
Model-based Engineering of
Emergence in a Collaborative SoS:

Exploiting SysML & Formalism
 Claire Ingram, Richard Payne, John Fitzgerald

Newcastle University, UK
Luis Diogo Couto, Aarhus University, Denmark

July

Outline

1.  Introduction
§  SoSs, and the challenge of emergence
§  Can formal model-based methods assist?

2.  An Integrated Engineering Approach
3.  A Pilot Study

§  Requirements modelling
§  Architectural modelling
§  Transition to formal modelling

4.  Conclusions

July

Introduction
§  Systems of Systems (SoSs) are

comprised of elements that are
themselves independent systems

§  Often exhibit:
–  Operational & managerial independence
–  Distribution
–  Emergence
–  Evolution

§  Types: directed, acknowledged,
collaborative, virtual
–  We concentrate on collaborative

SoSs, which lack a central
engineering authority

July

Emergent Behaviour
§  Global behaviour resulting from the interaction of

constituent systems
§  In SoS, reliance may come to be placed on some

emergent behaviour
–  Need to generate evidence confirming/refuting

emergent properties

§  Engineering for emergence in SoS is challenging
–  Particularly in collaborative SoSs, lacking central

decision-making authority
–  Development of techniques to engineer SoS

emergent behaviour identified as a key challenge

July

Can model-based and formal
techniques help?
§  Model-based techniques can be helpful for SoSs

–  Testing in a realistic environment is difficult or prohibitively
expensive

–  Many SoSs required to deliver dependable behaviour in
challenging environments

§  COMPASS developed model-based SoS Engineering
methods
§  Focus on composition: contractual <assumption, commitment>

description styles.
§  Focus on semantics (common meanings and ontology)

thecompassclub.org

July

Can model-based and formal
techniques help?
§  Formal modelling languages have a rigorous

mathematical semantics
– Employed to develop unambiguous models of

software-intensive systems
–  Like mathematical models in other engineering

disciplines, can be used to generate predictions
about the finished system and its behaviour

– Permit machine-assisted rigorous analysis and
verification of requirements and design choices

July

Can model-based and formal
techniques help?
§  We blend techniques from systems

engineering and software engineering into
an approach for analyzing emergent
behaviours
– SysML modelling employed for reasoning about

architecture of SoS
–  “Formal methods” already used for verification

of dependable software systems are here
adapted to validate aspects of SoS behaviour

July

An Integrated Approach
Border#Traffic#Requirements!

!

!

!

!

!

«Requirement Description View»
RDV Border Traffic Requirements «requirement»

id#
R01

Border Traffic SoS Requirements

«requirement»

id#
R02

txt
The SoS should allow uninterrupted traffic
flow of vehicles across borders, where
roads are present connecting two
countries.

Uninterupted traffic between borders
«requirement»

id#
R03

txt
When an incident occurs close to the country
boundary, a cross-border speed corridor
must be created to ensure traffic speed
decreases at a steady rate.

Allow cross-border traffic corridor
«requirement»

id#
R04

txt
The managment of a given country's traffic system
should be performed by that country.

Allow country to evolve traffic management
independantly

«requirement»

id#
R05

txt
When an incident occurs within a country's border,
it must be able to take measures to ensure traffic
speed reduce approaching the incident.

Individual country must be able to manage traffic
flow

«requirement»

id#
R06

txt
There should be communication
between the Traffic Management
Systems of any two countries.

Cross border communication
«requirement»

id#
R06

txt
A country must respond to a request to
implement traffic speed reductions on roads
entering a neighouring country.

Must respond to request from neighbour

«requirement»

id#
R08

txt
A country should be able to sense road traffic
conditions and detect when measures should be
taken.

Sensing of road traffic conditions
«requirement»

id#
R09

txt
Countrys should be able to influence the speed
of road traffic in its own borders.

Influence road traffic

CConnV [Contract Connections View] BorderTraffic SoS

«block»
«Contractual SoS»
BorderTrafficSoS

«Contract»
CountryA : Country TMS

«Contract»
CountryB : Country TMS

«Contract»
CountryA : Country TMS

«Contract»
CountryB : Country TMS

tmsIF

tmsIF

!

1..*1

CDV [Contract Definition View] CountryTMS Operations

«block»
«Contract»

operations
determineSpeedCorridor
createSpeedCorridor
disableSpeedCorridor
calcNeighbourTarget
calcDistance
isNeighbourNeeded
neighbourRequest
neighbourOk

values
id
nId
nationalSpeedLimit
acts

Country TMS

«block»
«Operation»

parameters
(startLoc:int, distance:nat)

postcondition
forall a in set elems RESULT @
(actMap(a).loc >= startLoc and actMap(a).loc <= distance+startLoc) and
RESULT not in set currCorridors

precondition
len actSeq > 1

return
RESULT:Corridor

determineSpeedCorridor

«block»
«Operation»

parameters
(corr:Corridor, target:nat)

postcondition
forall a1, a2 in set elems corr @ (a1 <> a2 =>
(actMap(a1).loc > actMap(a2).loc => actMap(a1).disp > actMap(a2).disp)) and
corr in set currCorridors

precondition
forall a in set elems corr @ a in set elems actSeq and
target < nationalSpeedLimit
and corr not in set currCorridors

return
()

createSpeedCorridor

«block»
«Operation»

parameters
corr:Corridor

postcondition
forall a in set elems actSeq @ (actMap(a).disp = nationalSpeedLimit)
and corr not in set currCorridors

precondition
forall a in set elems corr @
(actMap(a).disp < nationalSpeedLimit)
and corr in set currCorridors

return
()

disableSpeedCorridor

«block»
«Operation»

parameters
startLoc:int, target:nat, distance:nat

postcondition
RESULT > target

precondition
true

return
RESULT:nat

calcNeighbourTarget

«block»
«Operation»

parameters
targetSpeed :nat

postcondition
true

precondition
targetSpeed <= nationalSpeedLimit

return
RESULT:nat

calcDistance

«block»
«Operation»

parameters
startLoc:int, distance:nat

postcondition
RESULT = not(exists ha in set elems actSeq @
actMap(ha).loc > (startLoc + distance))

precondition
true

return
RESULT:bool

isNeighbourNeeded

1..*1

Current model of loctation
means only works in one
direction

process	
 CountryTMS	
 =	
 	

	
 	
 actions	
 	

	
 	
 BEHAVIOUR=	
 NEW_INCIDENT	
 []	
 	
 NEIGHBOUR_REQ	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 NEW_INCIDENT	
 =	
 inIncident.myId?l?t	
 -­‐>	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (dcl	
 d	
 :	
 nat	
 :=	
 calcDistance	

	
 	
 	
 (t,	
 nationalSpeedLimit)	
 @	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 CORRIDOR(l,	
 t,	
 d))	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 CORRIDOR	
 =	
 l	
 :	
 int,	
 t:	
 nat,	
 d:nat	
 	

	
 @	
 ACT_STATUS;c:Corridor	
 :=det;	
 …	
 	
 	

process	
 CountryA	
 =	
 CountryTMS(theAId,	
 	

	
 	
 theBId,	
 limitA,	
 actCorrA)	

process	
 CountryB	
 =	
 CountryTMS(theBId,	
 	

	
 	
 theAId,	
 limitB,	
 actCorrB)	

	
 	

process	
 BorderTrafficSoS	
 =	
 CountryA	
 [|interface|]	
 CountryB	
 	

Requirements Engineering
§  SysML using a disciplined

approach (SoS-ACRE)

Architectural Modelling
§  SysML & CML

annotations using defined
patterns

Formal V&V of Models
§  CML using dedicated tools

exploiting the formal
semantics

July

Example

§  Traffic driving at high speed should not encounter stationary or slow
vehicles suddenly; temporary “corridor” is created to ensure
approaching vehicles decelerate gradually

§  If accident happens near an international border, the corridor may
straddle the border & require two countries to co-operate

§  Need to define contract to which each country adheres

X = incident
d= length of

corridor

July

§  COMPASS SoS-ACRE requirements process provides a
structured way of engineering and managing the
requirements of an SoS
–  Example focuses on the requirements engineering process

§  SoS-ACRE requirements engineering steps:
–  Identify source elements of requirements
–  Identify the constituents and stakeholders of the SoS
–  Define the SoS requirements
–  Examine the SoS requirements in context
–  Identify scenarios for validating the requirements

Requirements Engineering

July

SoS-ACRE Viewpoints
Viewpoint	
 Descrip-on	

Source	
 Element	
 	
 Iden/fies	
 requirements	
 source	
 informa/on	
 	

Requirement	
 Descrip/on	
 	
 Contains	
 a	
 structured	
 descrip/on	
 of	
 each	

requirement	
 	

Context	
 Defini/on	
 	
 	
 Iden/fies	
 the	
 points	
 of	
 view	
 (contexts)	
 which	
 will	
 be	

explored	
 in	
 the	
 RCVs	
 	

Requirement	
 Context	
 	
 Describes	
 the	
 requirements	
 defined	
 on	
 the	
 RDV	
 in	

context	

Context	
 Interac/on	
 	
 Overview	
 of	
 rela/onships	
 between	
 the	
 contexts	
 of	

various	
 CSs;	
 combines	
 the	
 RCVs	
 for	
 each	
 CS	

Valida/on	

	

Provides	
 the	
 basis	
 for	
 demonstra/ng	
 that	

requirements	
 can	
 be	
 validated	

Valida/on	
 Interac/on	

	

A	
 combined	
 view	
 of	
 the	
 scenarios	
 for	
 related	
 use	

cases	
 in	
 the	
 SoS;	
 combines	
 the	
 VVs	
 of	
 the	
 use	
 cases	

July

Border#Traffic#Requirements!

!

!

!

!

!

«Requirement Description View»
RDV Border Traffic Requirements «requirement»

id#
R01

Border Traffic SoS Requirements

«requirement»

id#
R02

txt
The SoS should allow uninterrupted traffic
flow of vehicles across borders, where
roads are present connecting two
countries.

Uninterupted traffic between borders
«requirement»

id#
R03

txt
When an incident occurs close to the country
boundary, a cross-border speed corridor
must be created to ensure traffic speed
decreases at a steady rate.

Allow cross-border traffic corridor
«requirement»

id#
R04

txt
The managment of a given country's traffic system
should be performed by that country.

Allow country to evolve traffic management
independantly

«requirement»

id#
R05

txt
When an incident occurs within a country's border,
it must be able to take measures to ensure traffic
speed reduce approaching the incident.

Individual country must be able to manage traffic
flow

«requirement»

id#
R06

txt
There should be communication
between the Traffic Management
Systems of any two countries.

Cross border communication
«requirement»

id#
R06

txt
A country must respond to a request to
implement traffic speed reductions on roads
entering a neighouring country.

Must respond to request from neighbour

«requirement»

id#
R08

txt
A country should be able to sense road traffic
conditions and detect when measures should be
taken.

Sensing of road traffic conditions
«requirement»

id#
R09

txt
Countrys should be able to influence the speed
of road traffic in its own borders.

Influence road traffic

Requirement Definition

Border#Traffic#Requirements!

!

!

!

!

!

«Requirement Description View»
RDV Border Traffic Requirements «requirement»

id#
R01

Border Traffic SoS Requirements

«requirement»

id#
R02

txt
The SoS should allow uninterrupted traffic
flow of vehicles across borders, where
roads are present connecting two
countries.

Uninterupted traffic between borders
«requirement»

id#
R03

txt
When an incident occurs close to the country
boundary, a cross-border speed corridor
must be created to ensure traffic speed
decreases at a steady rate.

Allow cross-border traffic corridor
«requirement»

id#
R04

txt
The managment of a given country's traffic system
should be performed by that country.

Allow country to evolve traffic management
independantly

«requirement»

id#
R05

txt
When an incident occurs within a country's border,
it must be able to take measures to ensure traffic
speed reduce approaching the incident.

Individual country must be able to manage traffic
flow

«requirement»

id#
R06

txt
There should be communication
between the Traffic Management
Systems of any two countries.

Cross border communication
«requirement»

id#
R06

txt
A country must respond to a request to
implement traffic speed reductions on roads
entering a neighouring country.

Must respond to request from neighbour

«requirement»

id#
R08

txt
A country should be able to sense road traffic
conditions and detect when measures should be
taken.

Sensing of road traffic conditions
«requirement»

id#
R09

txt
Countrys should be able to influence the speed
of road traffic in its own borders.

Influence road traffic

§  Requirements
Description
View

§  We will focus on
one requirement

July

Requirements in Context

§  This view draws
different contexts
together as (here)
use case diagrams
for different
stakeholders

§  Identify duplicates
& conflicts

§  Some stakeholders
may be internal e.g.
countries A & B;
some are external
e.g., driver

July

Architectural Modelling
§  When defining a SoS architecture, follow

COMPASS architectural approach
§  patterns and guidelines

§  Use collections of modelling patterns to define SoS
structure and behaviour

§  COMPASS architectural modelling approach also
includes guidelines for SoS integration and
development lifecycles

§  In border traffic example, we define the behaviour
required by each country’s TMS – using the
interface contract pattern (shown over next few
slides)

July

Architectural Modelling
§  Identifying contract conformance

1

1

1

1

bdd [Contract Conformance View] BorderTraffic SoS

«block»
«SoS»

Country A - B SoS Scenario

«block»
«Constituent System»

Country A TMS

«block»
«Constituent System»

Country B TMS

«block»
«Contractual SoS»
BorderTrafficSoS

«block»
«Contract»

Country TMS

1

1

1

1 «conformsTo»

«conformsTo»
«conformsTo»

July

Architectural Modelling
§  Defining connections and interfaces

between systems
CConnV [Contract Connections View] BorderTraffic SoS

«block»
«Contractual SoS»
BorderTrafficSoS

«Contract»
CountryA : Country TMS

«Contract»
CountryB : Country TMS

«Contract»
CountryA : Country TMS

«Contract»
CountryB : Country TMS

tmsIF

tmsIF

July

Architectural Modelling
§  Defining the functionality of the contract

!

1..*1

CDV [Contract Definition View] CountryTMS Operations

«block»
«Contract»

operations
determineSpeedCorridor
createSpeedCorridor
disableSpeedCorridor
calcNeighbourTarget
calcDistance
isNeighbourNeeded
neighbourRequest
neighbourOk

values
id
nId
nationalSpeedLimit
acts

Country TMS

«block»
«Operation»

parameters
(startLoc:int, distance:nat)

postcondition
forall a in set elems RESULT @
(actMap(a).loc >= startLoc and actMap(a).loc <= distance+startLoc) and
RESULT not in set currCorridors

precondition
len actSeq > 1

return
RESULT:Corridor

determineSpeedCorridor

«block»
«Operation»

parameters
(corr:Corridor, target:nat)

postcondition
forall a1, a2 in set elems corr @ (a1 <> a2 =>
(actMap(a1).loc > actMap(a2).loc => actMap(a1).disp > actMap(a2).disp)) and
corr in set currCorridors

precondition
forall a in set elems corr @ a in set elems actSeq and
target < nationalSpeedLimit
and corr not in set currCorridors

return
()

createSpeedCorridor

«block»
«Operation»

parameters
corr:Corridor

postcondition
forall a in set elems actSeq @ (actMap(a).disp = nationalSpeedLimit)
and corr not in set currCorridors

precondition
forall a in set elems corr @
(actMap(a).disp < nationalSpeedLimit)
and corr in set currCorridors

return
()

disableSpeedCorridor

«block»
«Operation»

parameters
startLoc:int, target:nat, distance:nat

postcondition
RESULT > target

precondition
true

return
RESULT:nat

calcNeighbourTarget

«block»
«Operation»

parameters
targetSpeed :nat

postcondition
true

precondition
targetSpeed <= nationalSpeedLimit

return
RESULT:nat

calcDistance

«block»
«Operation»

parameters
startLoc:int, distance:nat

postcondition
RESULT = not(exists ha in set elems actSeq @
actMap(ha).loc > (startLoc + distance))

precondition
true

return
RESULT:bool

isNeighbourNeeded

1..*1

Current model of loctation
means only works in one
direction

!

1..*1

CDV [Contract Definition View] CountryTMS Operations

«block»
«Contract»

operations
determineSpeedCorridor
createSpeedCorridor
disableSpeedCorridor
calcNeighbourTarget
calcDistance
isNeighbourNeeded
neighbourRequest
neighbourOk

values
id
nId
nationalSpeedLimit
acts

Country TMS

«block»
«Operation»

parameters
(startLoc:int, distance:nat)

postcondition
forall a in set elems RESULT @
(actMap(a).loc >= startLoc and actMap(a).loc <= distance+startLoc) and
RESULT not in set currCorridors

precondition
len actSeq > 1

return
RESULT:Corridor

determineSpeedCorridor

«block»
«Operation»

parameters
(corr:Corridor, target:nat)

postcondition
forall a1, a2 in set elems corr @ (a1 <> a2 =>
(actMap(a1).loc > actMap(a2).loc => actMap(a1).disp > actMap(a2).disp)) and
corr in set currCorridors

precondition
forall a in set elems corr @ a in set elems actSeq and
target < nationalSpeedLimit
and corr not in set currCorridors

return
()

createSpeedCorridor

«block»
«Operation»

parameters
corr:Corridor

postcondition
forall a in set elems actSeq @ (actMap(a).disp = nationalSpeedLimit)
and corr not in set currCorridors

precondition
forall a in set elems corr @
(actMap(a).disp < nationalSpeedLimit)
and corr in set currCorridors

return
()

disableSpeedCorridor

«block»
«Operation»

parameters
startLoc:int, target:nat, distance:nat

postcondition
RESULT > target

precondition
true

return
RESULT:nat

calcNeighbourTarget

«block»
«Operation»

parameters
targetSpeed :nat

postcondition
true

precondition
targetSpeed <= nationalSpeedLimit

return
RESULT:nat

calcDistance

«block»
«Operation»

parameters
startLoc:int, distance:nat

postcondition
RESULT = not(exists ha in set elems actSeq @
actMap(ha).loc > (startLoc + distance))

precondition
true

return
RESULT:bool

isNeighbourNeeded

1..*1

Current model of loctation
means only works in one
direction

July

Architectural Modelling
§  Defining behaviour and communications

CPDV CountryTMS behaviour

NEIGHBOUR_REQ_INIT NEIGHBOUR_CORR_CREATED

NEW_INCIDENT CORRIDOR

RE_CHECKCLEAR_CORRIDOR

NEIGHBOUR_CHECK

CountryTMS

NEIGHBOUR_REQ_INIT NEIGHBOUR_CORR_CREATED

NEW_INCIDENT CORRIDOR

RE_CHECKCLEAR_CORRIDOR

NEIGHBOUR_CHECK

/currCorr := determineSpeedCorridor(locCorr,
distCorr); createSpeedCorridor(currCorr,
targCorr); neighbourNeeded :=
isNeighbourNeeded(locCorr, distCorr)

[neighbourNeeded]/(dcl ntarg:nat :=
calcNeighbourTarget(locCorr, targCorr,
distCorr, nationalSpeedLimit) @
(neighbourRequest!myId!nId!ntarg -> Skip))

/incidentClear.locCorr ->
Skip

[neighbourNeeded]/disableSp
eedCorridor(currCorr);
neighbourOk!myId!nId -> Skip

/neighbourRequest.nId.myId?targCorr -> distCorr := calcDistance(targCorr); currCorr :
= determineSpeedCorridor(0, distCorr); createSpeedCorridor(currCorr, targCorr)

/neighbourOk.nId.myId -> disableSpeedCorridor(currCorr)

[not
neighbourNeeded]/disableSpeedCorridor
(currCorr)

/inIncident?l?t -> (distCorr :=
calcDistance(t); locCorr := l;
targCorr :=t)

[not
neighbourNeeded]...

July

Formal Modelling
§  CML – COMPASS Modelling

Language – developed for
modelling SoS

§  Can model data, functionality,
event ordering and communication
§  extensible

§  Range of formal analysis
techniques

§  Tools developed for translating
models from SysML into CML

process	
 CountryTMS	
 =	
 	

begin	

	
 	
 …	

	
 	
 actions	
 	

	
 	
 BEHAVIOUR=	
 NEW_INCIDENT	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 []	
 	
 	

	
 	
 	
 	
 	
 NEIGHBOUR_REQ	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 NEW_INCIDENT	
 =	
 inIncident.myId?l?t	
 -­‐>	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (dcl	
 d	
 :	
 nat	
 :=	
 calcDistance	

	
 	
 	
 (t,	
 nationalSpeedLimit)	
 @	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 CORRIDOR(l,	
 t,	
 d))	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 CORRIDOR	
 =	
 l	
 :	
 int,	
 t:	
 nat,	
 d:nat	
 	

	
 @	
 ACT_STATUS;c:Corridor	
 :=det;	
 …	

…	

	
 	
 	
 @	
 BEHAVIOUR 	
 	
 	
 	

End	
 	

	

process	
 CountryA	
 =	
 CountryTMS(theAId,	
 	

	
 	
 theBId,	
 limitA,	
 actCorrA)	

process	
 CountryB	
 =	
 CountryTMS(theBId,	
 	

	
 	
 theAId,	
 limitB,	
 actCorrB)	

	
 	

process	
 BorderTrafficSoS	
 =	

	
 	
 	
 	
 CountryA	
 [|interface|]	
 	

	
 	
 	
 CountryB	
 	

July

Analysing the Model
process	
 CountryTMS	
 =	
 	

begin	

	
 	
 …	

	
 	
 actions	
 	

	
 	
 BEHAVIOUR=	
 NEW_INCIDENT	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 []	
 	
 	

	
 	
 	
 	
 	
 NEIGHBOUR_REQ	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 NEW_INCIDENT	
 =	
 inIncident.myId?l?t	
 -­‐>	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (dcl	
 d	
 :	
 nat	
 :=	
 calcDistance	

	
 	
 	
 (t,	
 nationalSpeedLimit)	
 @	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 CORRIDOR(l,	
 t,	
 d))	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 CORRIDOR	
 =	
 l	
 :	
 int,	
 t:	
 nat,	
 d:nat	
 	

	
 @	
 ACT_STATUS;c:Corridor	
 :=det;	
 …	

…	

	
 	
 	
 @	
 BEHAVIOUR 	
 	
 	
 	

End	
 	

	

process	
 CountryA	
 =	
 CountryTMS(theAId,	
 	

	
 	
 theBId,	
 limitA,	
 actCorrA)	

process	
 CountryB	
 =	
 CountryTMS(theBId,	
 	

	
 	
 theAId,	
 limitB,	
 actCorrB)	

	
 	

process	
 BorderTrafficSoS	
 =	

	
 	
 	
 	
 CountryA	
 [|interface|]	
 	

	
 	
 	
 CountryB	
 	

Symphony Tool Platform
•  Analyse cross-border
emergent behaviour
•  Simulate execution of model
•  Proof obligations generated
•  Theorem proving

NEW_INCIDENT	
 CORRIDOR	

RE_CHECK	

inIncident.myId?l?t	
 -­‐>	
 d	
 :	
 nat	
 :=	
 	

calcDistancet,	
 nationalSpeedLimit)	

NEIGHBOUR_REQ	

c	
 :	
 Corridor	
 :=	
 d;…	

…

July

The Value of the Formal Model
determineSpeedCorridor	
 (startLoc:	
 int,	
 distance:nat)	
 	

resc:	
 Corridor	
 	

pre	
 len	
 acts	
 >	
 1	
 -­‐-­‐	
 the	
 TMS	
 must	
 have	
 actuators	
 	

post	
 elems	
 resc	
 subset	
 inds	
 acts	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 forall	
 a	
 in	
 set	
 elems	
 resc	
 @	
 (acts(a).loc	
 >=	
 startLoc	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 acts(a).loc	
 <=	
 distance+startLoc)	

determineSpeedCorridor	
 :	
 int	
 *	
 nat	
 ==>	
 Corridor	
 	

determineSpeedCorridor	
 (startLoc,	
 distance)	
 ==	
 	

(
 dcl	
 corr	
 :	
 Corridor	
 :=	
 []	
 @	
 	
 	
 	

	
 	
 (
 for	
 index	
 =	
 1	
 to	
 len	
 acts	
 by	
 1	
 do	
 	
 	

	
 	
 	
 	
 	
 	
 (
 if	
 (acts(index).loc	
 >=	
 startLoc	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 acts(index).loc	
 <=	
 startLoc+distance)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 then	
 corr	
 :=	
 corr	
 ^	
 [index]	
);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 return	
 corr	
)	
)	
 	

Rapid Prototyping
§  Replace pre/post

contract by an
executable version

§  Enables simulation of
the SoS

§  Early validation of
requirements

Exploration of design
space
§  Optimise model choices
Model-based Test
§  Derive tests from CPDV

and perform against
prototype &
implementations

July

The Value of the Formal Model

Contract Verification
§  Proof Obligations

§  Operation contracts
are satisfiable

§  Invariants are not
contradictory

§  Safe applications of
operators

§  Obligations can be discharged
with machine support (automated
theorem proving).

§  But this is not always possible
§  Tactics and domain-specific

theories increase the level of
automation

July

Symphony Tool Platform

July

Symphony Tool Platform
§  Interpreter and RT-Tester

used for requirement
validation

§  Theorem prover and
model checker used for
property verification

§  Static fault analysis allows
FMEA and fault tree
analysis

§  External links allow
distributed SoS
engineering

July

Deployment in SE Processes
Adaptable to general SE process stages, e.g.
§  Exploratory Research

–  SoS-ACRE considers stakeholder perspectives at the SoS level, to
identify inconsistencies, conflicts or hidden dependencies

§  Concept
–  Formal analyses to identify inconsistencies and design problems
–  Supporting trade-space between candidate solutions
–  Models provide design rationale

§  Development
–  Supports varied analysis techniques for V&V of requirements,

architectural choices, and detailed designs
§  Production, Utilisation and Support

–  e.g., assessing proposed changes for unexpected performance
degradation or propagated changes

July

Conclusions
§  Proof of concept: we aimed to evaluate the benefits of

verification technology at the SoS emergence level.
§  SE potential for formal models in analysing emergence

§  Range of analysis techniques enabled (simulation, test, model-
check, proof)

§  Quality of evidence and reliance
§  No such thing as a free verification. Cost/benefit trade: hence a

stepped approach

§  Obtaining a flow from requirements to formalisation
§  Must be supported by the use of a consistent ontology,

architectural framework and traceability links
§  We need SE input on realistic problems (scale, emergence

challenges, …)

July

Conclusions
§  Tools performance and robustness varies widely

§  Generic solutions less likely to succeed than surgically targeted
application

§  Use patterns, frameworks, language subsets

§  Largely homogeneous models of the constituent system
interfaces
§  Co-modelling allows principled integration of models of digital

systems and physics

§  More results - on patterns, and more transport studies,
Thursday 8 a.m., Grand Ballroom C

July

This work is part of the COMPASS project: research into model-based

techniques for developing, maintaining and analysing SoSs

thecompassclub.org

claire.ingram@ncl.ac.uk	

john.fitzgerald@ncl.ac.uk	

@_Claire_Ingram	

@NclFitz	

