

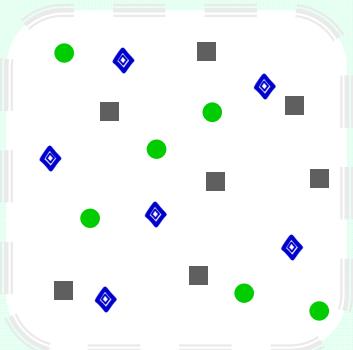
Objects, Relations and Clusters for System Analysis


**Joseph J Simpson
Mary J Simpson**

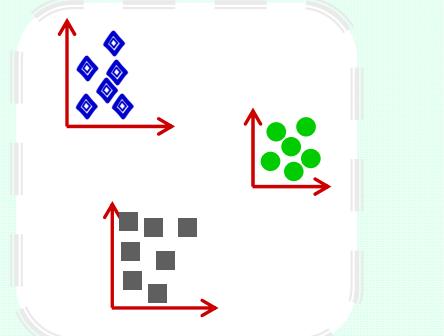
Overview

- **Definitions**
- **Types of cluster analysis**
- **Role of system organizing relationship**
- **Abstract Relation Type (ART)**
- **Augmented Model-Exchange Isomorphism (AMEI)**
- **Connection to classical system engineering methods and techniques**

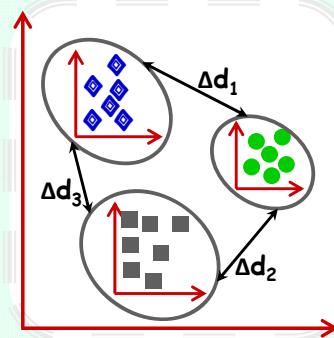
Systems and Clusters


- **A ‘construction-rule’ system definition**
A relationship mapped over a set of objects
- **A ‘function-rule’ system definition**
A constraint on variation
- **Cluster**
A group of objects occurring closely together
- **Object-based cluster identification**
Based on object attributes
- **Space-based cluster identification**
Based on relation properties

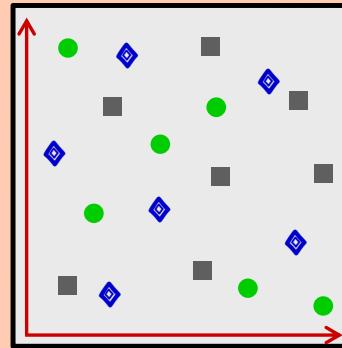
Cluster Types

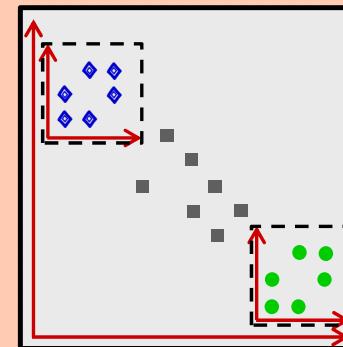


Object-Based Cluster

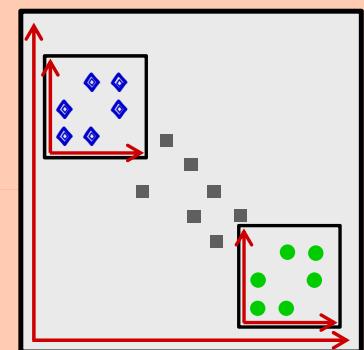

- 1 Identify, analyze objects

- 2 Determine cluster dimensions


- 3 Analyze object clusters


© 2013 System Concepts LLC

Space-Based Cluster


- 1 Identify analysis space using global system relation

- 2 Identify subspace(s) of interest

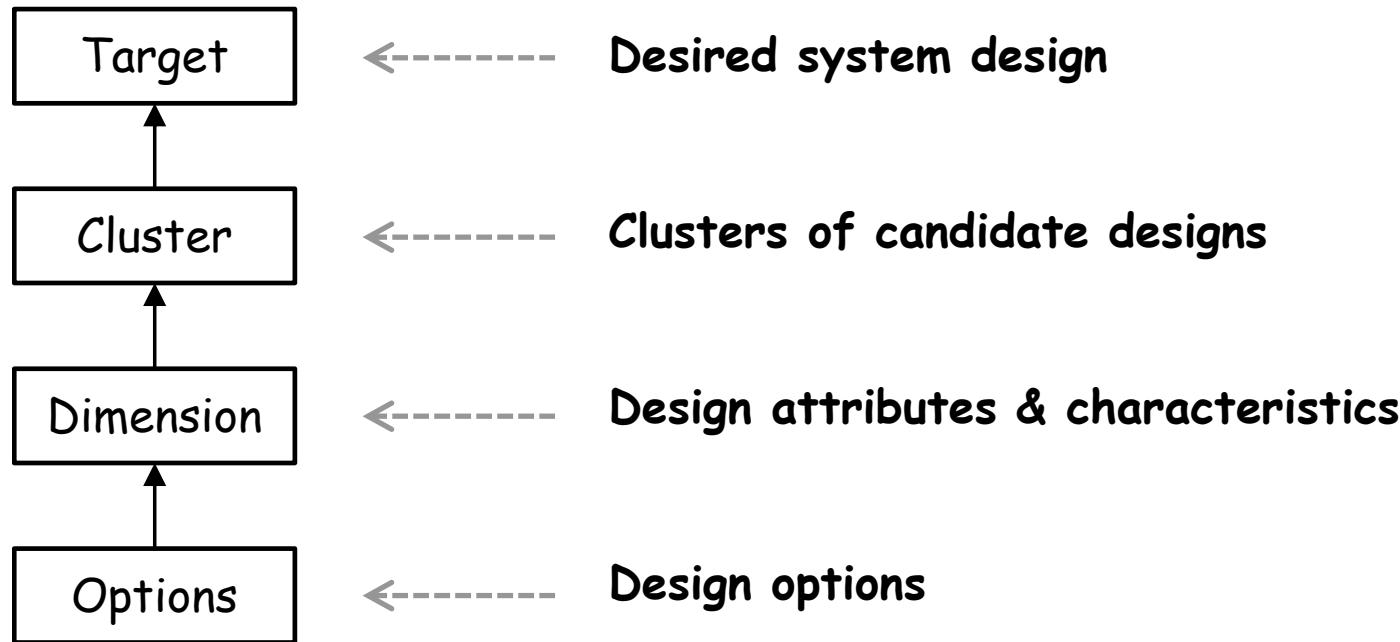
- 3 Enumerate objects in subspace

- **Variable analysis based on object properties**

Degree of similarity among variables used to identify and describe the controlling object properties of interest

- **Object analysis based on class construction**

The activity of identifying the general types into which the objects may be categorized or classed


Object analysis requires a large amount of, and greater depth of, contextual information.

As a result, it requires more specific application subject matter expertise than variable analysis.

Context for Cluster Application

Warfield's 'Four Level Inclusion Hierarchy for Design'

This represents a generalized 'included-in' relation, that becomes more specialized as the Target is achieved.

The following logical relation properties apply to 'included-in'

- Irreflexive
- Asymmetric
- Transitive

Logical Relation Properties

Hi-Level Logical Characteristics of Three Dyadic Relations - v1.1

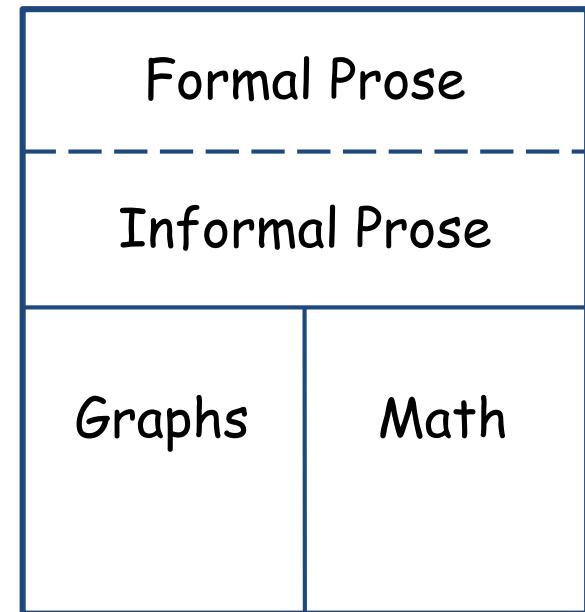
Reflexivity <i>Involves one individual</i>	Symmetry <i>Involves two individuals</i>	Transitivity <i>Involves three (or more) individuals</i>
Reflexive A relation, R , is reflexive iff any individual that enters into the relation bears R to itself. *Identical with; Divisible by	Symmetric If any individual bears the relation to a second individual, then the second bears it to the first. *Touching	Transitive If any individual bears this relation to a second and the second bears it to a third, then the first bears it to the third. *Greater than; North of; Included in
Irreflexive A relation, R , is irreflexive iff no individual bears R to itself. *Stand next to; Father of	Asymmetric A relation, R , is asymmetrical iff, if any individual bears R to a second, then the second does not bear R to the first. *North of; Heavier than; Child of	Intransitive A relation, R , is intransitive iff, if any individual bears R to a second and the second bears R to a third, then the first does not bear R to the third. *Father of; 2" taller than
Nonreflexive A relation which is neither reflexive nor irreflexive is nonreflexive. *Respecting; Killing	Nonsymmetric A relation which is neither symmetrical nor asymmetrical is nonsymmetric. *Likes; Seeing	Nontransitive A relation which is neither transitive nor intransitive is nontransitive. *Admiring; Fearing

The ART Construct

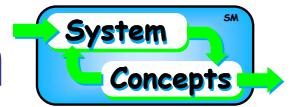
Abstract Relation Type (ART)

Prose Description (text, words)

- Formal pattern
- Informal prose

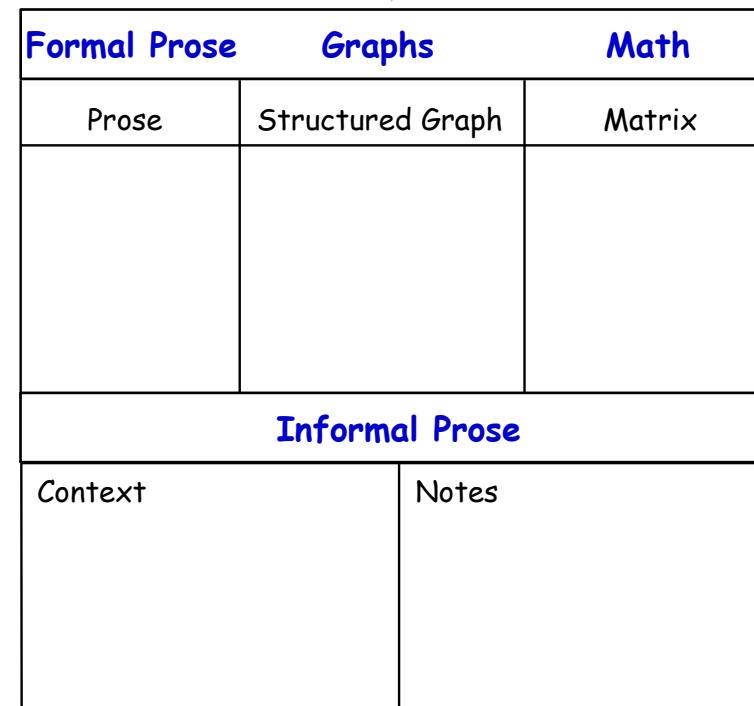
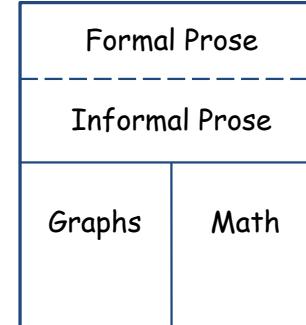

Graphic Representation

(directed graphs)


- Must have formal graphs
- Can also have informal graphs

Mathematics & Computer Representation

- Math equations
- Computer codes
- One or both

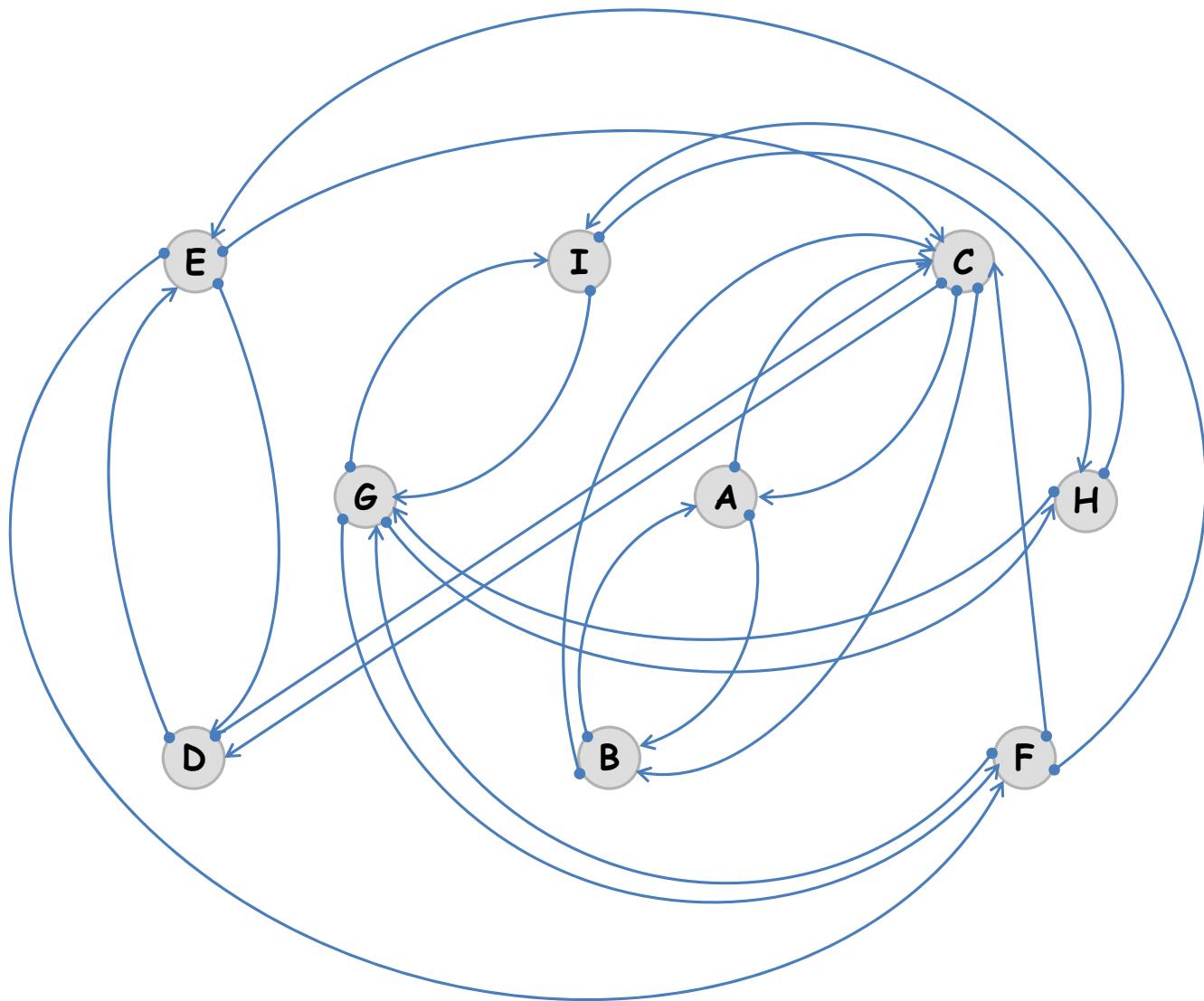


Augmented Model-Exchange Isomorphism

Abstract
Relation
Type

Reflected in

Augmented
Model
Exchange
Isomorphism
(AMEI)

ART reflected in AMEI



Prose	Structured Graph	Matrix																									
<p>Relation 'Connected-to'</p> <ul style="list-style-type: none"> • Reflexive • Asymmetric • Transitive <p>RAT-[1,2,1] v1.1</p>		<table border="1"> <thead> <tr> <th></th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> </tr> </thead> <tbody> <tr> <th>A</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>B</th> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <th>C</th> <td>0</td> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <th>D</th> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table>		A	B	C	D	A	1	1	1	1	B	0	1	0	1	C	0	0	1	1	D	0	0	0	1
	A	B	C	D																							
A	1	1	1	1																							
B	0	1	0	1																							
C	0	0	1	1																							
D	0	0	0	1																							
<p>Context</p> <ol style="list-style-type: none"> 1. Directional connections 2. Single direction 3. Self-connection required 		<p>Notes</p> <ol style="list-style-type: none"> 1. Shows transitive links 																									

ART reflected in AMEI

Prose	Structured Graph	Matrix																									
<p>Relation 'Connected-to'</p> <ul style="list-style-type: none"> • Reflexive • Symmetric • Transitive <p>RST-[1,1,1] v1.1</p>		<table border="1"> <thead> <tr> <th></th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> </tr> </thead> <tbody> <tr> <th>A</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>B</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>C</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <th>D</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>		A	B	C	D	A	1	1	1	1	B	1	1	1	1	C	1	1	1	1	D	1	1	1	1
	A	B	C	D																							
A	1	1	1	1																							
B	1	1	1	1																							
C	1	1	1	1																							
D	1	1	1	1																							
<p>Context</p> <ol style="list-style-type: none"> 1. Directional connections 2. Double directions 3. Self-connection required 		<p>Notes</p> <ol style="list-style-type: none"> 1. Shows transitive links 																									

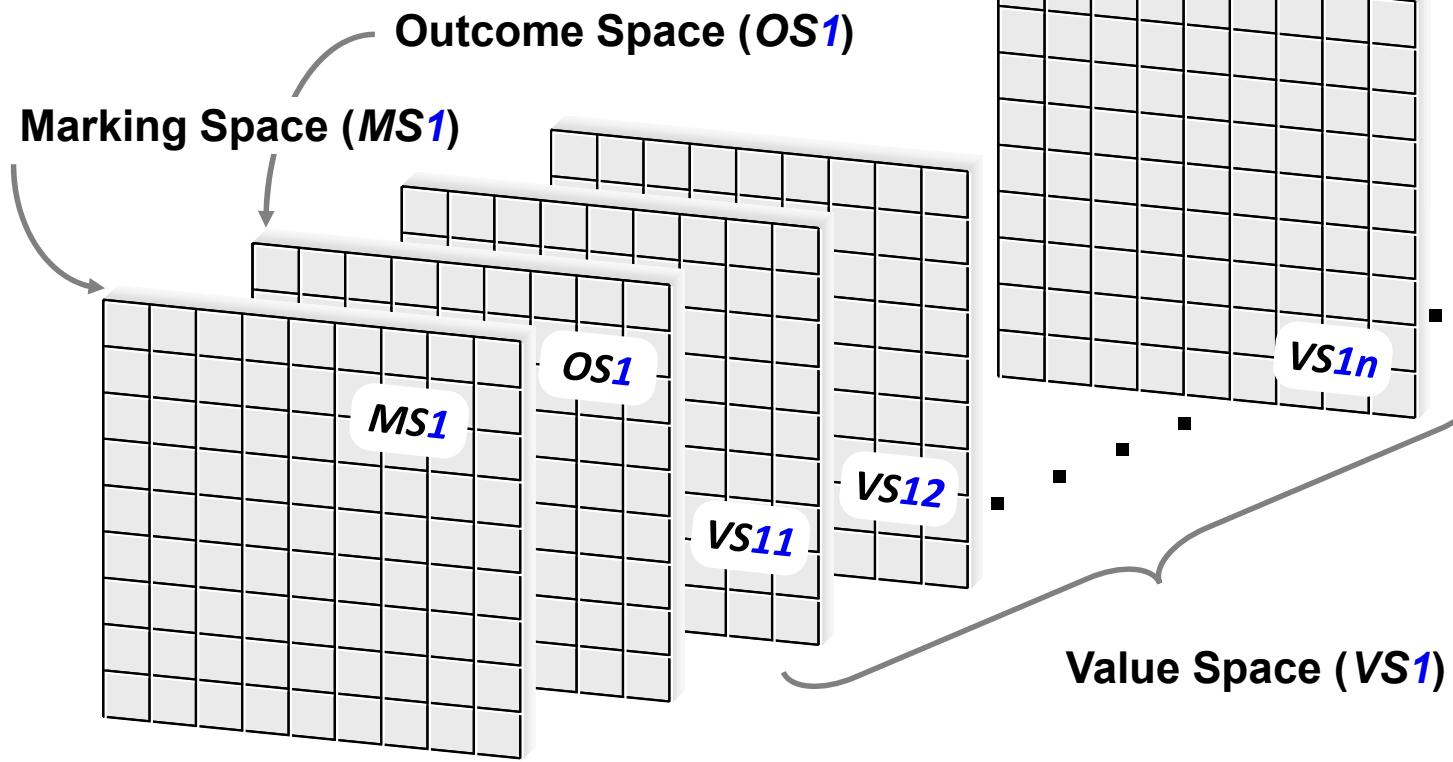
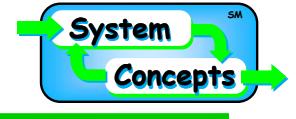
Logical Properties?

Identify Clusters

Disordered System Configuration

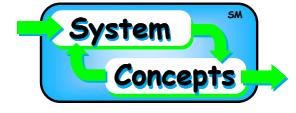
E	0	1	0	0	0	1	0	1
0	I	0	1	0	1	0	0	0
0	0	C	0	1	0	1	1	0
0	1	0	G	0	1	0	0	1
0	0	1	0	A	0	0	1	0
0	1	0	1	0	H	0	0	0
1	0	1	0	0	0	D	0	0
0	0	1	0	1	0	0	B	0
1	0	1	1	0	0	0	0	F

Ordered System Configuration



A	1	1	0	0	0	0	0	0
1	B	1	0	0	0	0	0	0
1	1	C	1	0	0	0	0	0
0	0	1	D	1	0	0	0	0
0	0	1	1	E	1	0	0	0
0	0	1	0	1	F	1	0	0
0	0	0	0	0	1	G	1	1
0	0	0	0	0	0	1	H	1
0	0	0	0	0	0	1	1	I

No Relationship!

Dependent (Series)	Independent (Parallel)	Interdependent (Coupled)
<i>Eppinger's Representation</i>		
<i>Add Missing Vertices, Repair Malformed Arcs</i>		
<i>Matrix Forms</i>		
$ \begin{array}{c cccc} & A & B & C & D \\ \hline A & 0 & 1 & 0 & 0 \\ B & 0 & 0 & 1 & 0 \\ C & 0 & 0 & 0 & 1 \\ D & 0 & 0 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} & A & B & C & D \\ \hline A & 0 & 1 & 1 & 0 \\ B & 0 & 0 & 0 & 1 \\ C & 0 & 0 & 0 & 1 \\ D & 0 & 0 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} & A & B & C & D \\ \hline A & 0 & 1 & 1 & 0 \\ B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ D & 0 & 0 & 0 & 0 \end{array} $


ART 'Spaces'

Abstract Relation Type (ART) \equiv $F [MS, OS]$

Outcome Space (OS) \equiv $F [VS_1, VS_2, \dots, VS_n, VS_{n+1}, \dots]$

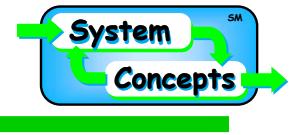
Summary

- **Relationships create systems**
- **Abstract Relation Types focus on relationships**
- **Relationship logical properties create classes of system types**
- **Classical systems engineering methods and techniques support clustering**

Additional Information

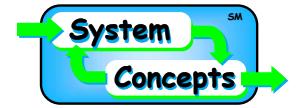
Additional information is available

- <http://systemsconcept.org/>
- <https://github.com/jjs0sbw>


To join in the discussion and activity

Contact jjs0sbw@gmail.com

This presentation hits the highlights

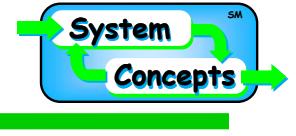

More detail in the Thursday tutorial

Sign up for the email newsletter

Questions?

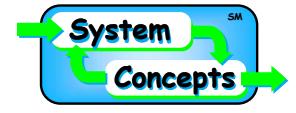
Types of Questions

A Good Question


I understand the question, **and** I have an answer.

An Excellent Question

I understand the question; I have an answer -
and charts!


An Interesting Question

I have no idea what you are talking about...

Backup Slides

Types of Set Definition

Set Definition by Extension

All set members are enumerated

Set Definition by Intention

A set is described by listing the defining properties of the members