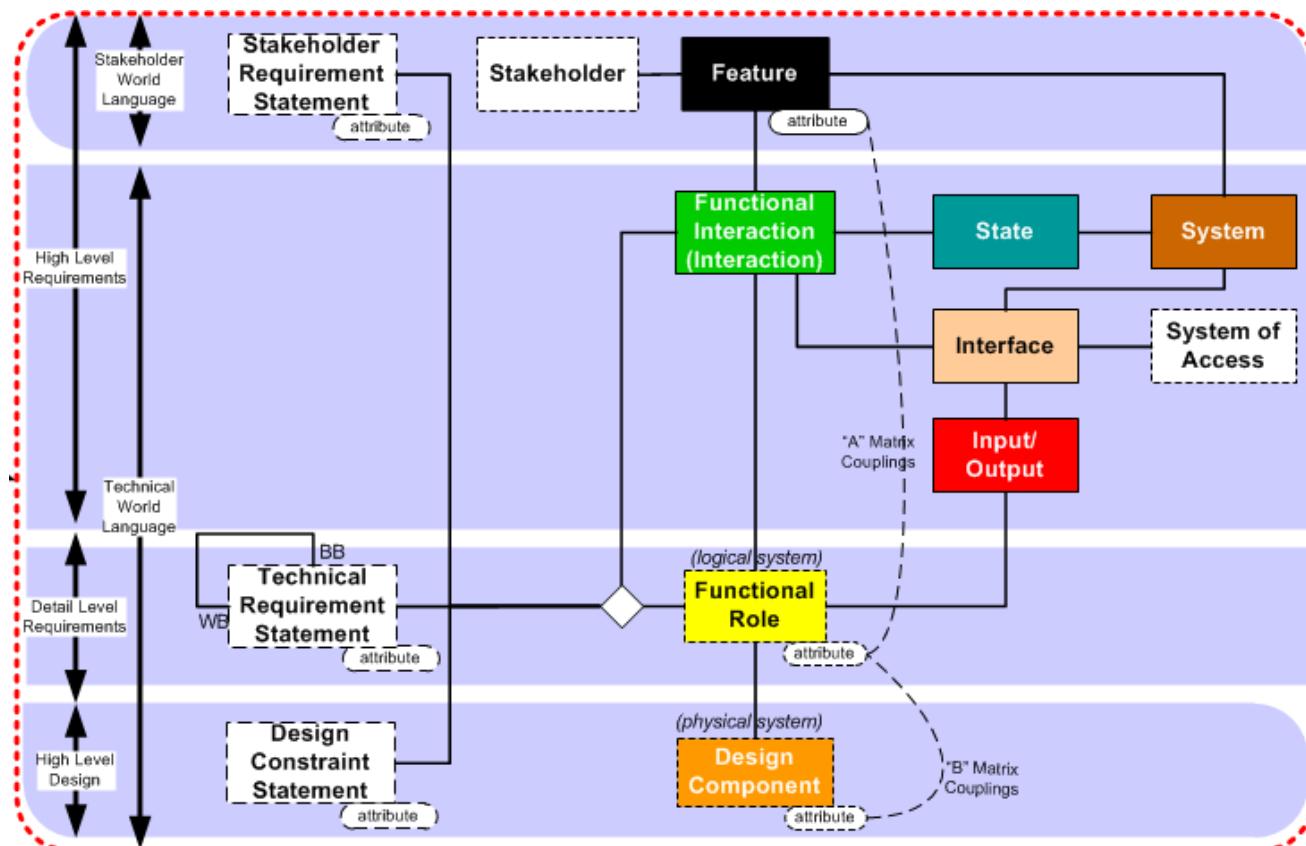
Company	Change from 2012	Industry
1 Apple	NC	Technology and telecom
2 Samsung	↑ 1	Technology and telecom
3 Google	↓ 1	Technology and telecom
4 Microsoft	NC	Technology and telecom
5 Toyota	↑ 6	Automotive
6 IBM	NC	Technology and telecom
7 Amazon	↑ 2	Consumer and retail
8 Ford	↑ 4	Automotive
9 BMW	↑ 5	Automotive
10 General Electric	↑ 6	Industrial products and processes
11 Sony	↓ 4	Technology and telecom
12 Facebook	↓ 7	Technology and telecom
13 General Motors	↑ 16	Automotive
14 Volkswagen	↑ 31	Automotive
15 Coca-Cola	↑ 2	Consumer and retail
16 Hewlett-Packard	↓ 1	Technology and telecom
17 Hyundai	↑ 7	Automotive
18 Honda	R	Automotive
19 Audi	↑ 6	Automotive
20 Daimler	R	Automotive

Model Based Systems Engineering

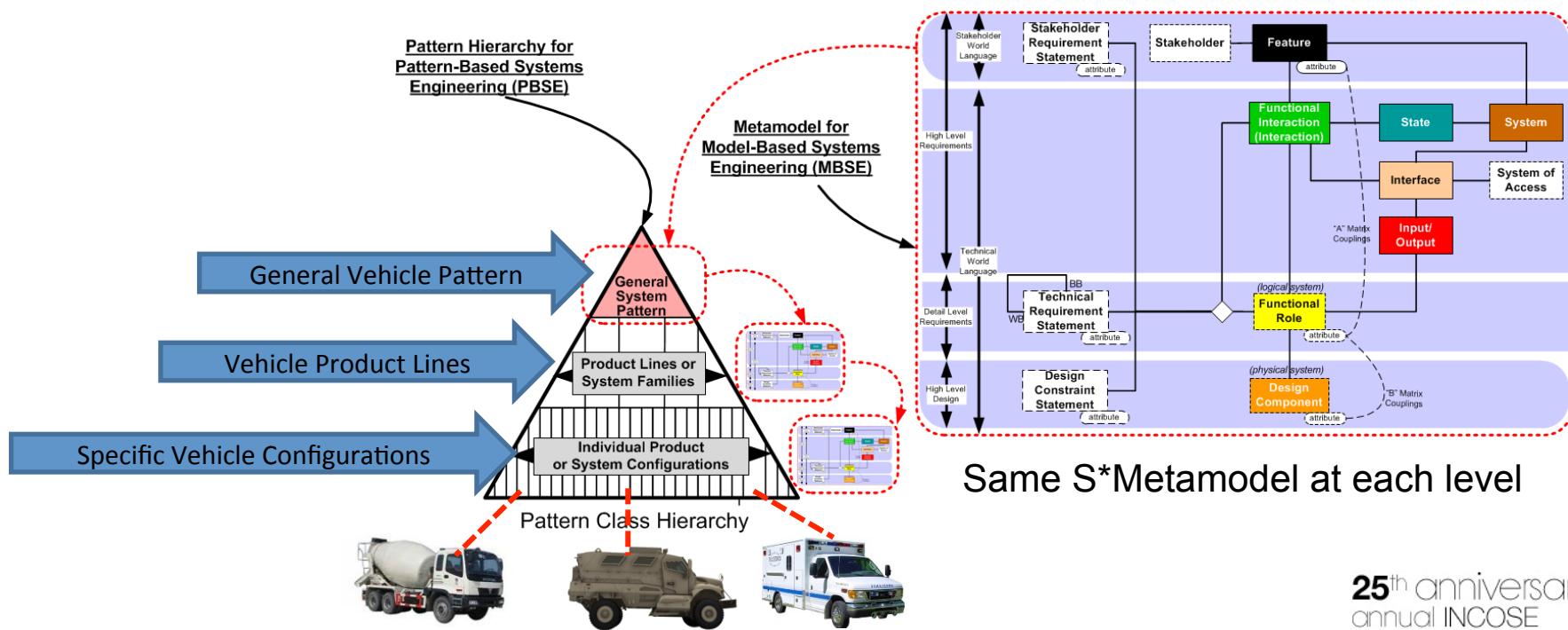
- The systemic complexity of AGVs demands a systems engineering approach.
- It requires a systems paradigm which is interdisciplinary, applies the requisite physics-based and mathematical models to represent them – it requires modeling.
- INCOSE defines Model-Based Systems Engineering (MBSE) as “the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases...”
- The INCOSE MBSE wiki notes that “Modeling has always been an important part of systems engineering to support functional, performance, and other types of engineering analysis.”
- MBSE is often discussed as being composed of three fundamental elements – tool, language and method. This third element, method, has not always been given proper consideration.

Pattern Based Systems Engineering

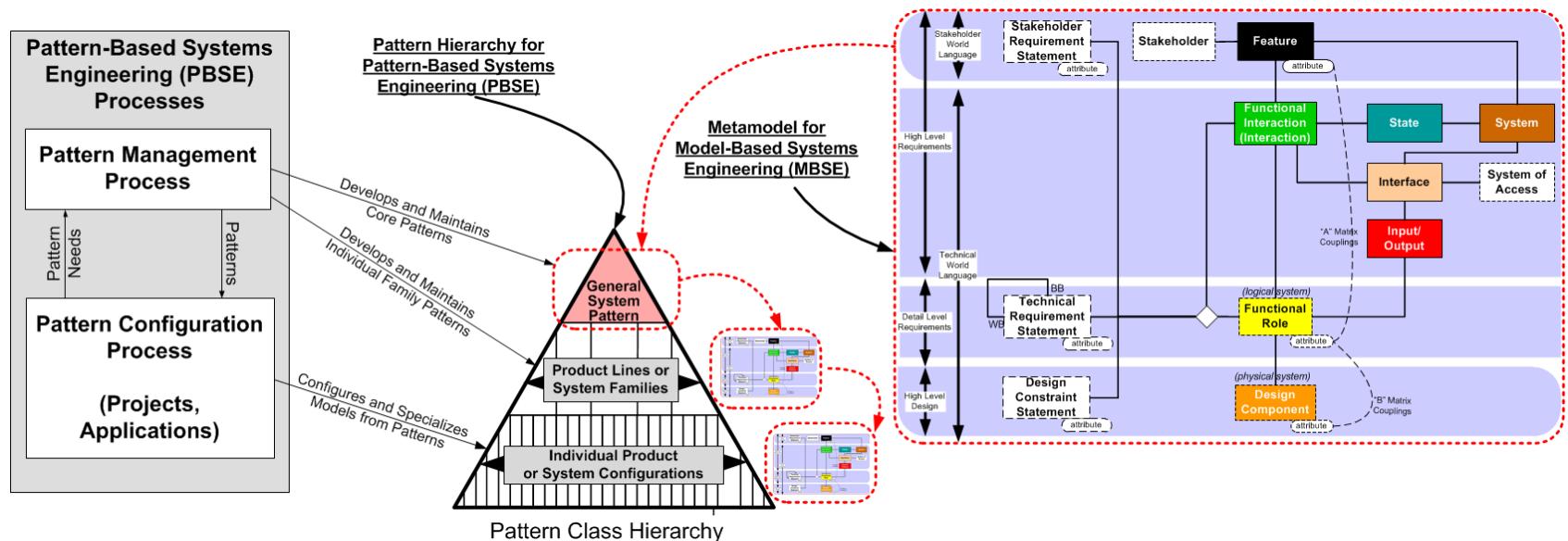
- As a Model-Based Systems Engineering (MBSE) methodology, Pattern-Based Systems Engineering (PBSE) addresses complex systems, with a reduction in modeling effort.
- Gains are possible because projects using PBSE get a “learning curve jumpstart” from an existing model-based pattern and its previous users, rapidly gaining the advantages of its content.
- The term “pattern” appears repeatedly in the history of design, such as civil architecture, software design and systems engineering. While these are all loosely similar in the abstract the PBSE methodology referred to by this paper, based on S*Models and S*Patterns which are distinguished by:
 - S*Patterns are Model-Based: Patterns represented by formal system models, and specifically those which are re-usable, configurable models based on the underlying S*Metamodel.
 - Scope of S*Patterns: Patterns which will usually cover entire systems, not just smaller-scale element design patterns within them. For this reason, the typical scope of an S*Pattern applications may be thought of as re-usable, configurable models of whole domains or platform.


The S* Model

- **An S* Model** is a description of all those important things, and the relationships between them.
- Typically expressed in the “views” of some modeling language (e.g., SysML™).
- The S* Metamodel: The smallest set of information sufficient to describe a system for systems engineering purposes.
- Includes not only the physical Platform information, but all the extended system information (e.g., requirements, risk analysis, design trade-offs & alternatives, decision processes, etc.):


Interactions: The Heart of the S* Metamodel

- The S*Metamodel is focused on the very physical Interactions that are the basis of all the observed laws of the physical sciences, and which we assert are at the heart of the definition of System (a collection of interacting components).


The S* Pattern

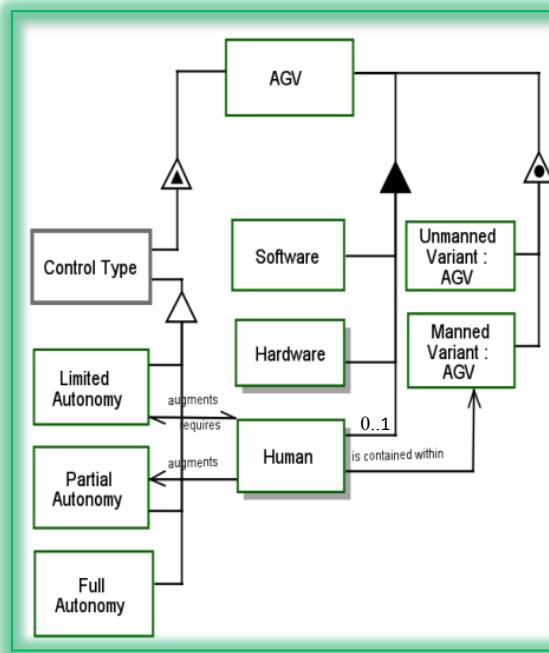
- An **S* Pattern** is a configurable, re-usable S* Model. It is an extension of the idea of a Platform (which is a configurable, re-usable design) or Enterprise / Industry Framework.
- The Pattern includes not only the physical Platform information, but all the extended system information (e.g., pattern configuration rules, requirements, risk analysis, design trade-offs & alternatives, decision processes, etc.):

PBSE S* Metamodel

- Fundamental to PBSE is the use of the S*Metamodel, a relational / object information model intended to describe the “smallest possible model” necessary for the purposes of performing systems engineering or science.
- It provides the semantics to describe requirements, designs, and other information such as verification, failure analysis, etc.
- Specifically, an S*Pattern is a re-usable, configurable S*Model of a family of systems (product line, set, ensemble etc.)

A summary view of the S* metamodel and Pattern Hierarchy and Process

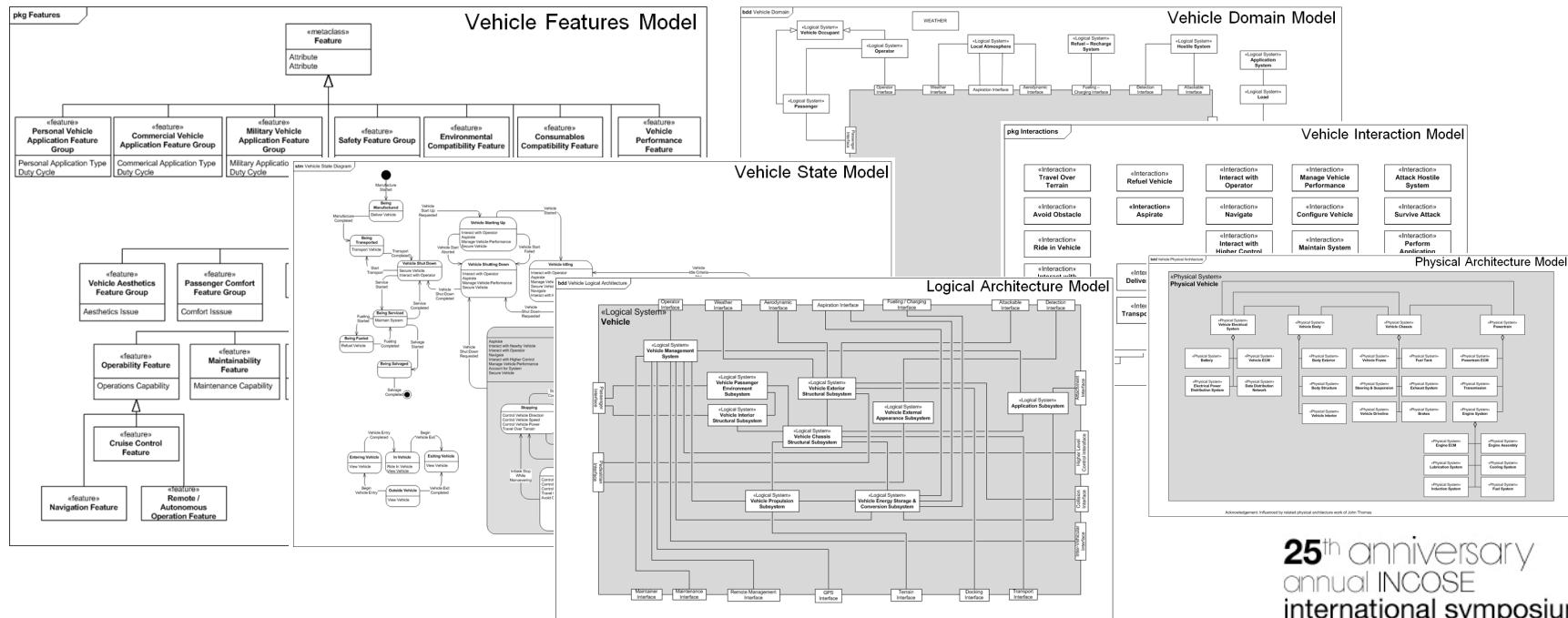
Definitions of some S* Metamodel Classes

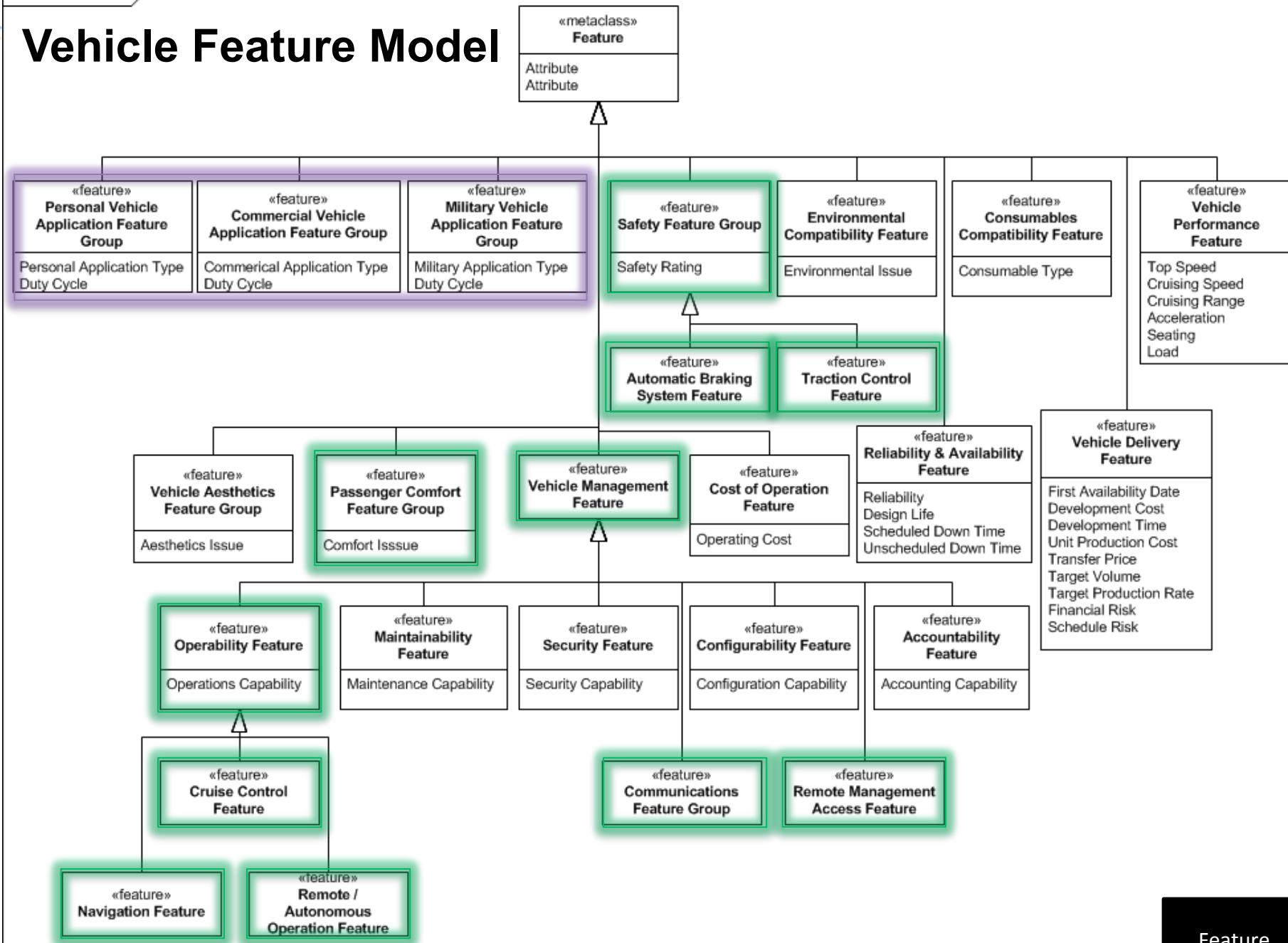

- **System**: A collection of interacting components. Example: Vehicle; Vehicle Domain System.
- **Stakeholder**: A person or other entity with something at stake in the life cycle of a system. Example: Vehicle Operator; Vehicle Owner; Pedestrian
- **Feature**: A behavior of a system that carries stakeholder value. Example: Automatic Braking System Feature; Passenger Comfort Feature Group
- **Functional Interaction (Interaction)**: An exchange of energy, force, mass, or information by two entities, in which one changes the state of the other. Example: Refuel Vehicle; Travel Over Terrain
- **Functional Role (Role)**: The behavior performed by one of the interacting entities during an Interaction. Example: Vehicle Operator; Vehicle Passenger Environment Subsystem
- **Input-Output**: That which is exchanged during an interaction (generally associated with energy, force, mass, or information). Example: Fuel, Propulsion Force, Exhaust Gas

Definitions of some S* Metamodel Classes

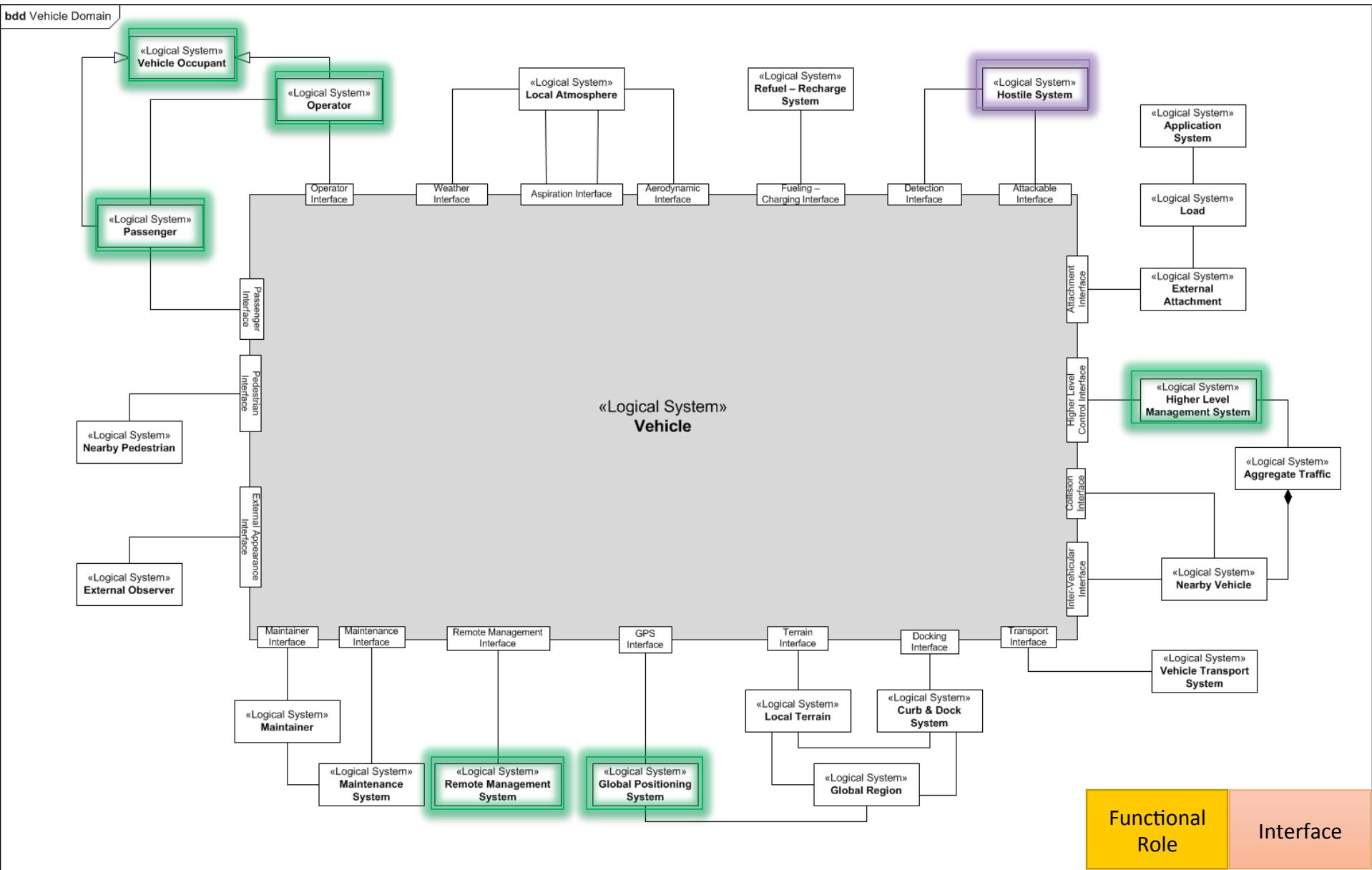
- **System of Access**: A system which provides the means for physical interaction between two interacting entities. Examples: Fueling Nozzle-Receptacle; Grease Gun Fitting; Steering Wheel; Dashboard; Brake Peddle
- **Interface**: The association of a System (which “has” the interface), one or more Interactions (which describe behavior at the interface), the Input-Outputs (which pass through the interface), and a System of Access (which provides the means of the interaction). Examples: Operator Interface; GPS Interface
- **State**: A mode, situation, or condition that describes a System’s condition at some moment or period of time. Example: Starting; Cruising; Performing Maneuvers
- **Design Component**: A physical entity that has identity, whose behavior is described by Functional Role(s) allocated to it. Examples: Garmin Model 332 GPS Receiver; Michelin Model 155 Tire
- **Requirement Statement**: A (usually prose) description of the behavior expected of (at least part of) a Functional Role. Example: “The System will accept inflow of fuel at up to 10 gallons per minute without overflow or spillage.”

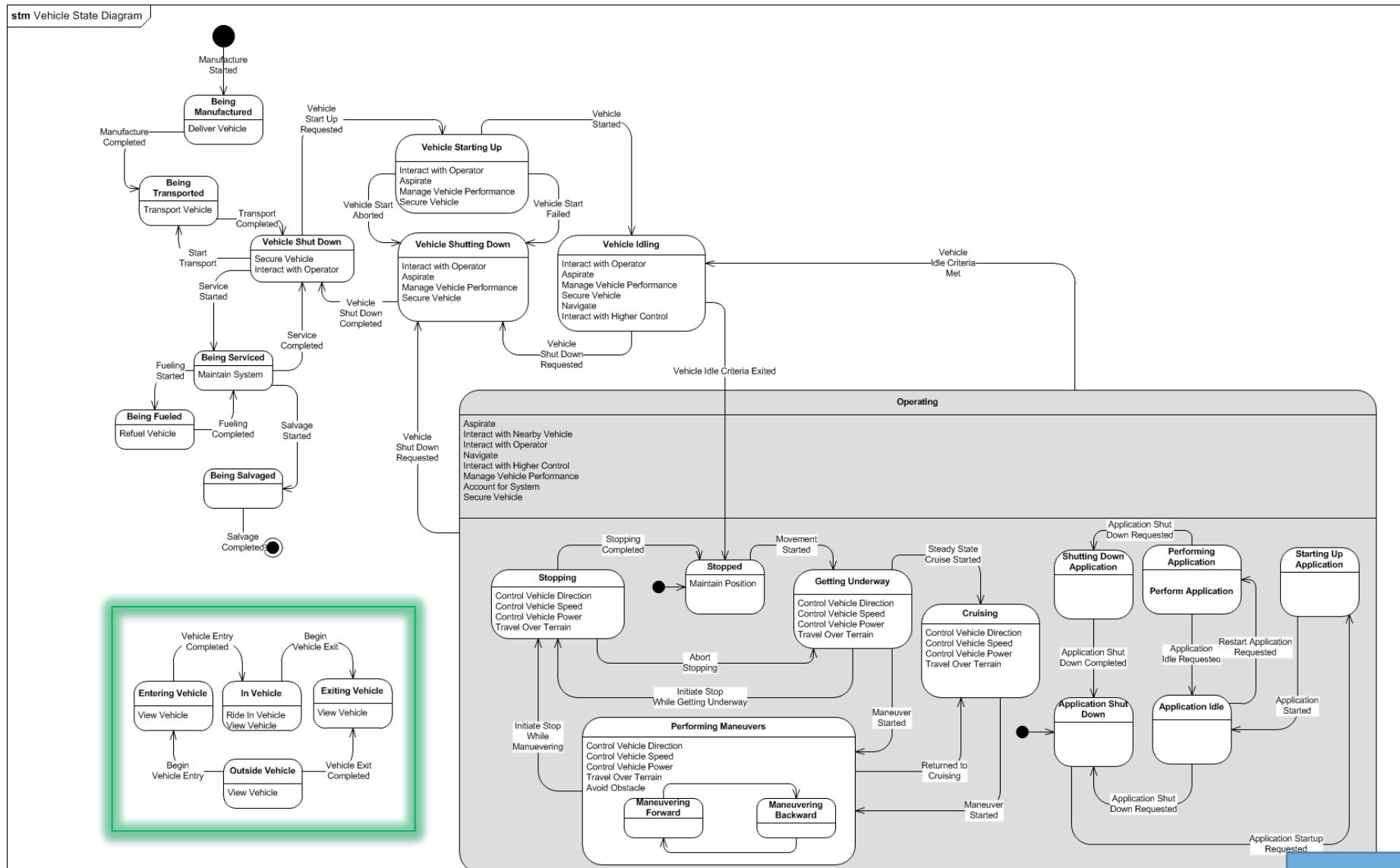
AGV Diversity and Complexity


- Autonomous ground vehicles are often broadly categorized as manned and unmanned and by their level or type of control (limited, partial or full)
- These variations when combined with scale and primary function difference make the broad class of automated ground vehicles especially diverse
- Furthermore, AGV's can have algorithms and sensors on-board, off-board, at a central station, embedded within local infrastructure or otherwise


AGV exhibits Control Type.
 AGV consists of Software, Hardware, and 0 to 0 Humans.
 Hardware is physical.
 Human is physical.
 Human is contained within Manned Variant.
 Human augments Partial Autonomy.
 Human augments Limited Autonomy.
 Full Autonomy is a Control Type.
 Partial Autonomy is a Control Type.
 Limited Autonomy is a Control Type.
 Limited Autonomy requires Human.
 Unmanned Variant is instance of an AGV.
 Manned Variant is instance of an AGV.

Vehicle Pattern


- Given the variety of applications, the variability in the high level design and implementation of such systems is not surprising. The general vehicle pattern could represent any one of these diverse sets of platforms.
- The amount of information and configurability of this model through the application of PBSE permits rapid specialization/configuration through selection of required feature sets


Vehicle Feature Model

Vehicle Domain Model

Vehicle State Model

Vehicle Interaction Model

pkg Interactions

«Interaction»
Travel Over
Terrain

«Interaction»
Refuel Vehicle

«Interaction»
Interact with
Operator

«Interaction»
Manage Vehicle
Performance

«Interaction»
Attack Hostile
System

«Interaction»
Avoid Obstacle

«Interaction»
Aspirate

«Interaction»
Navigate

«Interaction»
Configure Vehicle

«Interaction»
Survive Attack

«Interaction»
Ride in Vehicle

«Interaction»
Interact with
Higher Control

«Interaction»
Maintain System

«Interaction»
Perform
Application

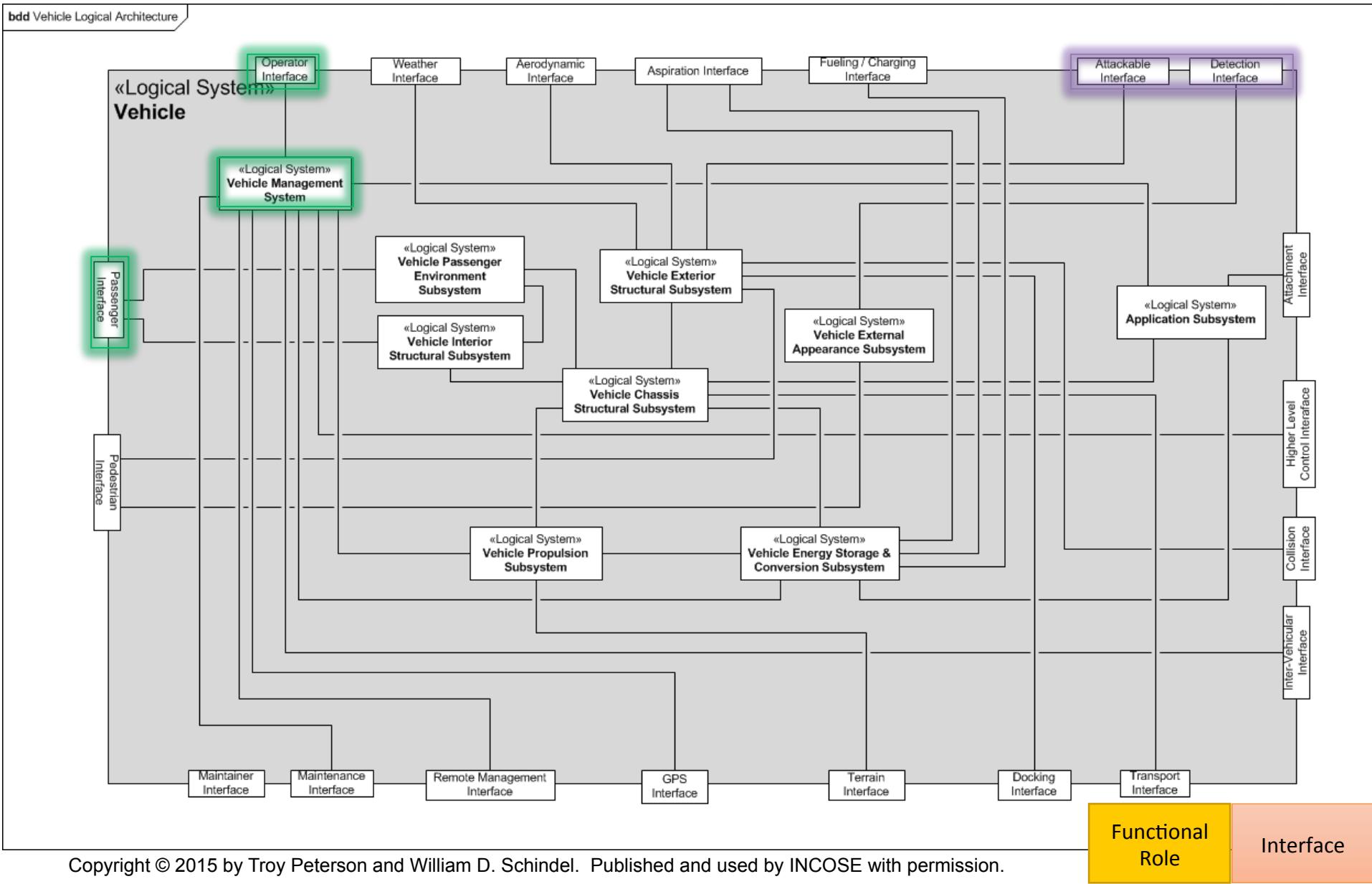
«Interaction»
Interact with
Nearby Vehicle

«Interaction»
Deliver Vehicle

«Interaction»
Account for
System

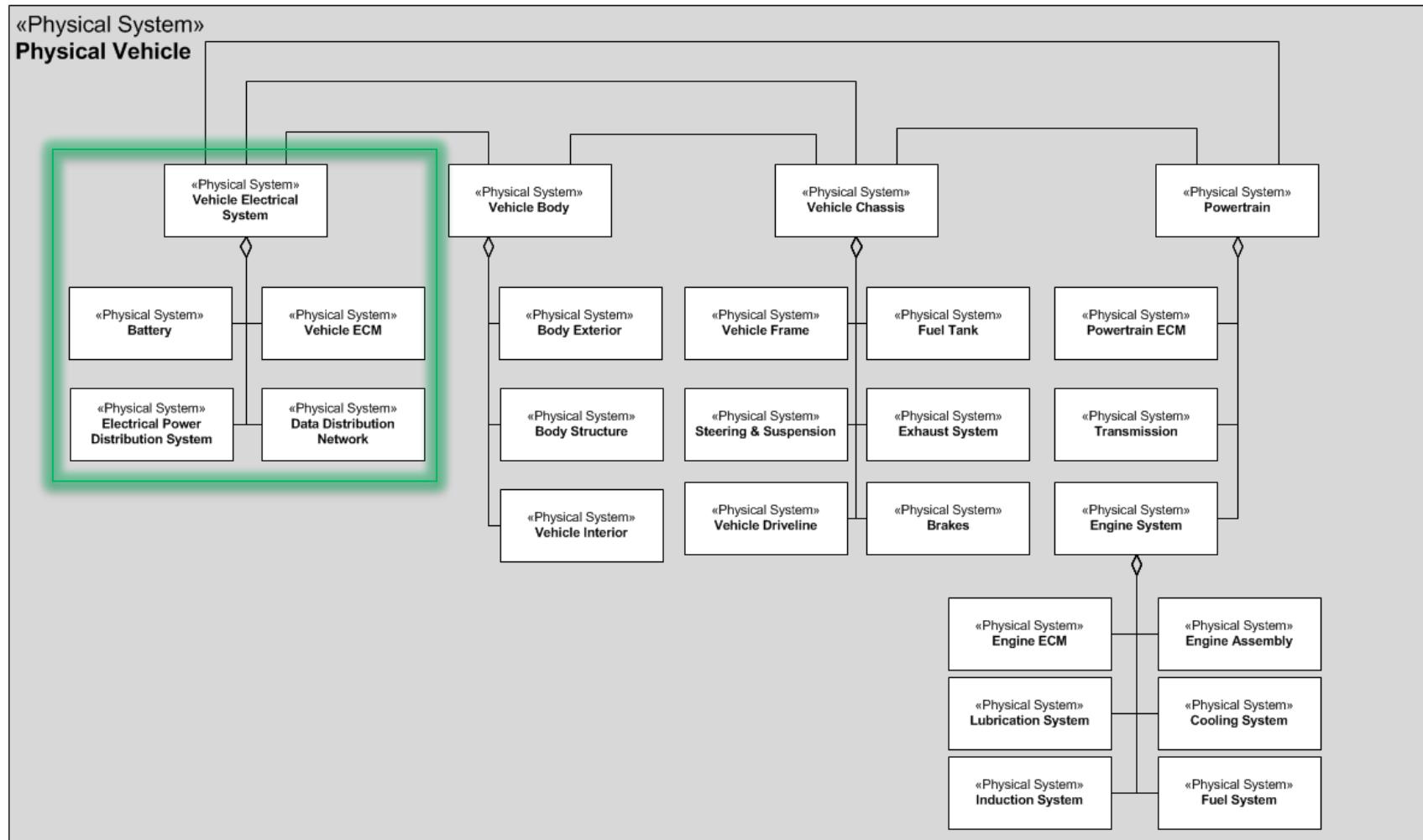
«Interaction»
Perform Dock
Approach &
Departure

«Interaction»
Transport Vehicle


«Interaction»
View Vehicle

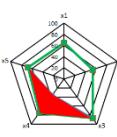
«Interaction»
Secure Vehicle

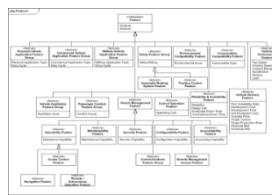
Vehicle Interactions Matrix


1	Interaction Name	Interaction Definition															Actors																			
2		Vehicle	Operator	Passenger	Vehicle	Occupant	Nearby	Pedestrian	External	Maintainer	Maintenance	System	Local	Atmosphere	Refuel System	Hostile	System	External	Attachment	Load	Application	System	Higher Level	Management	Nearby Vehicle	Vehicle	Transport	Curb & Dock	System	Local Terrain	Global Region	Remote	Management	System	Global Positioning	System
3	Account for System	The interaction of the vehicle with its external managers, in which it accounts for vehicle utilization.																																		
4	Aspirate	The interaction of the vehicle with the Local Atmosphere, through which air is taken into the vehicle for operational purposes, and gaseous emissions are expelled into the atmosphere.																																		
5	Attack Hostile System	The interaction of the vehicle with an external hostile system, during which the vehicle projects an attack onto the hostile system's condition.																																		
6	Avoid Obstacle	The interaction of the vehicle with an external object, during which the vehicle minimizes contact with or proximity to the object.																																		
7	Configure	The interaction of the vehicle with people or systems that manage its arrangement or configuration for intended use.																																		
8	Deliver Vehicle	The interaction of the vehicle with the process of its delivery, including manufacture, distribution, and development. This includes delivery of each configured version and update of the vehicle product line or family.																																		
9	Interact with Higher Control	The interaction of the vehicle with an external higher level management system, along with the vehicle operator, through which the vehicle is fit into larger objectives.																																		
10	Interact with Nearby Vehicle	The interaction of the vehicle with another vehicle, in which information is exchanged to identify one vehicle to another.																																		
11	Interact with Operator	The interaction of the vehicle with its operator.																																		
12	Maintain System	The interaction of the vehicle with a maintainer and/or maintenance system, through which faults in the vehicle are prevented or corrected, so that the intended qualified operating state of the vehicle is maintained.																																		
13	Manage Vehicle Performance	The interaction of the vehicle with its operator and/or external management system, through which the performance of the vehicle is managed to achieve its operational purpose and objectives.																																		
14	Navigate	The interaction of the vehicle with the Global Positioning System, by which the Vehicle tracks its position on the Earth.																																		
15	Perform Application	The interaction of the vehicle with an external Application System, through which the vehicle performs a specialized application.																																		
16	Perform Dock Approach & Departure	The interaction of the vehicle with an external docking system, through which the vehicle arrives at, aligns with, or departs from a loading / unloading dock.																																		
17	Refuel Vehicle	The interaction of the vehicle with a fueling system and its operator, through which fuel is added to the vehicle.																																		
18	Ride In Vehicle	The interaction of the vehicle with its occupant(s) during, before, or after travel by the vehicle.																																		
19	Secure Vehicle	The interaction of the vehicle with external actors that may or may not have privileges to access or make use of the resources of the vehicle, or with actors managing that vehicle security.																																		
20	Survive Attack	The interaction of the vehicle with an external hostile system, during which the vehicle protects its occupants and minimizes damage to itself.																																		
21	Transport	The interaction of the vehicle with a Vehicle Transport System, through which the Vehicle is transported to an intended destination.																																		
22	Travel Over Terrain	The interaction of the vehicle with the terrain over which it travels, by means of which the vehicle moves over the terrain.																																		
23	View Vehicle	The interaction of the vehicle with an external viewer, during which the viewer observes the vehicle.																																		

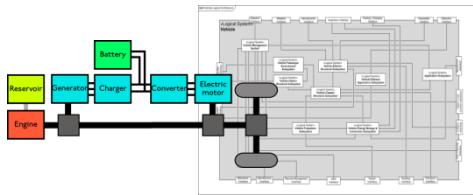
Vehicle Logical Architecture Model

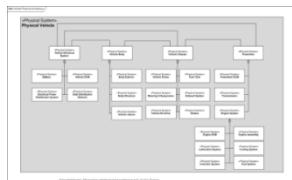
Vehicle Physical Architecture Model


bdd Vehicle Physical Architecture


Acknowledgement: Influenced by related physical architecture work of John Thomas

Vehicle Multi Domain Matrix


Features


Requirement X

Functional Role

Design Component

Feature		Root																																										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41		
Vehicle Features	Vehicle Costs / Roles	Vehicle Functions	Functional Roles	Vehicle Function	Design Component	Powertrain	Vehicle Design Components	Chassis	Vehicle Body	Vehicle Power & Data Mgmt & Dist																																		
Range	1	2%	1	1																																								
Consumable Typ	2	2%	2																																									
Fuel Type	3	1	2%																																									
Comfort Issue	4		2%																																									
Operating Cost	5			2%																																								
Refuel Cost	6	1																																										
Infrastructure Availability	7	1																																										
Vehicle Management Feature	8	1																																										
Vehicle Management System	9																																											
Vehicle External Appearance Subsystem	10																																											
Vehicle Interior Structural Subsystem	11																																											
Vehicle Passenger Environment Subsystem	12																																											
Vehicle Exterior Structural Subsystem	13	2																																										
Vehicle Chassis Structure Subsystem	14																																											
Fuel Tank Capacity [Store Fuel]	15	1																																										
Convert Fuel to Mechanical Energy	16																																											
Rolling Resistance [Slow or Stop Vehicle]	17	1																																										
Convert Mechanical Energy to Electrical Energy	18																																											
Functional Role.Vehicle Functional Roles.	19																																											
Store Electric Energy	20	1																																										
Convert Electrical Energy to Mechanical Energy	21																																											
Start and Stop Energy Conversion	22																																											
Translate Torque to Wheels	23	1																																										
Enable Rolling	24																																											
Release Energy as Heat	25																																											
Fuel Supply System	26																																											
Engine System [Internal Combustion]	27	1																																										
Starter Generator	28																																											
Cooling System	29																																											
Powertrain Power Management/Distribution	30																																											
Battery	31	1																																										
Electric Motor / Generator	32	1																																										
Vehicle Driveline	33	1																																										
Wheels	34	1																																										
Brakes	35																																											
Steering	36																																											
Suspension	37																																											
Vehicle Interior	38																																											
Body Exterior	39	1																																										
Body Structure	40	1																																										
Vehicle Power & Data Mgmt & Dist	41	3																																										

Patterns Challenge Team AGV content

Domain	Class	Name
All	Stakeholder	Political bodies
All	Stakeholder	Standards Bodies
All	Stakeholder	Developer Stockholder
Development Domain	Stakeholder	Aftermarket Part Developers
Development Domain	Stakeholder	Product Developer

Stakeholder	Domain	Class	Entity Group	Entity Attributes / Features
	Development Domain	Feature	Product line strategy	Configurability
	Development Domain	Feature	Product line strategy	Commonality
	Development Domain	Feature	Product line strategy	Switching cost

Stakeholder

Feature

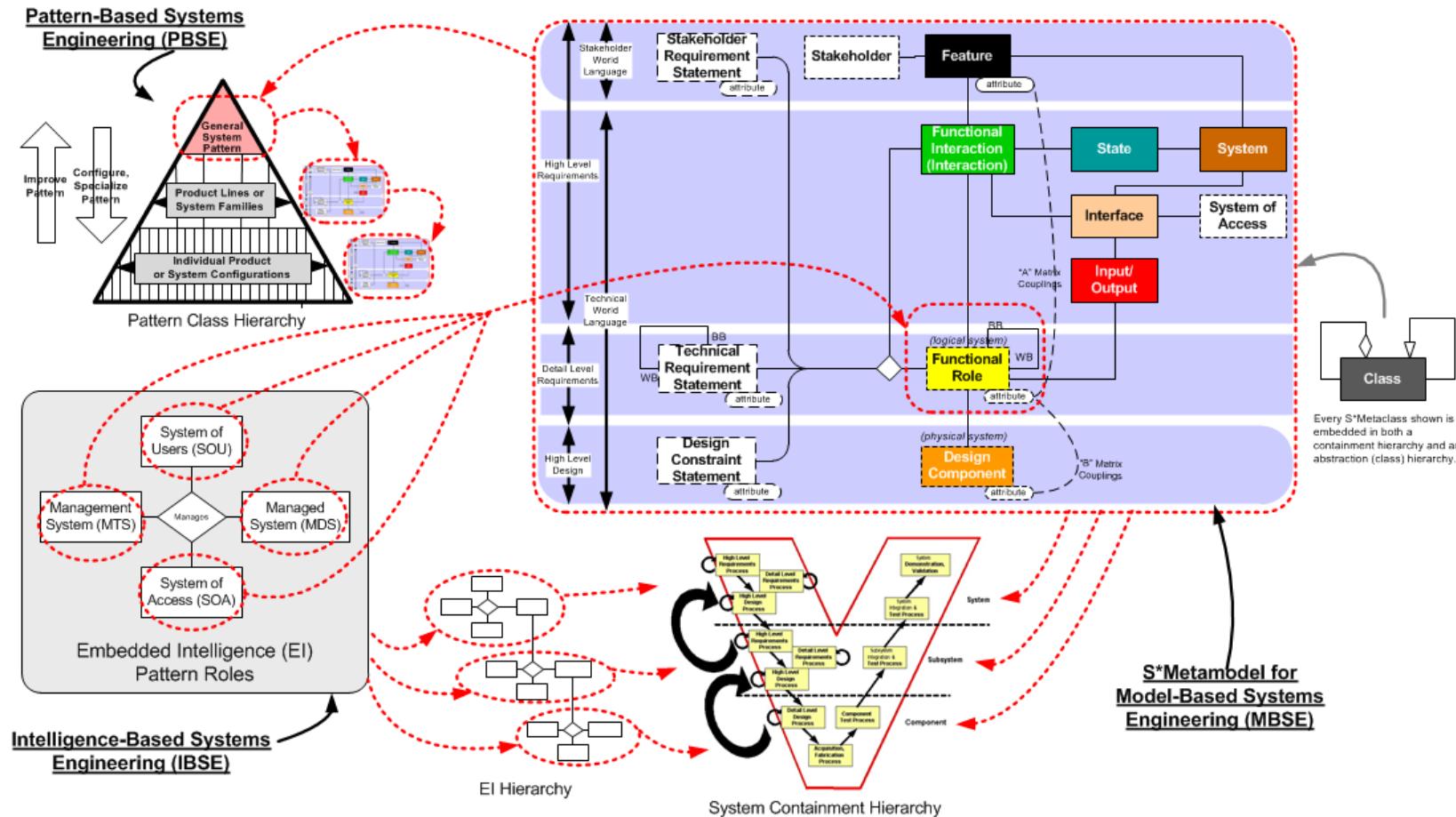
Functional Interaction

Functional Role

Domain	Class	Logical Elements
Development Domain	Functional Role	Product Developer
Manufacturing Domain	Functional Role	Product Manufacturer
Distribution Domain	Functional Role	Product Distributor
Supplier Domain	Functional Role	Fuel/Power Suppliers
Ap. Functional Role	Functional Role	Environment
Ap. Functional Role	Functional Role	Terrain
Ap. Functional Role	Functional Role	Operator
Application Domain	Functional Role	Controller
Application Domain	Functional Role	UGV

Design Component

Design Component		Vendor	Part Num	Price	d1	d2	d3	Material	Color
Application D		Trakmas	5119A	\$7.00	10	15	4	Rubber	Black
Application D		Trakmas	5119	\$7.00	10	15	4	Rubber	Blue
Application D		Trakmas	5120	\$8.00	12	18	4	Rubber	Blue
Application D		Trakmas	5116	\$3.50	5	11	4	Rubber	Blue
Application D		Trakmas	5114	\$4.00	5	8	2.5	Rubber	Blue
Application D		Trakmas	5117	\$4.00	6	12	4	Rubber	Blue
Application D		Trakmas	5118	\$6.00	8	16	5	Rubber	Blue
Application D		Trakmas	1985	\$2.00	5	8	0.5	PTFE coated steel	
Application D		Trakmas	1926	\$2.00				Vinyl	
Application D		Trakmas	1726	\$1.00				Vinyl	
Application D		Trakmas	3935	\$3.00				Steel	
Application D		Trakmas	3934	\$3.00				Steel	
Application D		Trakmas	6715	\$4.00				Polyurethane	
Application D		Trakmas	6615R	\$4.00				Polyurethane	
Application D		Trakmas	1815	\$2.00				Steel	
Application D		Trakmas	6711X	\$34.59				Vinyl	
Application D		Trakmas	6713	\$6.00				Vinyl	
Application D		Trakmas	4974	\$10.00				Stainless Steel	
Application D		Trakmas	6777	\$6.00				Polyurethane	Black
Application D		Trakmas	4976	\$4.00					
Application D		Trakmas	5119A	\$7.00	10	5	4	Rubber	Black
Application D		Trakmas	5119	\$7.00	10	15	4	Rubber	Blue
Application D		Trakmas	5120	\$8.00	12	18	4	Rubber	Blue
Application D		Trakmas	5116	\$3.50	5	11	4	Rubber	Blue
Application D		Trakmas	5117	\$4.00	6	12	4	Rubber	Blue
Application D		Trakmas	6741	\$4.00					Clear
Application D		Trakmas	6877	\$4.50					
Application D		Trakmas	6888X	\$4.50					Hardened Steel
Application D		Trakmas	6755	\$10.00					T6 Aluminum
Application D		Trakmas	5148	\$3.00	n	n	n		Grease


Embedded Intelligence (EI) Pattern

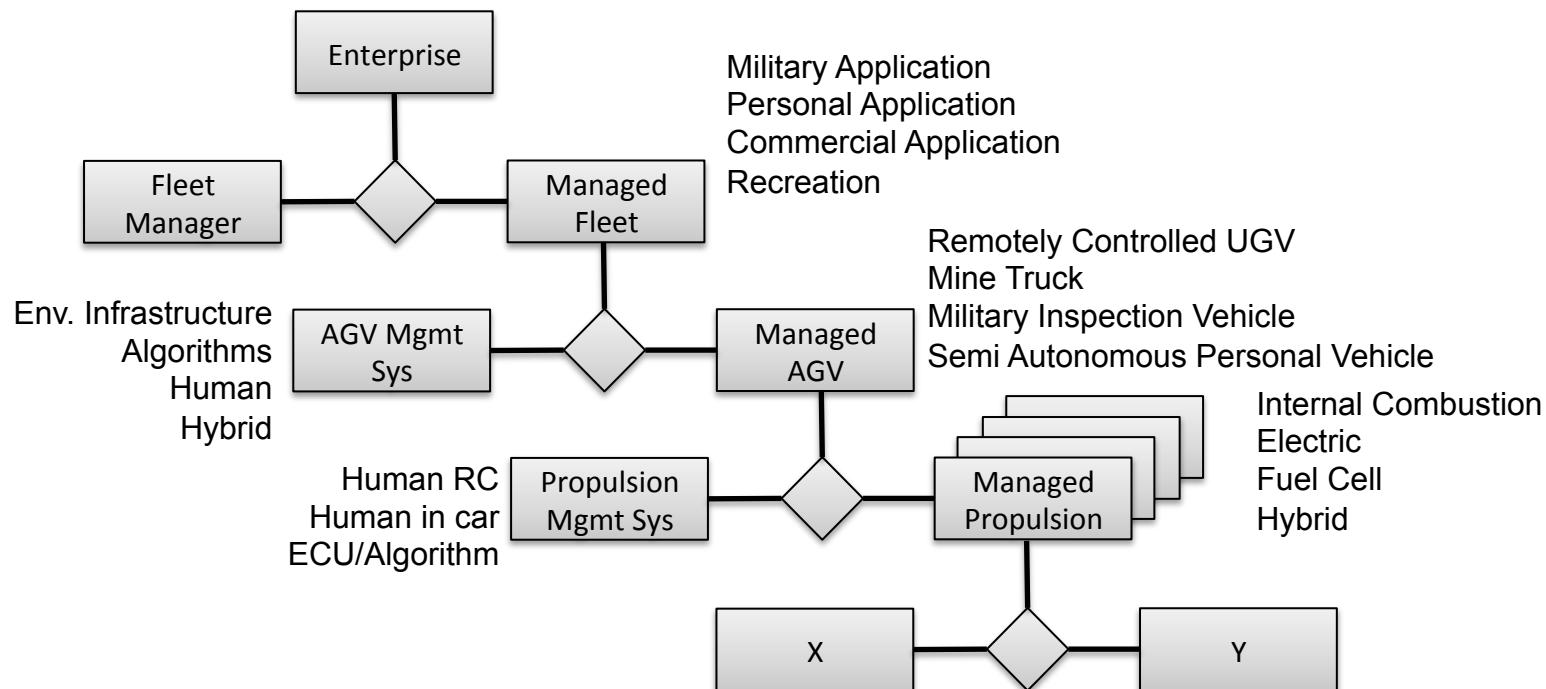
- Many S*Patterns are discovered and expressed through PBSE, but the EI Pattern is of particular importance to the subject of AGVs.
- the EI Pattern returns to the perspective of Norbert Weiner, who first coined the term “cybernetics” to refer to the study of control and communication in both living and human-engineered systems. (Weiner, 1965).
- The EI Pattern is an S*Pattern that emerges to describe intelligence in explicit models of evolving systems in the natural and man-made world—also referred to as the Management System Pattern.
- EI Pattern describes the individual elements and overall systemic framework of embedded intelligence on a total system; agents may be information technology, human, hybrid, or other forms of management.
- The four types of Embedded Intelligence Pattern functional roles that arise are the Managed System, Management System, System of Users and System of Access.

Embedded Intelligence (EI) Pattern

- **Managed System (MDS):** Any system behavior whose performance, configuration, faults, security, or accounting are to be managed--referred to as System Management Functional Areas (SMFAs) or in ISO terminology fault, configuration, accounting, performance, security (FCAPS). MDS is the “controlled plant”.
- **Management System (MTS):** The roles of performing management (active or passive) of any of the SMFAs of the managed system. This roles may be played by automation technology, human beings, or hybrids thereof, to accomplish regulatory or other management purposes. MTS is the “controller”.
- **System of Users (SOU):** The roles played by a system which consumes the services of an managed system and/or management system, including human system users or other service-consuming systems at higher levels.
- **System of Access (SOA):** The roles providing a means of interaction between the other EI roles. Engineered sensors, actuators, the Internet, and human-machine interfaces have contributed greatly to the emergence of the “Internet of Things”.

Embedded Intelligence (EI) Pattern

States and Situation Resolution Cycles


System stability over time requires a form of system regulation to “resolve” various “situations” that may occur from time to time, driving the managed system back to a “normal” or nominal state.

- **Major Mission Resolution Cycles:** These proceed through a series of mission states, from mission initiation to fulfilment, including planning.
- **Minor Use Case Resolution Cycles:** These similarly resolve various situational use cases.
- **Resolution of Faults:** These may include the recognition, diagnosis, repair, and recovery from system faults.
- **Resolution of Service Requests:** These may include resolution of requests for such services as re-configuration, security, or other situations.

If a system is capable of traveling a situation resolution cycle trajectory and recognizing that such a situation has arisen in the first place the the system is said to be “Situationaly Aware”.

High Level AGV EI Pattern

- Diagram of AGV EI Pattern

This management hierarchy continues downward, but also upward—there is management at higher levels, including traffic control, fleet management, site management, warehouse management, mission control, etc.

Vehicle and EI Pattern Integration

- The integration of the vehicle and EI pattern provides a very powerful and compact way to model the diversity of AGVs including application, manned and unmanned, level and types of control
- The integration is a straight forward exercise given both are compliant with the S* metamodel to form S* patterns.
- For AGVs this permits the configuration and reuse of the general vehicle pattern and EI pattern to cover the diverse range of platforms within the AGV domain.
- Configuration of a specialized AGV can be accomplished specifically thorough the selection of features to ultimately configure systems solutions.
- The next thing the PBSE Challenge Team will do is to incorporate feature selection following the precepts of ISO 26550 “Software and Systems Engineering - Reference Model for Product Line Engineering and Management”.

Vehicle Pattern Configuration Chart

- Unlike the diversity of physical implementation across these AGV platforms, whether manned or unmanned, wheeled or tracked, mine, city or wartime environments the means and allocation of control can have a very high level of commonality well represented by control patterns--more specifically the Embedded Intelligence (EI) Pattern.

Vehicle Management Capability	Remotely Controlled AGV	Inspection / Mining AGV	Fully Autonomous AGV
Faults Management Situation	Few	Several	Many
Configuration Management	0	Several	Many
Accounting Management	Few	Several	Many
Performance Management	Few	Several	Many
Security Management	0	0	Many

Follow on Work

Elaboration of this work will be performed within a sub-team of the INCOSE PBSE Challenge Team whose focus is to model an Automated Ground Vehicle Platform. More specifically the sub-team will focus on the follow items:

- Expand the depth of both the vehicle and embedded intelligence pattern to build an Automated Ground Vehicle Platform Pattern. Initial work has focused on limited autonomy in an unmanned remotely controlled platform. In elaborating the model the sub-team will expand and detail feature selection and optioning using the precepts of Product Line Engineering (ISO 26550)
- Use the AGV model to further demonstrate the use of Design Structure Matrix (DSM) and Network Analysis as aids in architecting engineered systems. More specifically to aid with modularization, partitioning, visualizing allocations across Multi-Domain Matrices (MDMs) and investigating key network metrics and their ability to aid in architecting systems.
- Determine the applicability of ongoing standardization efforts affecting AGVs. In specific either SARTRE semi-automated truck platooning system or the AUTomotive Open Systems ARchitecture (AUTOSAR) Chassis Control Functional Architecture.
- Explore the needs and opportunities to incorporate precepts of the ISO26262 functional safety standard into this pattern.

Conclusions

- The systemic complexity of AGVs demands a systems engineering approach
- It requires a systems paradigm which is interdisciplinary, leverages principals common to all complex systems and applies the requisite physics-based and mathematical models to represent them.
- For the approach discussed in this paper, the “methodology” includes not only process, but more significantly the very concept of the underlying information those processes produce and consume, independent of modeling language and tools.
- PBSE provides a data model and framework that is both holistic and compact and is well suited to address the complexity of AGVs
- PBSE and the EI pattern establish patterns of adaptive and hierarchical control which can be leveraged as a framework for engineering trusted systems.
- The Embedded Intelligence Pattern explicitly represents the logical roles which enable planned evolution and limits architectural lock in, effectively reducing switching costs and speeding technology integration.

References

1. (Alexander, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and Angel, S., *A Pattern Language*. Oxford University Press, New York, 1977.
2. (BCG, 2013) "The Most Innovative Companies 2013 – Lessons from Leaders" 2013 BCG Global Innovators Survey, BCG Analytics.
3. (Berg, 2014) Berg, E., "Affordable Systems Engineering: An Application of Model-Based System Patterns To Consumer Packaged Goods Products, Manufacturing, and Distribution", at INCOSE IW2014 MBSE Workshop, 2014.
4. (Bradley, Hughes, Schindel, 2010) Bradley, J., Hughes, M. and Schindel, W., "Optimizing Delivery of Global Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns" Proceedings of the INCOSE 2010 International Symposium (2010).
5. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex Systems: Making Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.
6. (Estafan, 2008) Estafan, J. 2008. Survey of model-based systems engineering (MBSE) methodologies. INCOSE MBSE Initiative.
7. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., and Vlissides, J., *Design Patterns: Elements of Reusable Object-Oriented Software*. Addison-Wesley Publishing Company, Reading, MA, 1995.
8. (ICTT, 2013) Abbreviated Systematica Glossary, ICTT System Sciences, 2013.
9. (INCOSE Handbook, 2014) INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, Version 4, International Council on Systems Engineering (2014).
10. (INCOSE Patterns Team, 2014) INCOSE MBSE Initiative: Patterns Challenge Team 2013-14 Web Site: <http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns>
11. (ISO 15288, 2014) ISO/IEC 15288: Systems Engineering—System Life Cycle Processes. International Standards Organization (2014).
12. (ISO 26262, 2011) ISO 26262 "Road Vehicles—Functional Safety", 2011.
13. (ISO 26550, 2013) ISO/IEC 26550 "Software and Systems Engineering—Reference Model for Product Line Engineering and Management", 2013.
14. (ISO 42010, 2011) ISO/IEC/IEEE 42010 "Systems and Software Engineering—Architecture Description", 2011.TS
15. (NHTSA, 2013), "2012 Motor Vehicle Crashes: Overview", National Highway Safety Administration , U.S. Department of Transportation, 2013.
16. (NSF, 2014)"NSF-Funded Joint Efforts", at www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
17. (Schindel, 2005a) Schindel, W., "Pattern-Based Systems Engineering: An Extension of Model-Based SE", INCOSE IS2005 Tutorial TIES 4, (2005).

References

18. (Schindel, 2005b) Schindel, W. "Requirements statements are transfer functions: An insight from model-based systems engineering", Proceedings of INCOSE 2005 International Symposium, (2005).
19. (Schindel, 2010) Schindel, W., "Failure Analysis: Insights from Model-Based Systems Engineering", INCOSE International Symposium, Chicago, 2010.
20. (Schindel, 2011b) Schindel, W. "What Is the Smallest Model of a System?", Proc. of the INCOSE 2011 International Symposium, International Council on Systems Engineering (2011).
21. (Schindel, 2011c) Schindel, W., "The Impact of 'Dark Patterns' On Uncertainty: Enhancing Adaptability In The Systems World", in Proc. of INCOSE Great Lakes 2011 Regional Conference on Systems Engineering, Dearborn, MI, 2011
22. (Schindel, 2012a) Schindel, W. "Introduction to Pattern-Based Systems Engineering (PBSE)", INCOSE Finger Lakes Chapter Webinar, April 26, 2012.
23. (Schindel, 2012 b) Schindel, W., "Integrating Materials, Process, & Product Portfolios: Lessons from Pattern-Based Systems Engineering", in *Proc. of Society for Advancement of Materials and Process Engineering (SAMPE)*, 2012
24. (Schindel, 2013a) Schindel, W. "Interactions: At the Heart of Systems", INCOSE Great Lakes Regional Conference on Systems Engineering, W. Lafayette, IN, October, 2013.
25. (Schindel, 2014) Schindel, W. "The Difference Between Whole-System Patterns and Component Patterns: Managing Platforms and Domain Systems Using PBSE", INCOSE Great Lakes Regional Conference on Systems Engineering, Schaumburg, IL, October, 2014
26. (Schindel, Peterson, 2013) Schindel, W., and Peterson, T. "Introduction to Pattern-Based Systems Engineering (PBSE): Leveraging MBSE Techniques", in Proc. of INCOSE 2013 International Symposium, Tutorial, June, 2013.
27. (Schindel, Peterson, 2014) "Pattern Based Systems Engineering – Leveraging Model Based Systems Engineering for Cyber-Physical Systems", Proc. of 2014 NDIA Ground Vehicle Systems Engineering and Technology Symposium, Systems Engineering Technical Session, August 12-14, 2014, Novi, MI.
28. (Schindel, Smith, 2002) Schindel, W., and Smith, V., "Results of applying a families-of-systems approach to systems engineering of product line families", SAE International, Technical Report 2002-01-3086 (2002).
29. (Weiner, 1965) Norbert Weiner, *Cybernetics: Control and Communication in the Animal and the Machine*, Cambridge, MA, MIT Press, 1965.
30. US Census, 2009 - <https://www.census.gov/prod/2011pubs/acs-15.pdf>

Model-Based System Patterns for Automated Ground Vehicle Platforms

Abstract. Automated Ground Vehicle (AGV) platform research and engineering is proliferating across commercial, military, and consumer applications. Beyond diversity of form and application, AGVs can be manned or unmanned, and exhibit a broad range of automated control, from partial to full autonomy, making these vehicles strikingly diverse.

This paper reports on application of Pattern-Based Systems Engineering (PBSE) to representation of automated ground vehicle platforms. PBSE is based upon reusable, configurable S*Models conforming to the S*Metamodel, expressed in any modeling language and toolset. The INCOSE MBSE Initiative Patterns Challenge Team has been practicing PBSE across applications, reported in this and other IS2015 papers.

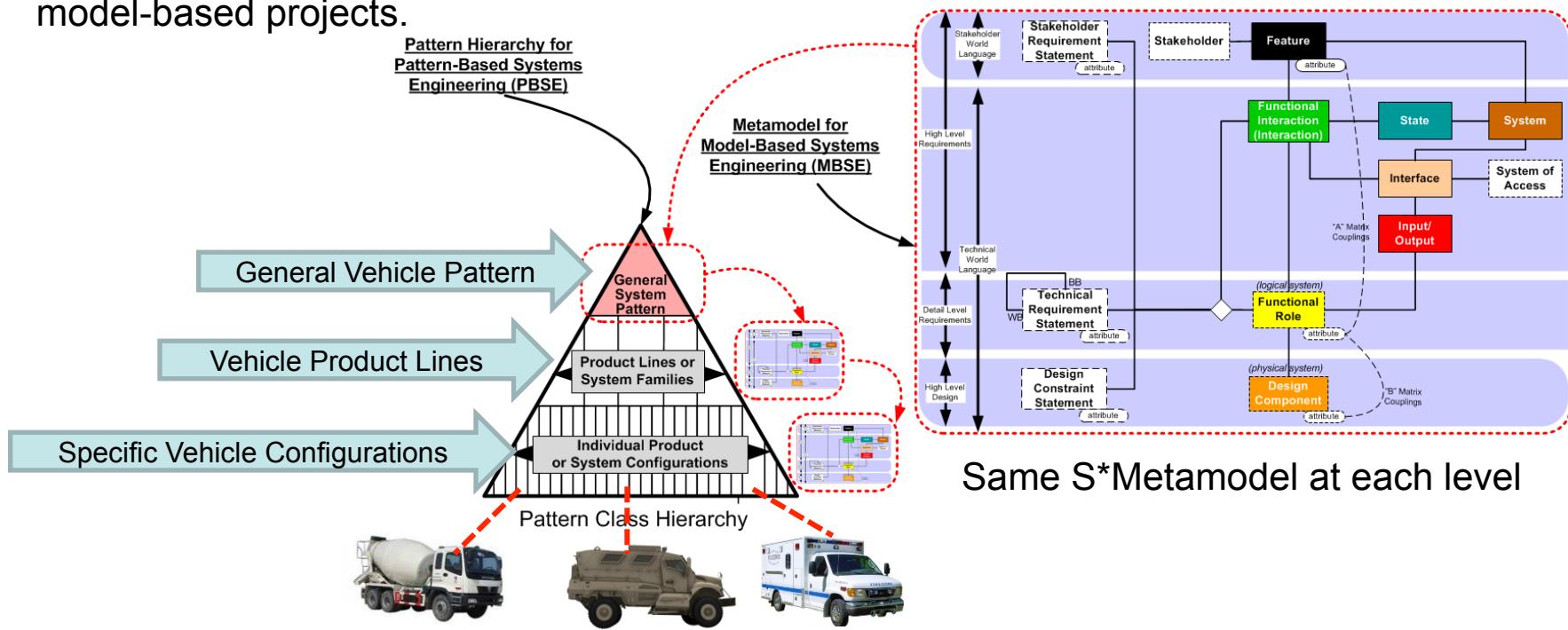
A specialized class of Cyber-Physical Systems, AGVs are subject to intense interest, creating new opportunities, risks, and complexities. To address the diversity and complexity of these systems, the Embedded Intelligence (EI) Pattern, another S*Pattern, is being applied by the team to illustrate its applicability to an AGV Platform Pattern.

25th anniversary
annual INCOSE
international symposium
Seattle, WA
July 13 - 16, 2015

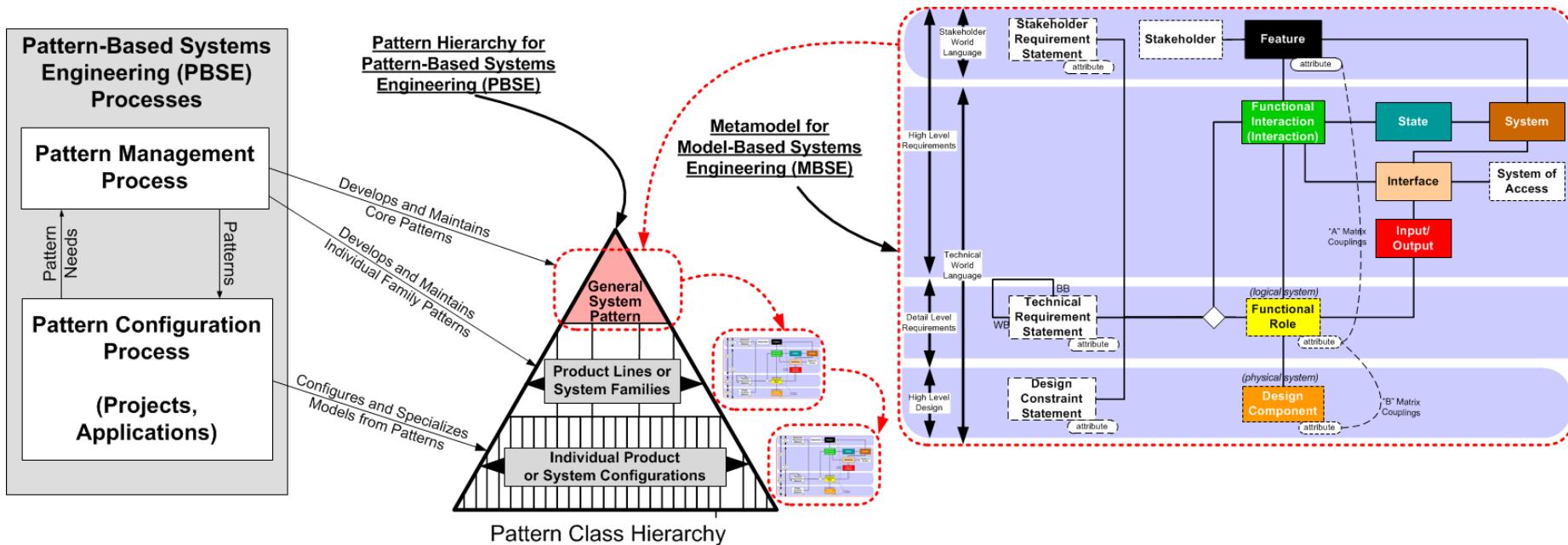
Biographies

Troy Peterson is a Chief Engineer and Booz Allen Fellow operating as a firm-wide resource supporting top priority programs. Prior to Booz Allen, he worked at Ford Motor Company and operated his own engineering consulting business. He serves on the MSU Mechanical Engineering Department Advisory Board and INCOSE's Corporate Advisory Board. He's also a past president of INCOSE's Michigan Chapter and he co-leads the Patterns Challenge Team of the INCOSE MBSE Initiative. Troy is also INCOSE's AD for Systems Engineering Transformation

William D. (Bill) Schindel is president of ICTT System Sciences. His engineering career began in mil/aero systems with IBM Federal Systems, included faculty service at Rose-Hulman Institute of Technology, and founding of three systems enterprises. Bill co-led a 2013 project on the science of Systems of Innovation in the INCOSE System Science Working Group. He co-leads the Patterns Challenge Team of the INCOSE MBSE Initiative


Misc Backup Slides

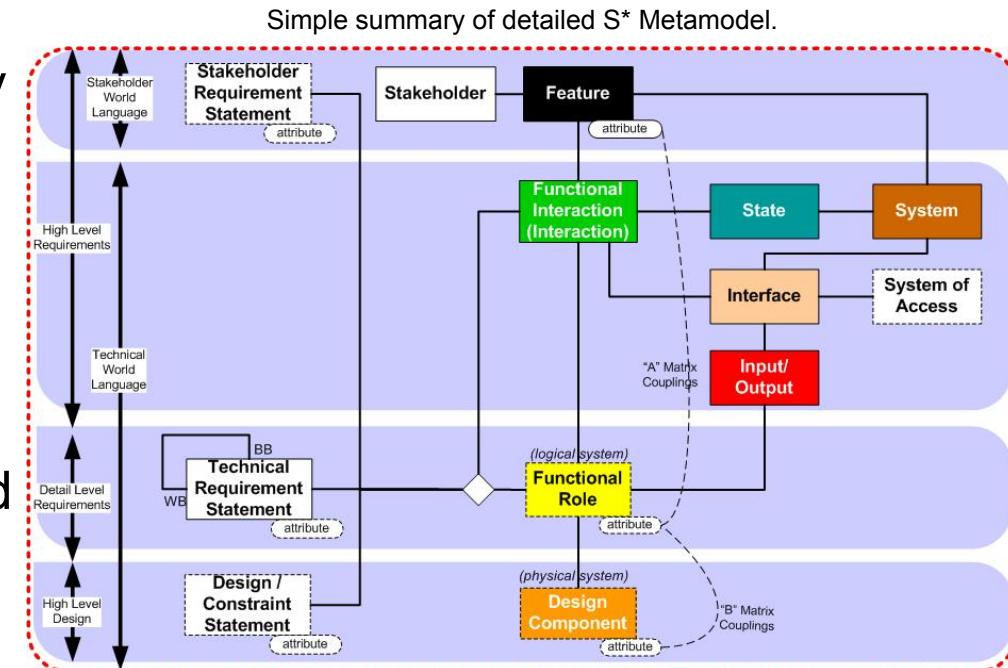
- Text


Concept Summary: Pattern-Based Systems Engineering (PBSE)

- By including the appropriate S* Metamodel concepts, these can readily be managed in (SysML or other) preferred modeling languages and MBSE tools—the ideas involved here are not specific to a modeling language or specific tool.
- The order-of-magnitude changes have been realized because projects that use PBSE rapidly start from an existing Pattern, gaining the advantages of its content, and feed the pattern with what they learn, for future users.
- The “game changer” here is the shift from “learning to model” to “learning the model”, freeing many people to rapidly configure, specialize, and apply patterns to deliver value in their model-based projects.

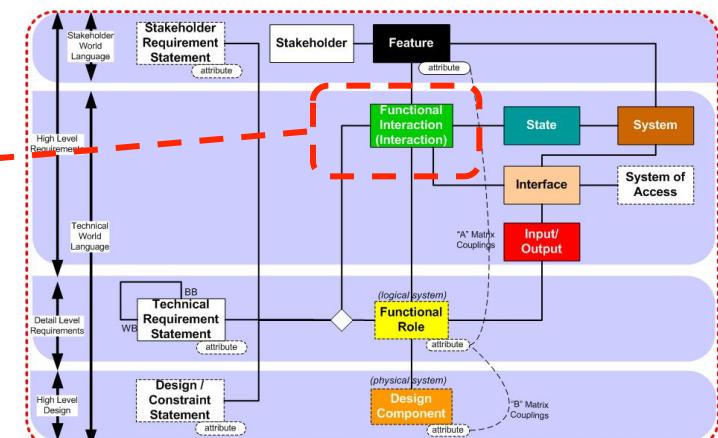
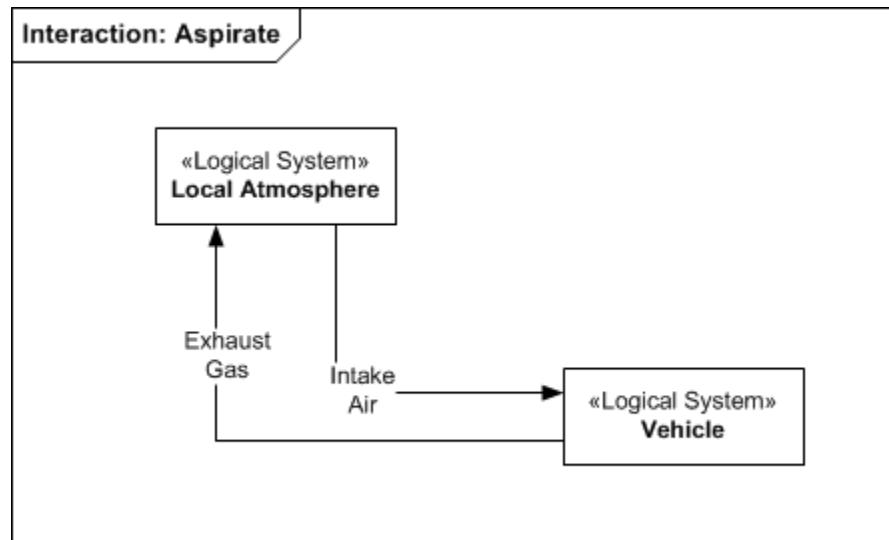
Concept Summary: Pattern-Based Systems Engineering (PBSE)

- PBSE provides a specific technical method for implementing:
 - Platform Management
 - Enterprise or Industry Frameworks
 - System Standards
 - Experience Accumulation for Systems of Innovation
 - Lean Product Development & IP Asset Re-use



Representing System Patterns: The S* Metamodel Framework

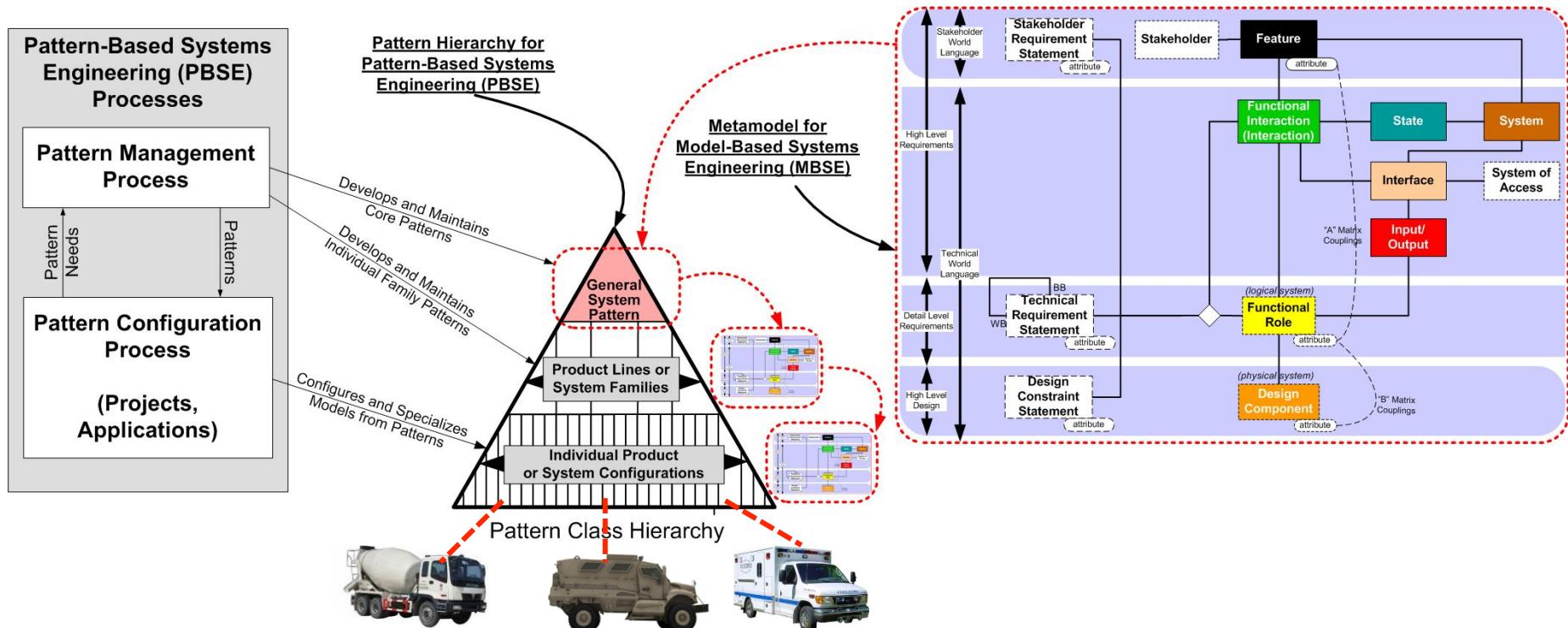
- What is the smallest amount of information we need to represent pattern regularities?
 - Some people have used prose to describe system regularities.
 - This is better than nothing, but usually not enough to deal with the spectrum of issues in complex systems.
- We use S* Models, which are the minimum model-based information necessary:
 - This is not a matter of modeling language—your current favorite language and tools can readily be used for S* Models.
 - The minimum underlying information classes are summarized in the S* Metamodel, for use in any modeling language.
- The resulting system model is made configurable and reusable, thereby becoming an S* Pattern.



Representing System Patterns: The S* Metamodel Framework

- A metamodel is a model of other models;
 - Sets forth how we will represent Requirements, Designs, Verification, Failure Analysis, Trade-offs, etc.;
 - We utilize the (language independent) S* Metamodel from Systematica™ Methodology:

Physical Interactions: At the heart of S* models

- S* models represent Interactions as explicit objects:
 - Goes to the heart of 300 years of natural science of systems as a foundation for engineering, including emergence.
 - All physical laws of science are about interactions in some way.
 - All functional requirements are revealed as external interactions (!)


- Other Metamodel parts: See the Vehicle Pattern example.

Pattern-based systems engineering (PBSE)

- Model-based Patterns:
 - In this approach, Patterns are reusable, configurable S* models of families (product lines, sets, ensembles) of systems.
 - A Pattern is not just the physical product family—it includes its behavior, decomposition structure, failure modes, and other aspects of its model.
- These Patterns are ready to be configured to serve as Models of individual systems in projects.
- Configured here is specifically limited to mean that:
 - Pattern model components are populated / de-populated, and
 - Pattern model attribute (parameter) values are set
 - both based on Configuration Rules that are part of the Pattern.
- Patterns based on the same Metamodel as “ordinary” Models

Pattern-based systems engineering (PBSE)

- Pattern-Based Systems Engineering (PBSE) has two overall processes:
 - **Pattern Management Process**: Creates the general pattern, and periodically updates it based on application project discovery and learning;
 - **Pattern Configuration Process**: Configures the pattern into a specific model configuration (e.g., a new product) for application in a project.

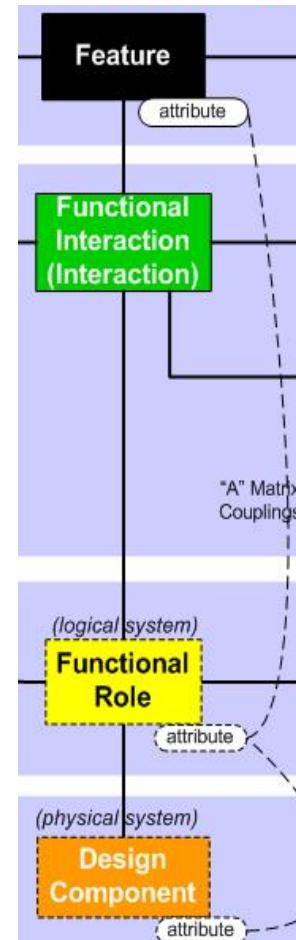
We'll discuss examples from both processes in this tutorial. page 45

3. Selecting Solutions

More Informed Trade-offs

PBSE and Trades

Feature Space

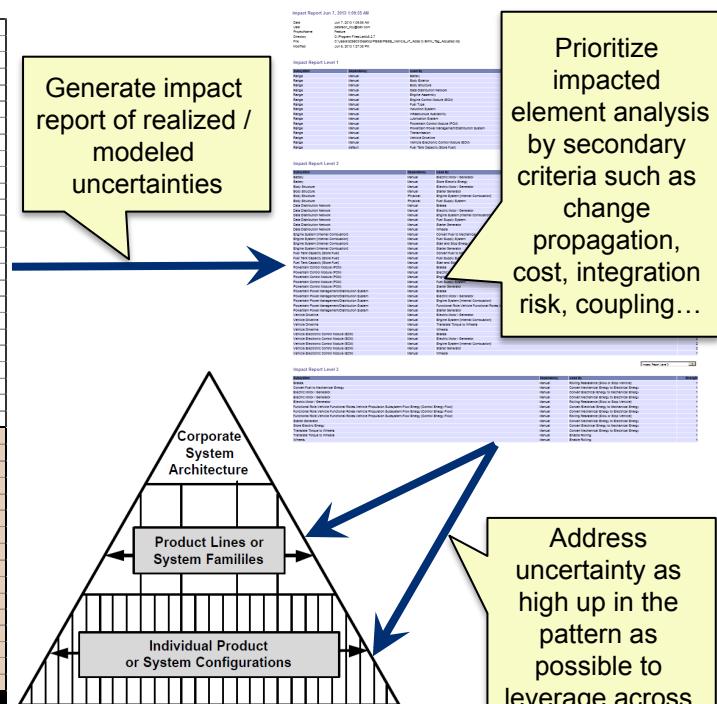
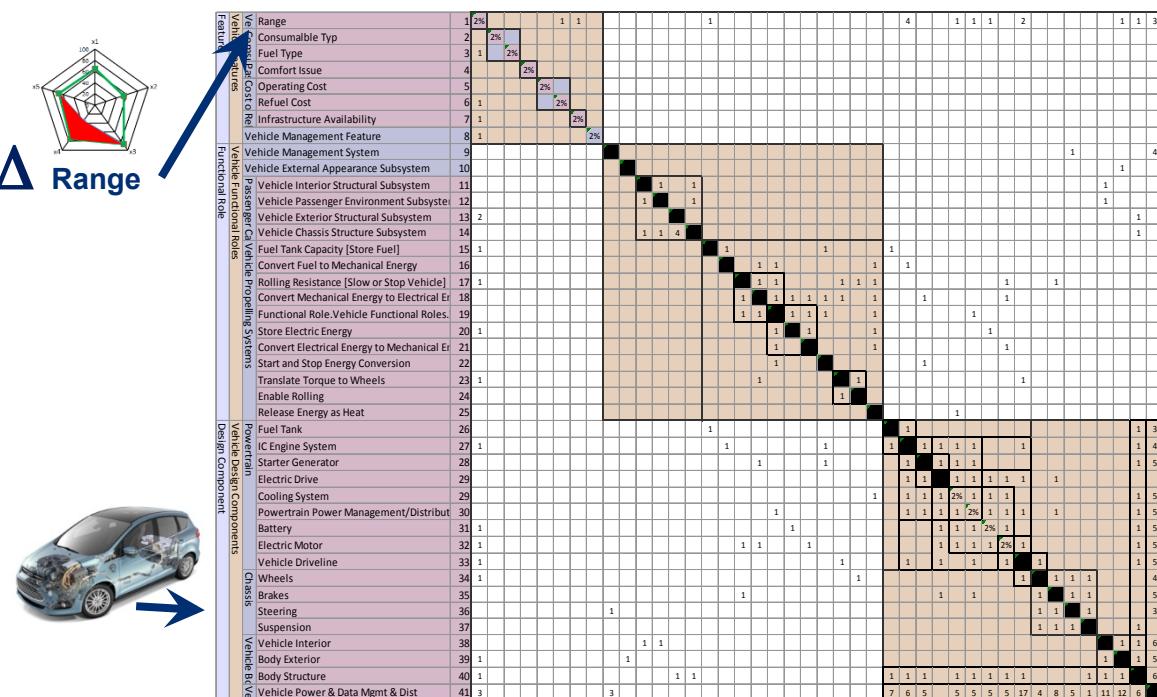

- Makes explicit all stakeholder needs
- Quantifies value impact through attributes
- Contains the entire trade space

Functional Role / Logical Architecture

- Logical, independent of design
- Describes the system's behavioral structure
- Formally models subsystems/design components
- Houses performance data (range, cost, weight etc.)
- Supports modeling of multiple physical architectures

Design Components

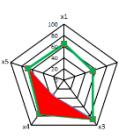
- Contains subsystem and technology options
- Design component options populate the logical architecture to create system configurations
- Contains part numbers, option names etc.
- ~~Models the physical architecture~~
Systems Engineering

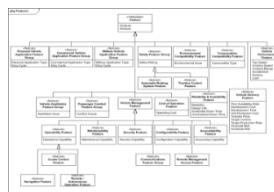



4. Design for Change

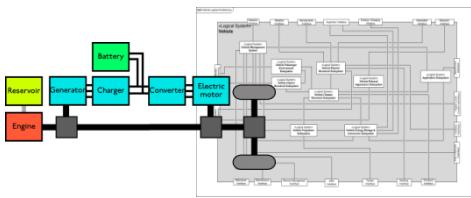
Architecture Management

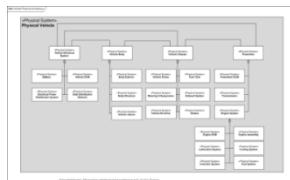
Impact Analysis


- **Product Line/System Families/Platforms:** The common system pattern which enable rapid specialization or configuration of individual products / systems configurations i.e. product variants. Change impact analysis can aid in determining which elements remain a part of the family pattern, which are unique and which should become flexible.


1. deWeck, Oli, Strategic Engineering: Designing Systems for an Uncertain Future, Flexible Product Platforms: Framework and Case Study
2. Kalligerios K., de Weck O., de Neufville R., Luckins A., "Platform Identification using Design Structure Matrices", Sixteenth Annual International GLRC 2013: Leadership Through Symposium of the International Council on Systems Engineering (INCOSE). Orlando, Florida, 8 - 14 July 2006

Vehicle Example MDM


Features


Requirement X

Functional Roles

Design Components

The diagram illustrates the relationship between vehicle features, functional roles, and design components. It features a central matrix with callout boxes highlighting specific features and their relationships to other components.

Feature Traceability: A matrix showing the traceability of vehicle features to functional roles. The columns represent functional roles (e.g., Vehicle Management Sys, Vehicle Exterior Structure, etc.) and the rows represent vehicle features (e.g., Range, Consumable Typ, Fuel Type, etc.). Each cell contains a value representing the percentage of traceability.

Functional Allocations/Traceability: A matrix showing the allocation of functional roles to design components. The columns represent design components (e.g., Chassis, Body, Power/Bus, etc.) and the rows represent functional roles (e.g., Rolling Resistance, Start and Stop Energy Conversion, etc.). Each cell contains a value representing the percentage of allocation.

Callout Boxes:

- Regenerative Braking:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Drive Electric:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- IC Engine:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Range Extender:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Electric Drive:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Chassis:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Body:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.
- Power/Bus:** Points to the 'Vehicle Management Sys' row in the Feature Traceability matrix.

Chunks of Behavior: A box containing the text 'Regenerative Braking'.

Related Design Components: A box containing the text 'IC Engine', 'Range Extender', 'Electric Drive', 'Chassis', 'Body', and 'Power/Bus'.