

25th anniversary
annual INCOSE
international symposium
Seattle, WA
July 13 - 16, 2015

Studying Flexible Design and Management Decision-Making in Engineering Systems Using Simulation Games

Michel-Alexandre CARDIN, PhD (MIT)

Assistant Professor of Industrial and Systems Engineering

Jiang Yixin, Research Associate

Howard Ka-Ho Yue, Research Associate

Fu Haidong, Student

National University of Singapore

Strategic Engineering Laboratory

- Funding
 - SGD \$2.0M (CDN \$1.8) over last 4 years (excluding current PhD student scholarships)
- Projects
 - 8 ongoing projects, funded by external (SMART, SEC, NRF-CREATE) and internal sources (NUS)
 - Collaboration with local companies/agencies
- Manpower
 - 8 post-doc fellows and research associates, 5 PhD students, > 20 undergraduate theses

NATIONAL
RESEARCH
FOUNDATION

Singapore-MIT Alliance for Research and Technology

(SEC) SINGAPORE-ETH
CENTRE

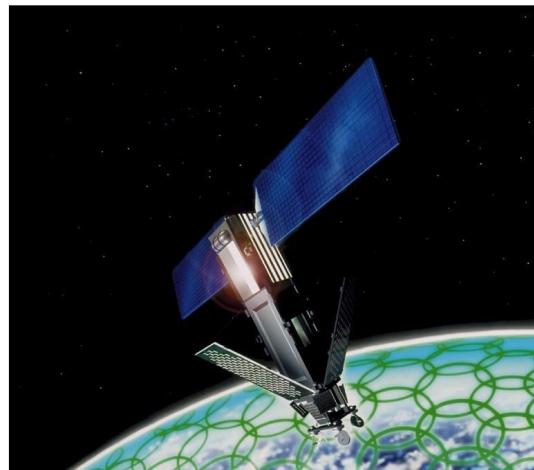
Mission

- **To develop theory of real options and flexibility in the engineering design, evaluation, and management of complex systems**
- **To develop, evaluate, and test systematic procedures for engineering design and management under uncertainty**
- **To improve lifecycle performance of complex engineering systems and products compared to standard design and project evaluation approaches**

What is Flexibility?

- Provides “right, **but not obligation**, to change system easily in face of uncertainty”
 - Abandon
 - Defer
 - Expand/contract
 - Phase
 - Switch
 - Etc.
- Also known as Real Option
 - “In” system: requires engineering design considerations
 - “On” system: from managerial standpoint

City Group Building, NYC



Source: Guma et al., 2009

Why Flexibility in Systems Matters?

- Engineering discipline increasingly complex
 - Need socio-technical considerations
- Uncertainty affects lifecycle performance
 - Markets volatile, regulations change, technology evolve
- **Flexibility can improve performance by 10%-30% compared to standard design and project evaluation approaches**
 - Protects from downsides (e.g. insurance)
 - Position for upsides (e.g. stock option)
 - **Net effect: better expected performance!**
- Design **rigidity** may lead to system failure or under performance
 - Iridium satellite/cell phone system
 - Convair B-58 Hustler

Source: www.comlinks.com

Iridium System:

Demand forecast over optimistic, too much capacity deployed at once → filed for bankruptcy (de Weck et al., 2004)

Source: en.wikipedia.org

B-58 Hustler:

No contingency for Soviet surface-to-air missiles → quickly obsolete, only 10 years of service (Saleh and Hastings, 2000)

RESEARCH OVERVIEW

M.-A. Cardin, "Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework," ASME *Journal of Mechanical Design*, vol. 136, 2014. doi: 10.1115/1.4025704

Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework

Michel-Alexandre Cardin
Department of Industrial and
Systems Engineering,
National University of Singapore,
10 Kent Ridge Crescent,
1 Engineering Drive 2,
117576 Singapore
e-mail: macardin@nus.edu.sg

This paper presents a five-phase taxonomy of systematic procedures to enable flexibility in the design and management of engineering systems operating under uncertainty. The taxonomy is derived from a review of the latest developments in this field, and organized into five procedures to support a cohesive design framework. The taxonomy is geared specifically for engineering systems, in particular complex systems in the aerospace, defense, energy, medical, telecommunications, and transportation sectors. Such systems are characterized by a high degree of technical complexity, social intricacy, and elaborate processes fulfilling important functions in complex domains. They are often characterized by large irreversible investments, will inevitably face much uncertainty over their useful lifetime, and have a significantly large number of stakeholders. The taxonomy is organized into five phases: conceptual, design, uncertainty recognition, concept generation, design space exploration, and process management. Each procedure is evaluated based on ease of use to enable flexibility in engineering systems. The organizing principles are used to integrate the procedures into a cohesive and systematic design framework. Demonstration applications on engineering systems case studies show that it helps designers select relevant procedures to address specific needs in the design, given the system's analytical resources, and objectives. In turn, the case studies show that the design framework helps generate concepts with improved lifecycle performance compared to baseline designs. The taxonomy provides guidance to organize ongoing research efforts, and highlights potential contribution areas in this field of engineering design research. [DOI: 10.1115/1.4025704]

Keywords: conceptual design, design theory and methodology, systems design, systems engineering, uncertainty analysis

1 Introduction

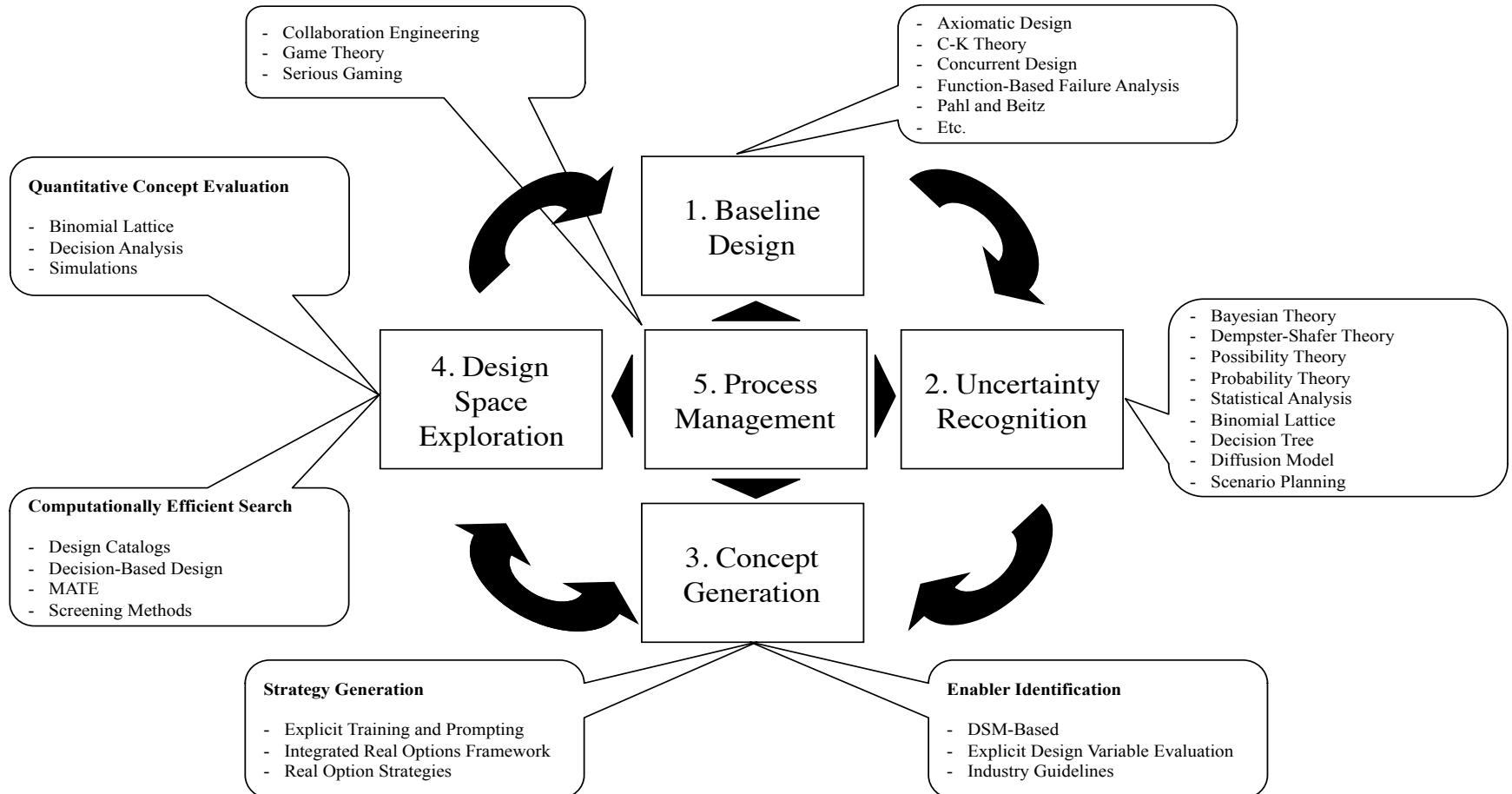
This paper presents a five-phase taxonomy of systematic procedures to enable flexibility in the design and management of engineering systems operating under uncertainty. It has the dual goal of providing a review of the latest developments in this field, and organizing these procedures to support a cohesive design framework. The taxonomy is geared specifically for engineering systems, in particular complex systems in the aerospace, defense, energy, medical, telecommunications, and transportation sectors. Such systems are characterized by a high degree of technical complexity, social intricacy, and elaborate processes fulfilling important functions in complex domains. They are often characterized by large irreversible investments, will inevitably face much uncertainty over their useful lifetime, and have a significantly large number of stakeholders. The taxonomy is organized into five phases: conceptual, design, uncertainty recognition, concept generation, design space exploration, and process management.

This paper builds upon the definition of flexibility in systems engineering and design "enabling a system to change easily in the face of uncertainty" considering technical and technological standpoints [3,4]. It also builds upon the definition of a real option, which is "the right, but not the obligation to execute a system in the face of uncertainty" [5]. The literature from engineering provides tools to help generate flexibility in complex

systems. The literature from real options analysis provides analytical tools to assess the value of flexibility quantitatively, allowing for objective valuation of systems design options. Considerations from the literature provide an extensive taxonomy composed by this paper are inspired from this unique perspective.

The paper proposes the notion of a *flexible systems design concept* to support design and provides an engineering systems design system with the ability to adapt, change, and be reconfigured, if needed, in light of uncertainty realization. It is defined as a conceptual framework that provides a systematic way to make system functions more consistent and invariant to changes in the environment, manufacturing, deterioration, and customer use patterns—inspired by the concept of *enable* [6]. The concept of *enable* in engineering design is typically comprised of two components: (1) a strategy, and (2) an enabler in design and management. A strategy is similar concept to the one proposed by Wang and de Neufville [7], also referred as real option "types" by Mikellian et al. [8]. These can refer for instance to strategies such as "wait and see" or "abandon" [8], "deferring investment, execution, reducing switching implications, deferring investments, etc.—to provide the system with better flexibility. A strategy represents the aspect of design that captures flexibility, or the aspect of the system that is designed to adapt to the environment. The concept of *enable* is similar to the definition of real option "mechanism" proposed by Wang and de Neufville [7], or "mechanism" by Mikellian et al. [8]. It refers to what is done to the system to make the system flexible in operations. Enablers take a different form for each system, depending on the discipline and the selected

Following examples provide intuition on why flexibility is a worthwhile design paradigm. The Health Care Service


Contributed by the Design Theory and Methodology Committee of ASME for publication in the *JOURNAL OF MECHANICAL DESIGN*. Manuscript received September 23, 2012; final manuscript received September 23, 2013; published online October 1, 2013. Associate Editor: Irem Y. Tamer.

Copyright © 2014 by ASME

JANUARY 2014, Vol. 136 / 011005-1

Downloaded From: <http://mechanicaldesign.asmedigitalcollection.asme.org/> on 11/16/2013 Terms of Use: <http://asme.org/terms>

Taxonomy and Design Framework

PHASE 5: PROCESS MANAGEMENT

M.-A. Cardin*, Y. Jiang, H. K. H. Yue, and H. Fu, "Training Design and Management of Flexible Engineering Systems: An Empirical Study Using Simulation Games," Accepted for publication in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2015.
doi: 10.1109/TSMC.2015.2392072

Training Design and Management of Flexible Engineering Systems: An Empirical Study Using Simulation Games

Michel-Alexandre Cardin, Jiang Yixin, Howard K.-H. Yue, and Fu Haidong

Abstract—This paper presents the results of an empirical study of training procedures enabling flexibility in the design and management of large-scale engineering systems. The work relies on the development and use of a simulation game environment to study the impact of training on system performance under different conditions. Evaluation of short-term, long-term, and in-game training is completed to assess the main and interaction effects on user satisfaction, life cycle cost, and user satisfaction and user impressions. Forty-six graduate engineers and students participated in controlled experiments where they worked on the design and management of a flexible emergency medical services system. Results show that game training achieves a statistically significant improvement on lifecycle performance score, while long-term flexibility training significantly reduces decision-making errors. The results also indicate that game training requires more time for decision-making may improve lifecycle performance scores. Lifecycle score improvement also increases as satisfaction with the process and attitude of the user increases. Results also show that different training procedures produce different effects on design and management decision-making for flexible engineering systems operating under uncertainty. The results of this study can support the development and evaluation of novel training approaches used for systems engineering practice and education.

Index Terms—Computer simulation, decision making, large-scale systems, risk analysis, systems analysis and design, systems engineering education.

Abstract—This paper presents the results of an empirical study of training procedures enabling flexibility in the design and management of large-scale engineering systems. The work relies on the development and use of a simulation game environment to study the impact of training on system performance under different conditions. Evaluation of short-term, long-term, and in-game training is completed to assess the main and interaction effects on user satisfaction, life cycle cost, and user satisfaction and user impressions. Forty-six graduate engineers and students participated in controlled experiments where they worked on the design and management of a flexible emergency medical services system. Results show that game training achieves a statistically significant improvement on lifecycle performance score, while long-term flexibility training significantly reduces decision-making errors. The results also indicate that game training requires more time for decision-making may improve lifecycle performance scores. Lifecycle score improvement also increases as satisfaction with the process and attitude of the user increases. Results also show that different training procedures produce different effects on design and management decision-making for flexible engineering systems operating under uncertainty. The results of this study can support the development and evaluation of novel training approaches used for systems engineering practice and education.

Index Terms—Computer simulation, decision making, large-scale systems, risk analysis, systems analysis and design, systems engineering education.

I. INTRODUCTION

ON May 1997, the first five satellites of the Iridium constellation were launched successfully in space. This large-scale engineering system was meant to revolutionize wireless communications by offering satellite-based phone services almost anywhere on the planet. By September 1998, the 66 satellites in orbit were fully launched. Rapid deployment was needed to accommodate an anticipated demand

Manuscript received July 14, 2014; revised October 28, 2014; accepted December 14, 2014. This work was supported by the National University of Singapore Faculty Research Committee via MOE AcRF Tier I Grant R-263-000-079-112 and Tier II Grant R-263-000-079-112. This paper was recommended by Associate Editor W.-K. V. Chan.

The authors are with the Department of Industrial and System Engineering, National University of Singapore, Singapore 117576 (e-mail: mcardin@nus.edu.sg).
Color versions of one or more of the figures in this paper are available online at <http://ieeexplore.ieee.org>.
Digital Object Identifier 10.1109/TSMC.2015.2392072

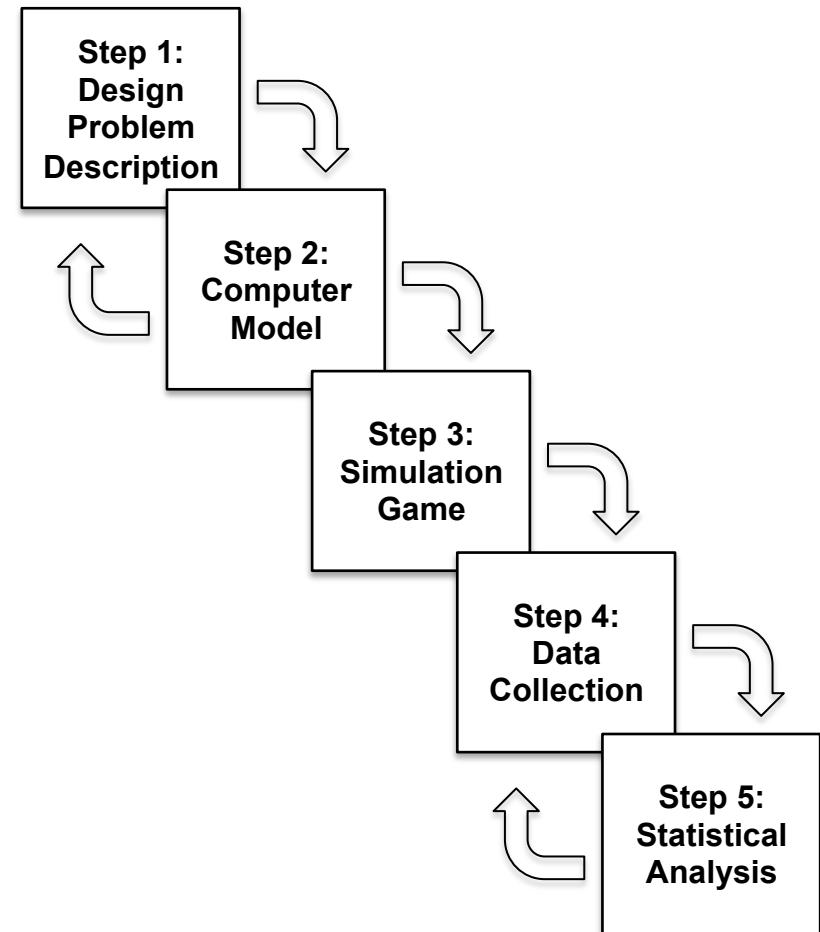
2168-2216 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

base of three million subscribers. Unfortunately, demand grew much slower than anticipated, and the company was soon unable to honor debt payments on the US\$4 billion development costs. By the early 2000s, the company had to file for bankruptcy [1].

De Weck *et al.* [2] showed later that flexibility in design and management of Iridium—defined as the ability to change the system easily in the face of uncertainty [3]—could have saved up to 20% in expected lifecycle cost, perhaps even saving the technological venture from bankruptcy. The idea was to design each satellite so it can be redeployed in orbit as required coverage increases, and stage capacity deployment of the constellation gradually as demand grows (*i.e.*, start with a small satellite and add more as the system grows, reconfiguring the constellation in space to cover changing demand areas). This contrasts with a strategy of optimizing design and capacity deployment in view of deterministic (and perhaps optimistic) demand forecasts, which may lead to a more rigid design solution.

The Iridium case is an extreme illustration of a tension in standard design and management practice for large-scale engineering systems, explored for some time in [4]–[6]: it is best to invest in design flexibility early to provide better adaptability in view of an uncertain future, or to design the system initially for a particular view of the future, for example, approaching the system with additional cost information which may be lost if the flexibility is not used. The latter may reduce upfront cost, but will expose the system to sub-optimal performance if forecast conditions do not materialize, and may require more costs to adapt.

The Iridium system is an example of engineering systems, designed usually as socio-technical artifacts fulfilling important functions for society for healthcare, power generation and supply, telecommunications, transportation, etc. [7]. Such large-scale systems typically operate for a long-time, and will inevitably face a wide range of changing conditions over their useful life in terms of market environment, regulations, and technological changes. Such approaches to design, analysis, and design often focus on optimizing design and management under deterministic conditions. These may not fully account for the impact of uncertainty on lifecycle performance, and the potential value of flexibility. As seen in the Iridium case, such approaches may give rise to engineering systems that are rigid and cannot cope well with changing conditions.


Motivation

- **Assuming flexibility exists, how to best manage in operations?**
- Emergency Medical Services (EMS) systems very flexible:
 - Station allocation and timing
 - Resource allocation/reallocation
 - Abandonment of unused capacity
- Singapore collaborating agency relying on deterministic heuristics for design, planning and operations
- Can training help better manage flexible engineering systems?
 - What procedures are best?
 - What is the impact on quantitative lifecycle performance, and qualitative user impressions?

Experimental Methodology (Generic)

1. Design Problem Description
2. Computer Model
3. Simulation Game
4. Data Collection
5. Statistical Analysis

Preliminary Setup

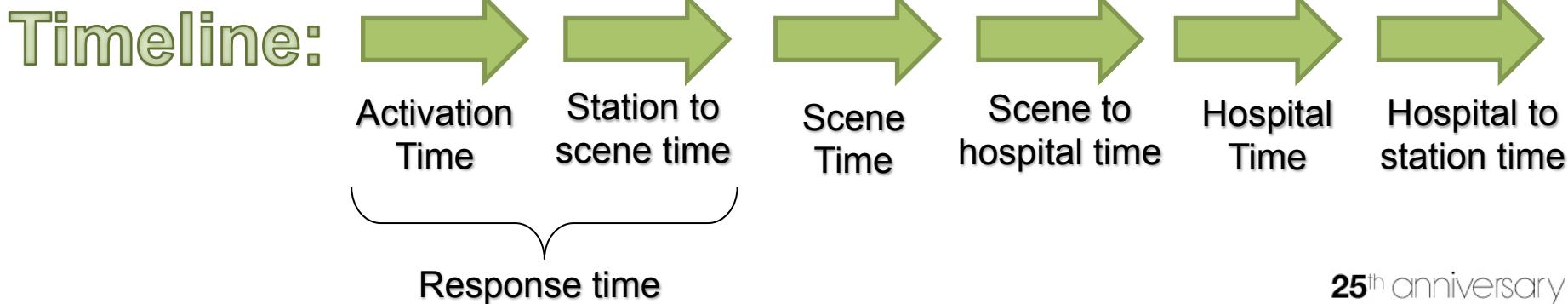
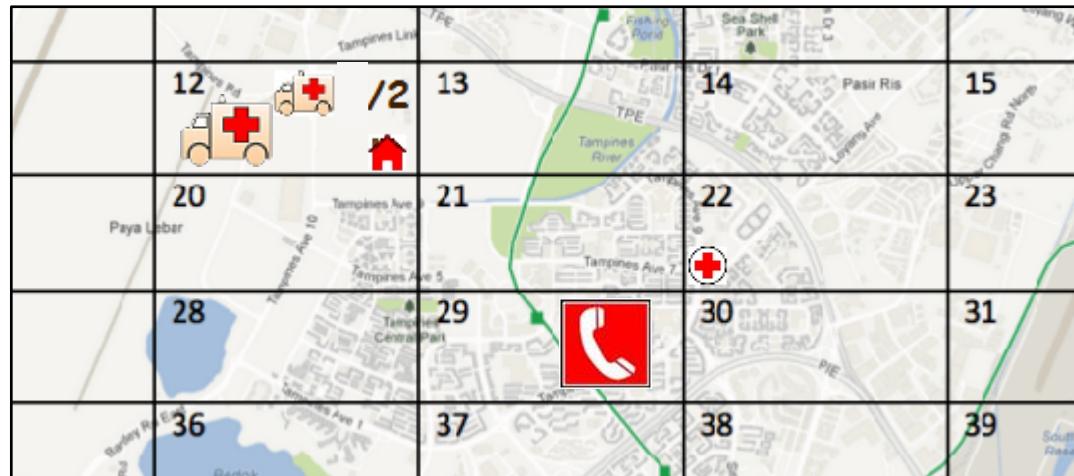
- 2^3 factorial design

	Flexibility Module (M)	Lecture Training (L)	In-Game Training (G)
Treatment 1	+1	-1	-1
Treatment 2	+1	+1	-1
Treatment 3	+1	-1	+1
Treatment 4	+1	+1	+1
Treatment 5	-1	-1	-1
Treatment 6	-1	+1	-1
Treatment 7	-1	-1	+1
Treatment 8	-1	+1	+1

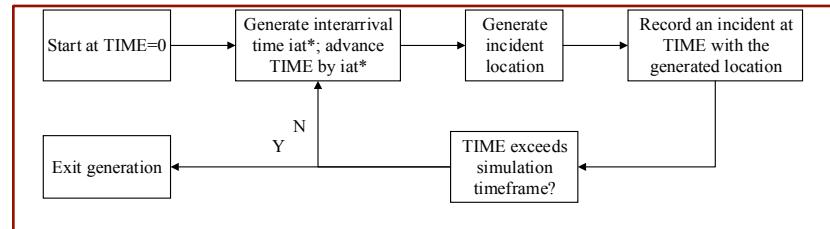

- Participants
 - 46 NUS graduate students
 - 7 (Treatment 1), 5 (Treatments 2-4), 6 (Treatments 5-8)
 - 57% > 25 years old, 85% have Bachelor only, 48% > 1 year work experience in industry

Step 1: Design Problem: Emergency Services

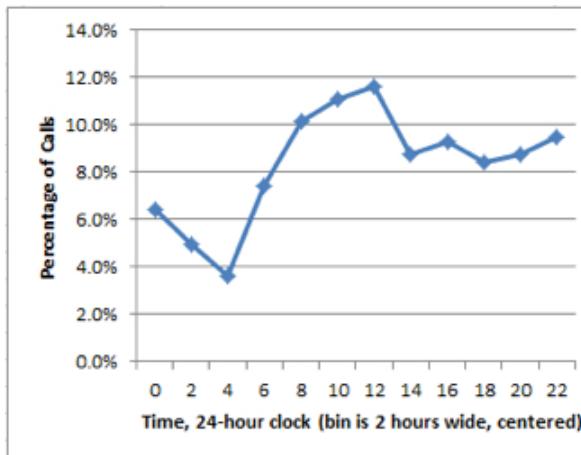
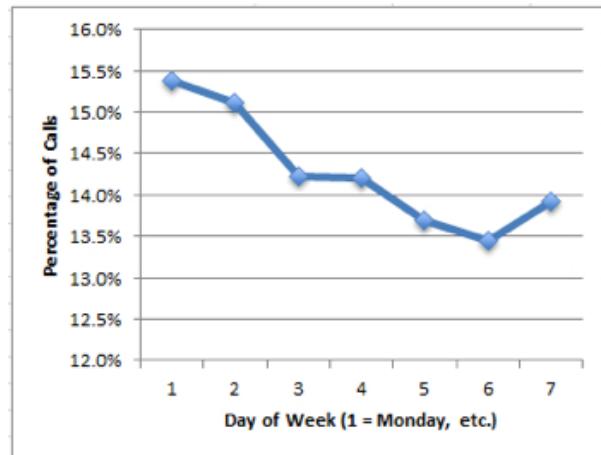
- Simplified version of realistic EMS system in Singapore
 - Focused on medical (i.e. hospitals, station/fire posts, ambulances)
 - Model developed in collaboration with Singapore Civil Defence Force
- Quantitative performance-based metric (response time, lost calls)
- Described benchmark design (initial station/ambulance deployment)
- Explained task to improve existing benchmark design

Source: livinginsingaporetoday.com

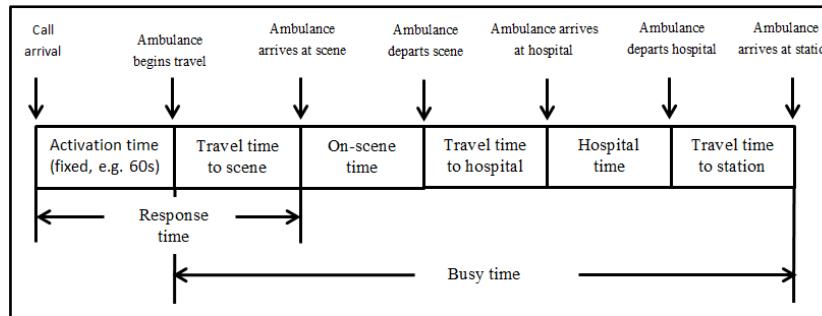

Source: therealsingapore.com

Step 2: Computer Model: Discrete Event Simulation

Incident Generation

- Flow diagram


- Inter-arrival times modeled from historical data

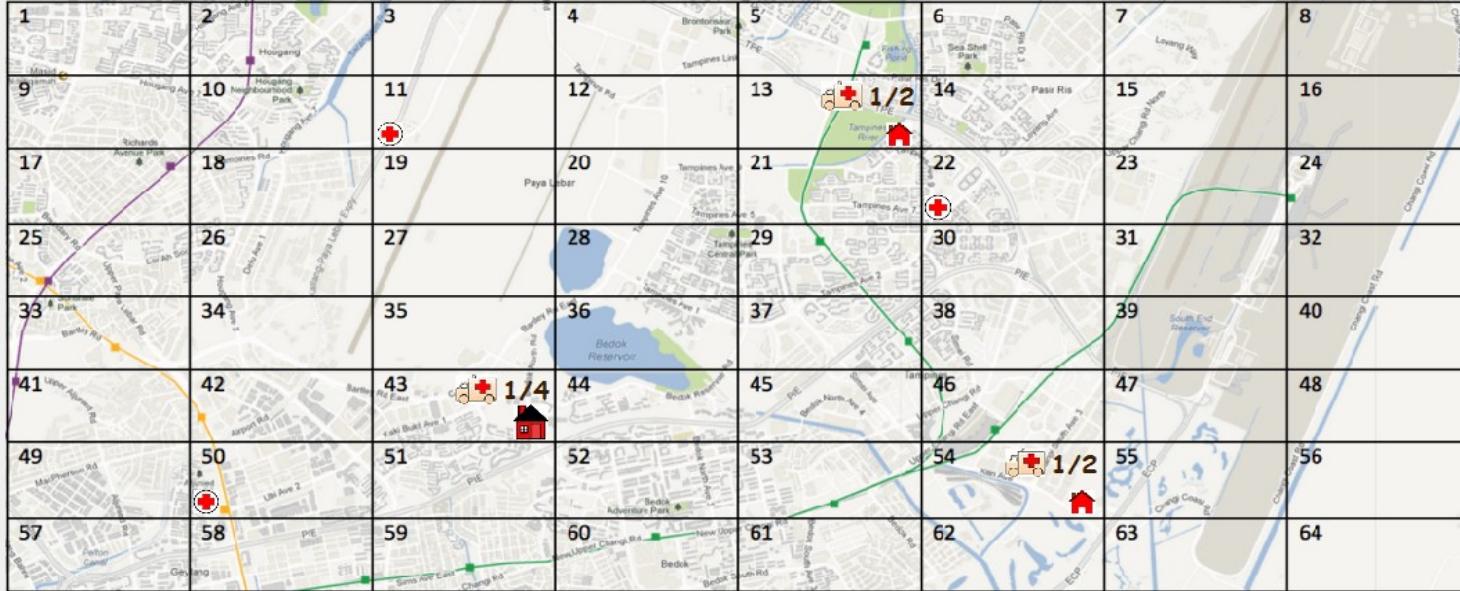
$$IAT_{ij} = -\ln \frac{(1 - rand)}{\lambda_{ij}}$$

Incident Handling

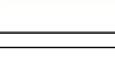
- Nearest ambulance dispatched
- Cannot respond until previous call resolved

- Performance
 - Fast response rate, Lost incident rate, operating cost:

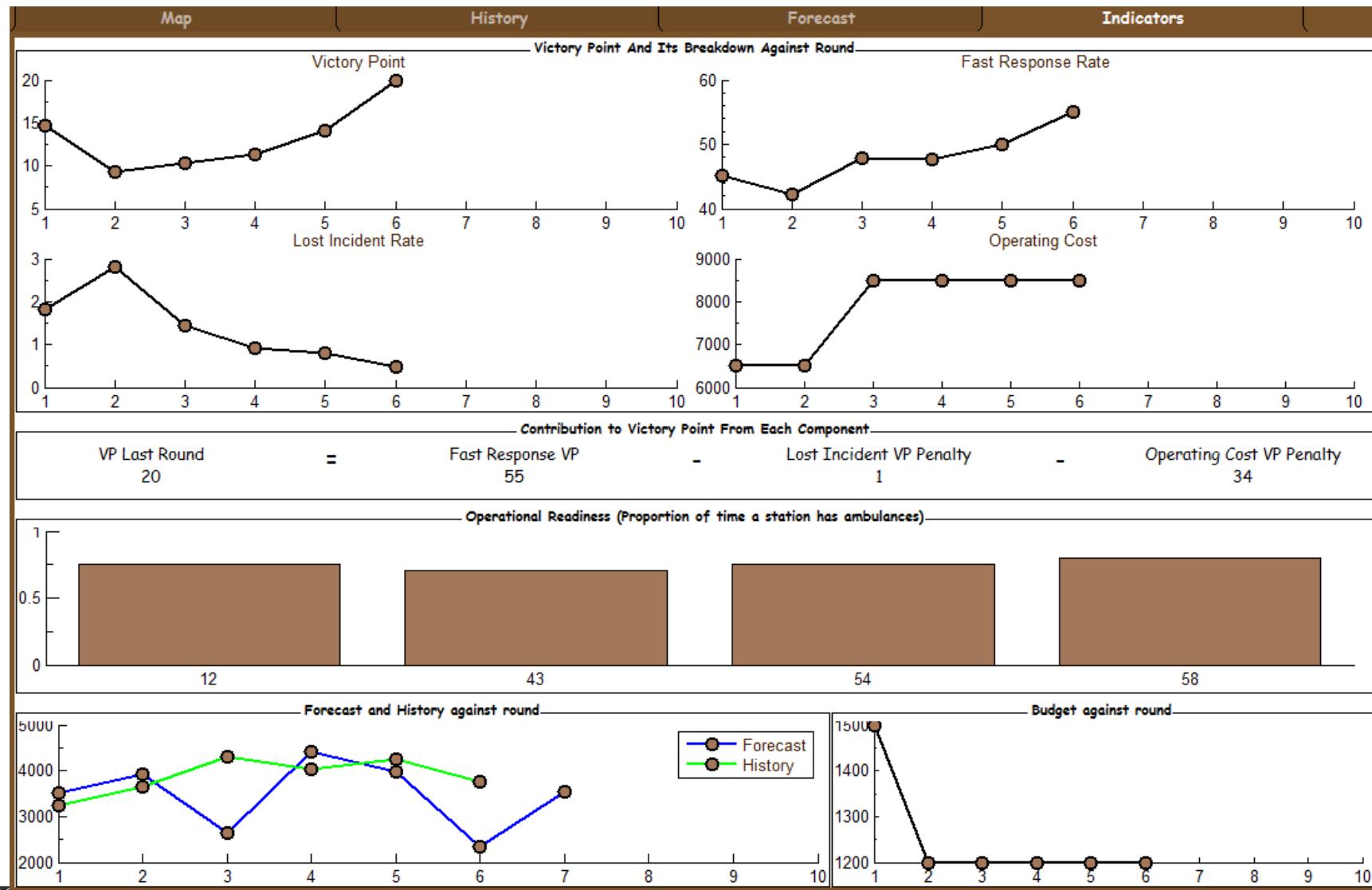
$$P_t = \frac{nR_t}{N_t} \times 100 \quad L_t = \frac{nL_t}{N_t} \times 100 \quad C_t = \frac{(nFS_t \times C_{FS} + nA_t \times C_A - OC_{\min})}{OC_{\max} - OC_{\min}} \times 100$$


- Lifecycle performance:

$$S_t = a_1 P_t + a_2 L_t + a_3 C_t$$


Step 3: Simulation Game

Map History Forecast LongtermForecast Indicators


SCDF 2nd Division Map

Dash Board

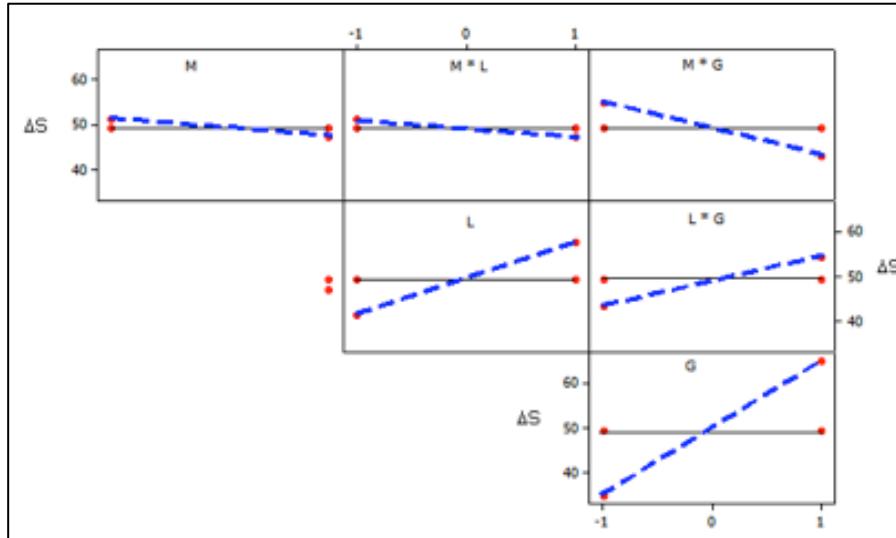
Info	Buildings and Vehicles	Controls
Round 1 2500 Total VP 0	Small Station x2 x0 300 1 2 Large Station x1 x0 400 2 4 Upgradable Station x0 x0 350 1 2	x3 x5 8
 Run		
Messages: Left click to deploy ambulance, right click to access more options		

Performance Measurements

Step 4: Data Collection

- Factorial experiments designed to measure “ Δ ” pretest-posttest response improvement between Sessions 1 and 2: $\Delta y = y_2 - y_1$

$$\Delta y(x_1, x_2, \dots, x_n) = \beta_0 + \sum_{i=1}^n \beta_i x_i + \sum_{i=1}^n \sum_{\substack{j=1 \\ j>i}}^n \beta_{ij} x_i x_j + \varepsilon$$


- Here $y = S$, can be others (e.g. time, satisfaction with process, results, quality)
- Controls for inherent creativity levels and prior knowledge of design procedure within-groups
- Improves between-groups vs. within-groups variability comparison, internal validity of results (Campbell and Stanley, 1966)

Step 5: Effects on Lifecycle Performance Score (ΔS)

- GLM response
$$\Delta S = 49.7 - 1.51M + 7.9L + 14.6G - 2.0ML - 5.5MG + 6.1LG - 2.8MLG$$
- Significant main effects for in-game training ($G = +1$)
 - $\beta_G = 14.6$, $t = -2.0$, $p \leq 0.05$
- Interpretation
 - In-game training had main effect on ΔS vs. benchmark

Summary

- Short **in-game training valuable tool to improve lifecycle performance** of complex systems by means of flexibility
- Also **improves user satisfaction with process** – promotes user acceptability
- Short **lecture has main effects on results satisfaction and anticipated quality of results**
- Experimental approach allows quantification of **relationships between quantitative performance and qualitative user impressions**
- Study demonstrates that **short-term training tools valuable to improve design and management decision-making** in complex engineering systems under uncertainty

Conclusions

- **Standard design and practice may not account well for uncertainty and flexibility** in design and management of complex systems
- **Explicit considerations of uncertainty and flexibility shown to improve lifecycle performance** significantly
- Enabling/using flexibility challenging; **need R&D** for systematic design and training procedures
- **Need new quantitative analytical tools** to assess lifecycle performance impact on decision-making, and to assess impact on **qualitative indicators of user impressions**
- **Need empirical work** to determine which procedures are most suitable for real-world use

Acknowledgments and Contacts

- Thanks to team members
 - Post-doc fellows: Drs. Deepak Santhanakrishnan, Mark De Lessio, Hu Junfei, Simon Ng, Chang Sun, Aakil Caunhye
 - Research Associates: Jiang Yixin, Howard Ka-Ho Yue
 - PhD students: Mehdi Ranjbar Bourani, Yinghan Deng, Zhang Sizhe, Xie Qihui, Ashwani Kumar
- Thanks for financial and other support provided by
 - NUS Faculty Research Committee via MoE AcRF Tier 1 grant
 - Singapore-MIT Alliance for Research and Technology (SMART)
 - Singapore-ETH Centre (SEC)
 - National Research Foundation Campus for Research Excellence And Technological Enterprise (NRF-CREATE)
 - Keppel Offshore and Marine Technology Centre (KOMTech)
 - Singapore Civil Defence Force (SCDF)
- More details at <http://www.ise.nus.edu.sg/staff/cardin/index.html>
- PI contact: Dr. Michel-Alexandre CARDIN
 - Email: macardin@nus.edu.sg
 - Phone: +65 6516 5387