

25th anniversary
annual INCOSE
international symposium
Seattle, WA
July 13 - 16, 2015

A Systems Engineering Approach to Architecture Development

David A. Di Pietro

*Senior Engineer for Advanced Concepts & Architectures
NASA Goddard Space Flight Center, Code 599
Greenbelt MD 20771*

Discussion Objectives

- ***Using a simple extension of basic systems engineering (SE) practices***
 - 1) *Describe what a mission area architecture (MAA) is and show how it integrates into a Notional Civil Space (NCS) Architecture Framework*
 - 2) *Describe an effective approach for developing an MAA*
- ***Note: The NCS Architecture is notional and is for illustration & context only – no such architecture has been defined***
 - *But, for this discussion imagine there is an NCS architecture*

Architecture Studies - Beginning Thoughts

- **Conducted prior to Pre-Phase A of project life cycle**
 - Scope broader & shallower than scope for concept design studies in Pre-Phase A
- **Can be conducted at mission area or mission level**
 - **MAA Studies Address:**
 - ❑ Best-value mix of MAA assets that works collectively in specific scenarios & time frames to accomplish mission area objectives
 - ❑ Inform planners on recommended capabilities & investment profile across mission area
 - **Mission Architecture Studies Address:**
 - ❑ Approaches to meet objectives for single mission
 - ❑ Done when little is known of mission & significantly different approaches exist
 - e.g., 1st time expedition to study moon of Saturn
 - ❑ Scope narrower & deeper than MAA
 - ❑ Inform planners on most cost effective approach for mission

Architecture Development Precedes Concept Design in Project Life Cycle (Fig. 1)

A horizontal timeline for the Project Life Cycle, spanning from Pre-Phase A to Phase F. A vertical line on the left represents "Architecture Development", which begins before Pre-Phase A and continues through Phase E. An arrow points from the "Architecture Development" line to the timeline.

Project Life Cycle						
Pre-Phase A	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F
Architecture Development	Concept Studies	Concept & Technology Development	Preliminary Design & Technology Completion	Final Design & Fabrication	System Assembly, Integration & Test, Launch & Checkout	Operations & Sustainment

*Adapted from NASA Project Life Cycle
NASA Procedural Requirements (NPR) 7120.5E*

Architecture Frameworks

- **Many architecture frameworks reported developed or in use**
 - A survey of over 60 frameworks is at iso-architecture.org (see ref. (a)), including those for:
 - Enterprise, defense, information, software, automotive, business, security, etc.
 - Varying scope & taxonomies

Objective 1

- ***Describe what an MAA is and show how it integrates into the NCS architecture framework***

Beginning Definitions

- ***Before getting started, just what is an “architecture”?***
 - *Design?*
 - *Building codes?*
 - *Behaviors?*

Beginning Definitions (Cont'd)

- **New Webster Dictionary (1975) defines “Architecture” as:**
 - 1) *the art or science of building; specif. the art or practice of designing and building structures and esp. habitable ones*
 - 2) *formation or construction as, or as if, the result of conscious act*
 - 3) *architectural product or work*
 - 4) *a method or style of building*
- **New Webster Dictionary (1975) defines “Architect” (from Latin “architectus”, from Greek: “architekton” or master builder) as:**
 - 1) *one who designs buildings & superintends their construction*
 - 2) *one who plans and achieves a difficult objective (e.g., a military victory)*

What is the “NCS Architecture”?

- ***From these definitions, it's clear architecting involves some level of design, but***
 - *What level of design, and is design all there is to it?*
 - *What does an architecture look like, and what does it do?*
- ***To answer these questions for the NCS Architecture, we'll need a common view of:***
 - *Core elements & constituent MAAs of NCS architecture*

Core Elements of an NCS Architecture

- 1) *The set of **functional capabilities** that characterizes actual or forecast capabilities of NCS physical assets & human command & control (C2) entities*
 - *Includes “what” capability will be delivered along with measures of performance (MOPs), e.g.,*
 - *Quality, quantity, timeliness, interoperability, & robustness (QQTIR)*
(Note: this is a minimum set of metrics)
- 2) *The set of NCS **physical assets** (hardware/software) that is, (or is forecast to be) available along with their interconnectivities*
 - *Shows “how” architecture functional capabilities will be delivered*
- 3) *The set of NCS **human C2** operator / decision maker **entities** available along with their interconnectivities*
 - *Note: Automated C2 assets are considered part of physical assets*

Core Elements of an NCS Architecture (Cont'd)

- 4) *The concept of operations (**CONOPS**) that identifies how NCS physical assets & human C2 entities will be employed in time sequence to meet a defined mission*
 - *Used to evaluate effectiveness, etc., as function of environment & scenario*
- 5) *The set of **constraints**, i.e., rules / policies & standards / protocols, that constrain use of NCS assets & human C2 entities*

- *Each element above pertains to specific period in time, or “epoch”*

NCS Architecture Framework Example

- **Framework is established by functional decomposition**
 - Standard systems engineering (SE) technique
- **Enables means to identify**
 - Vertical flowdown of guidance
 - Horizontal interfaces within & among architectures

NCS Architecture Framework Example

Space Access Mission Area Highlighted (Fig. 2)

Tier

Epoch = 20xx

Use

0

Notional Civil Space Architecture

Functional

1

Space Access

SATCOM

Environmental Monitoring

Space Science

Other

Functional

2

Spacelift/ Payload Transportation

Range / Launch Base

On-Orbit Servicing / Utilities

Functional

3

Deliver

Deploy

Retrieve

Return

Functional

4

Quality

Quantity

Timeliness

Interoperability

Robustness

Performance

5

Fig. 3 Illustrates Allocation of MOPs to Physical Assets

Physical

Functional Decomposition Example

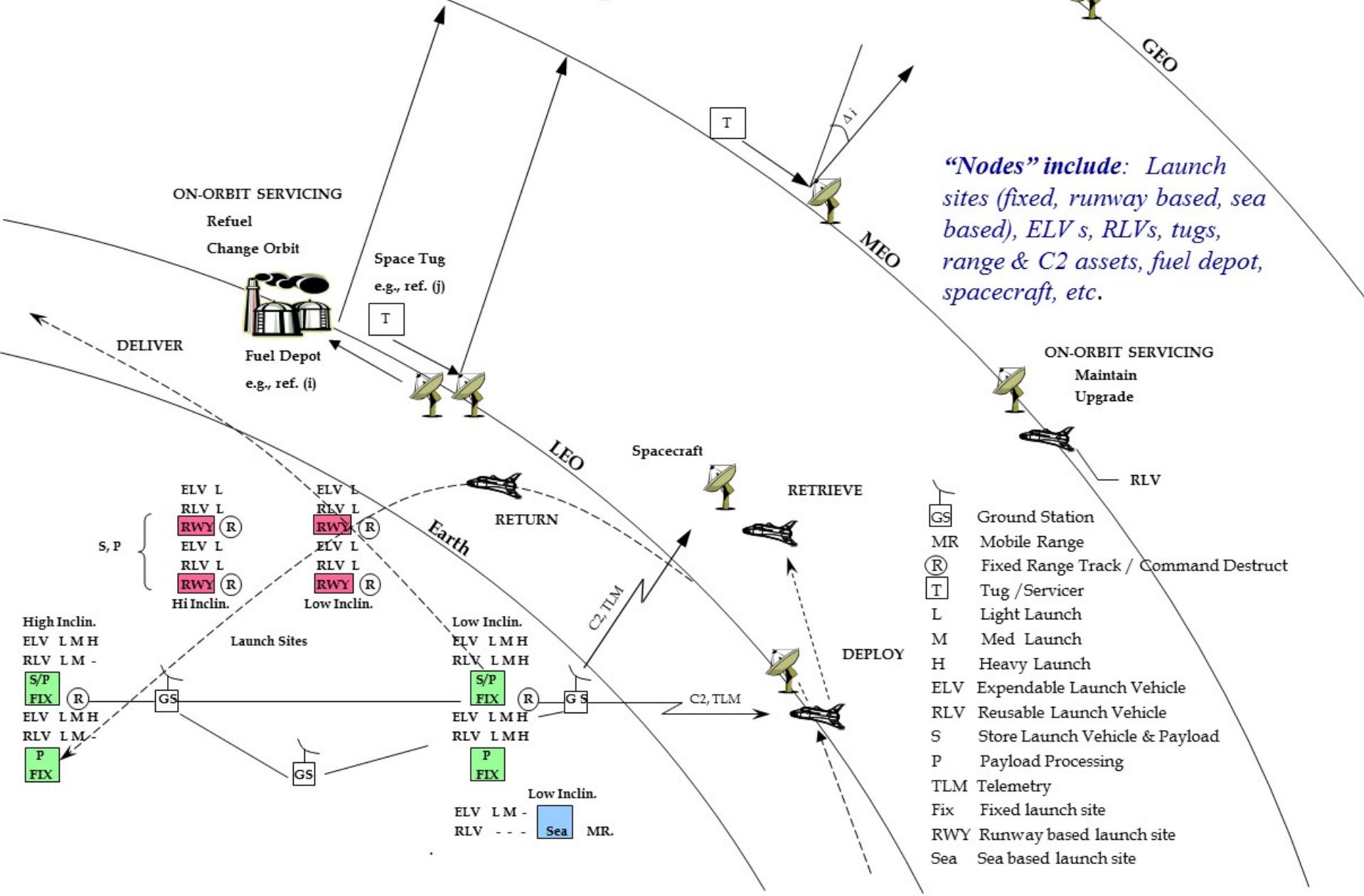
Space Access Mission Area (Epoch = 20xx)

- **Tier 0:** NCS architecture functions applicable to all mission areas
 - *Tier 0 represents Enterprise Level*
- **Tier 1:** Allocates Tier 0 functions to mission areas, e.g., provide **Space Access**
- **Tier 2:** Allocates Tier 1 functions to sub-mission area functions (e.g., provide **Spacelift / Payload Transportation**, etc.)
- **Tier 3:** Allocates Tier 2 functions to more detailed functions (e.g., **deliver, deploy, retrieve, return**, etc.)
- **Tier 4:** Allocates Tier 3 functions to metrics (**QQTIR**) & **MOPs**, e.g., for “**deliver**” function
 - *Example quantity metric = x payloads of y,000 kg to z,000 km circular orbit at i° inclination*
 - *Example MOP = 2 payloads of 2,000 kg to 400 km circular orbit at 51.6° inclination (adds specific values)*
- **Tier 5:** Allocates Tier 4 to physical assets & human C2 entities

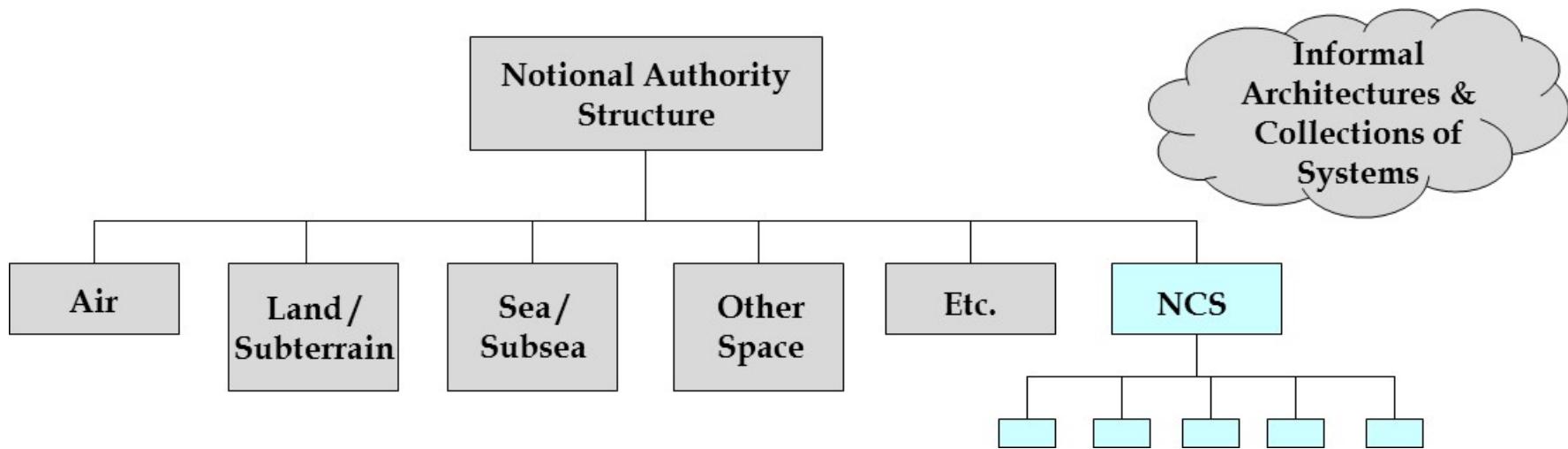
Note: Number of tiers can vary among mission areas

Role of Higher Tier Guidance

- **Tier 0: Provides guidance for all mission areas, e.g.,**
 - *Environmental policy (e.g., power / fuel sources, orbital debris, planetary protection, etc.)*
 - *Interoperability standards*
 - *Criticality categories which drive level of robustness (or fault tolerance needed); might pertain to assuring:*
 - *1) Human survival*
 - *2) Specific mission operational capabilities*
 - *3) Specific technology capabilities*
- **Tier 1: Adds guidance unique to each Tier 1 mission area**
- **Note:**
 - *A fault means loss of capability for any reason (component failure, hostile action, etc.)*
 - *Severity of potential fault can depend on severity of threat*


Functional Decomposition Table Example

Space Access Mission Area (Epoch = 20xx) (Table 1)


Tier 0	Tier 1	Tier 2	Tier 3	Tier 4
1.0 Provide NCS capabilities	1.1 Provide Space Access capabilities	1.1.1 Provide Spacelift / Payload Transportation capabilities	1.1.1.1 Provide capability to deliver payload(s) to orbit	1.1.1.1.1 Quality
				1.1.1.1.2 Quantity
				1.1.1.1.3 Timeliness
				1.1.1.1.4 Interoperability
				1.1.1.1.5 Robustness
			1.1.1.2 Provide capability to deploy payload(s) on orbit	1.1.1.2.1 Quality
				1.1.1.2.2 Quantity
				1.1.1.2.3 Timeliness
				1.1.1.2.4 Interoperability
				1.1.1.2.5 Robustness
			1.1.1.3 Provide capability to retrieve payload(s) on orbit	Continue as done for 1.1.1.1
			1.1.1.4 Provide capability to return payload(s) from orbit	Continue as done for 1.1.1.1
		1.1.2 Provide Range / Launch Base capabilities	Continue as done for 1.1.1	Continue as done for 1.1.1.1
		1.1.3 Provide On-Orbit Servicing / Utilities capabilities	Continue as done for 1.1.1	Continue as done for 1.1.1.1

Physical View for Space Access MAA Assets (Fig. 3)

Epoch = 20xx

NCS Architecture May be Influenced by Other Notional Architectures (Fig. 4)

- NCS architecture *may be part of larger notional collection of architectures that crosses domains & stakeholders*
- *Integration with adjacent architectures may impose additional constraints*

Example Level of “Design” Work in MAA Development

- *MAA technical analysis typically limited to 1st principles*
- *For space access MAA with tugs that maneuver spacecraft, architecture development team (ADT) might size tugs at rocket equation (ref. k) level*
 - *Tug mass might scale to 1st order via rocket equation & other relationships, e.g., dry mass to propellant mass ratio, etc.*
- *No detailed tug subsystem design conducted*

Measures Of Effectiveness (MOEs)

- **MOEs - typically address effectiveness at architecture level & differ from MOPs, e.g.,**
 - *MOP might pertain to sizing nodes for spacelift, range, & on-orbit servicing functions*
 - *MOE might pertain to how well these nodes combine to meet an operational scenario at MAA level*
- **MOEs typically need to be decomposed into measurable terms in order to be useable by ADT**
 - *Need early & continued customer / user engagement to develop & refine*

Architecture Scenarios & Environments

- **Scenarios**
 - *Include driving operational cases at architecture level*
- **Environments typically are assumed conditions in which architecture will be developed & / or operated, e.g.,**
 - *Stable / cooperative vs. unstable / uncooperative governments*
 - *Stable vs. unstable budgets*
 - *Contested vs. uncontested space operations*
 - *Orbital debris / space weather, etc.*
- **Key enabler for NCS architecture level effectiveness analysis**
 - *Consistent scenarios & environments at MAA & NCS levels for given epoch*

Mission Area CONOPS Development & Use INCOSE

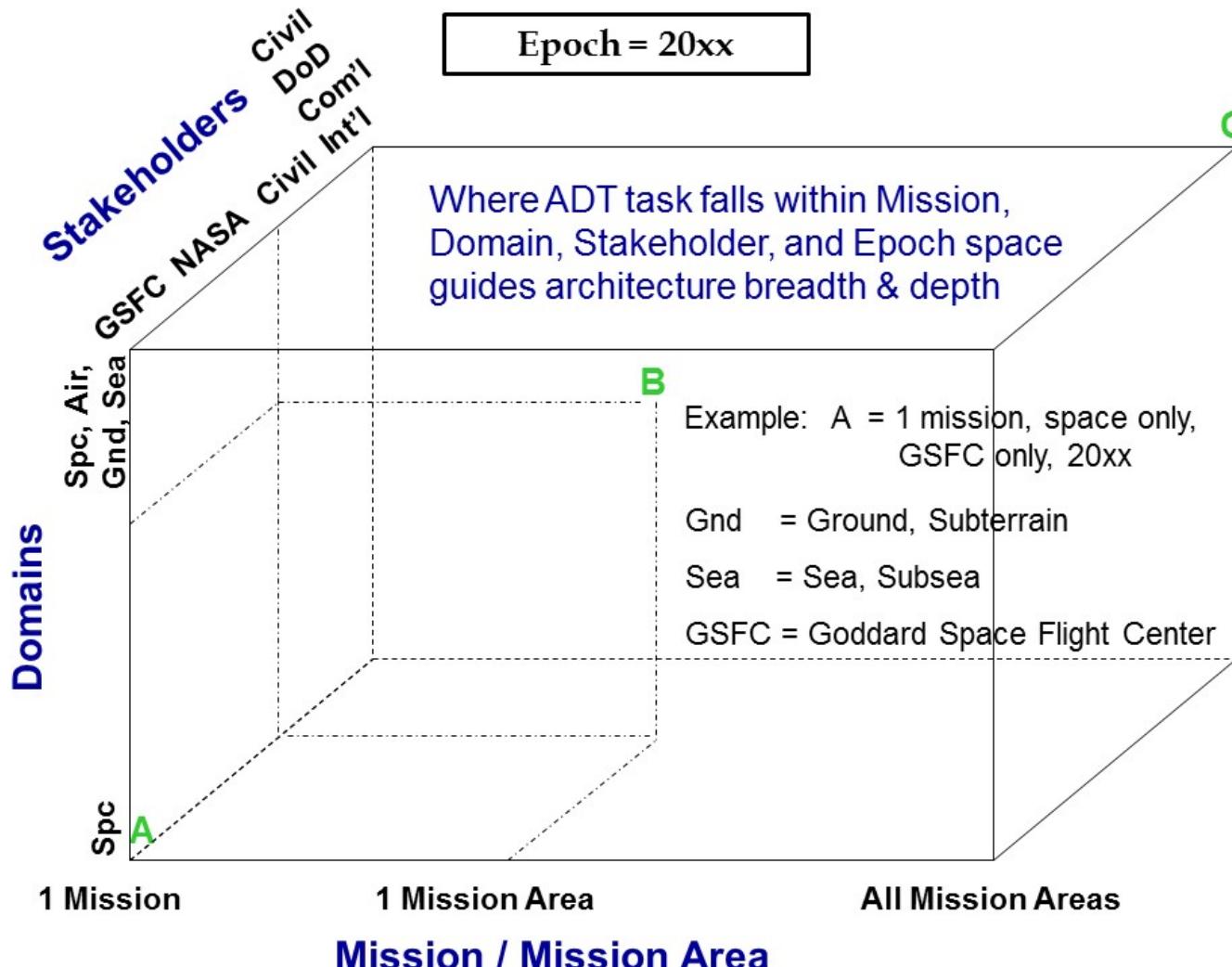
- ***Each MAA has at least one CONOPS that applies to a particular scenario, environment, & epoch***
 - *Used to evaluate MAA effectiveness*
- ***CONOPS is specific to architecture design***
 - *i.e., scenario is met differently by CONOPS using RLVs & on-orbit servicing than by a CONOPS using only ELVs*
 - *RLV = Reusable launch vehicle*
 - *ELV = Expendable launch vehicle*

Some Uses for NCS Architecture Framework

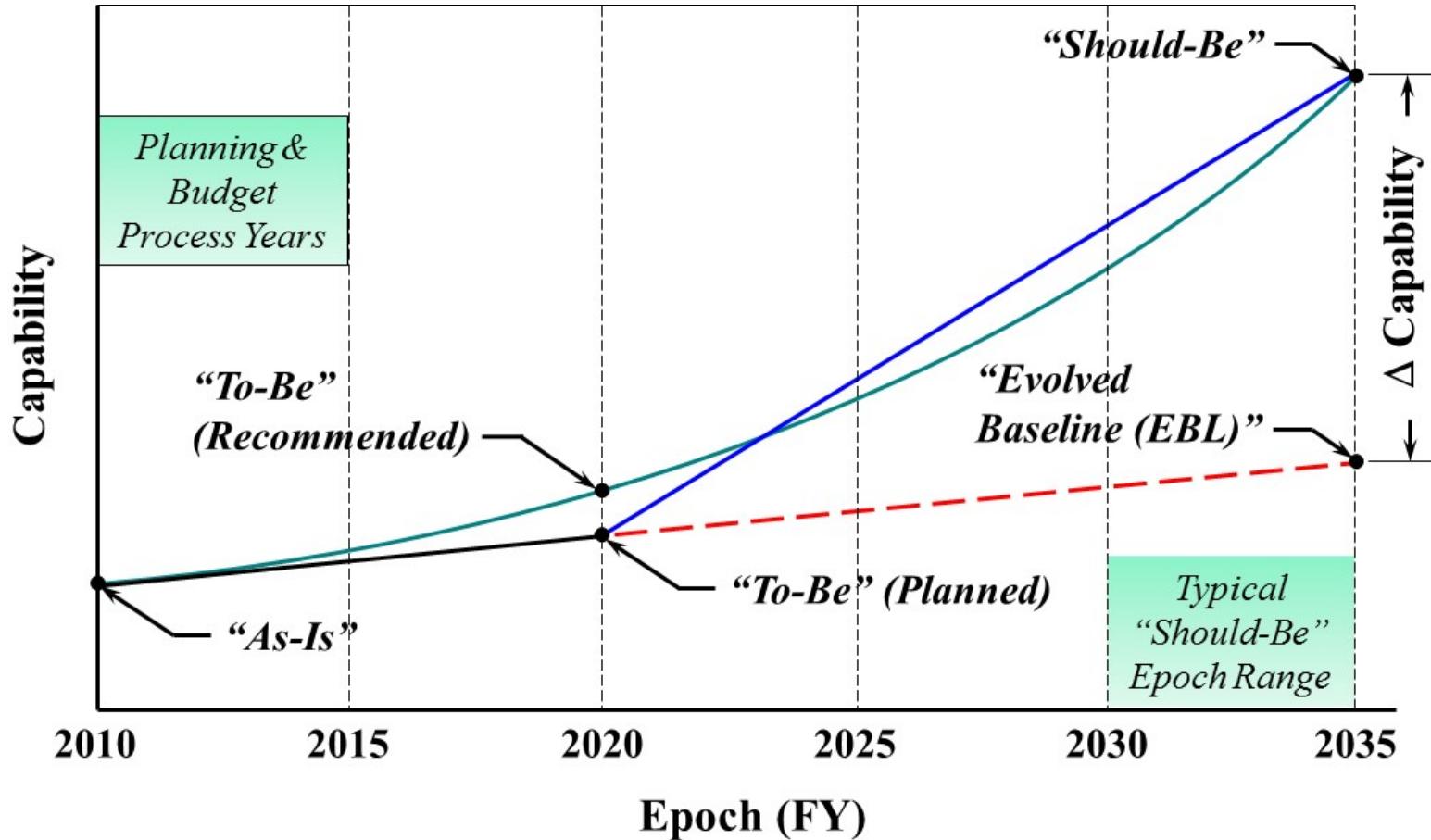
- **Provides for structured flowdown of policy & guidance into MAAs**
 - Establishes common lexicon for functions, metrics, & products
 - Provides coherent context & relationships among architecture elements
 - Enables horizontal & cross organizational integration within / among MAAs
- **Allows synthesis of Tier 0 (enterprise) architecture from constituent MAAs for given epoch**
 - Facilitates identifying Tier 0 CONOPS & evaluating Tier 0 architecture effectiveness
- **Exposes gaps / overlaps indicating need for follow-on MAA studies**
- **Highlights whether studies are for:**
 - a) One mission area across all QQTIR metrics
 - b) All mission areas for only one metric, e.g., timeliness

Objective 2

- ***Describe an effective approach for developing an MAA***


Terms of Reference (TOR)

- **TOR identifies**
 - *Who, what, where, why, when of study process & products*
 - *Incl. resources, participants, roles & responsibilities*
- **TOR typically will include**
 - *Problem background (incl. relationship to relevant past studies)*
 - *Problem statement: Concise & clear*
 - *Study scope & product depth, i.e.,*
 - *Functional boundaries (e.g., include spacelift, exclude on-orbit servicing)*
 - *Stakeholders*
 - *Domains*
 - *Epoch*
 - *Mission area guidance (e.g., relevant policy directives, etc.)*
 - *Guidance for establishing MOEs*
 - *Definitions for key unique terms*


Terms of Reference (TOR) (Cont'd)

- **Assumptions, Constraints, Groundrules**
 - ❑ System (x) from stakeholder (y) is out of scope
 - ❑ Use data from source (z) as principal input
 - ❑ Scenarios & environments
 - ❑ Technology readiness date
 - ❑ Policy, Cost
- **Guidance on how to select recommended architecture**
 - ❑ e.g., single, best value architecture within cost constraint, etc.
- **TORs are deceptively difficult, but worth time to develop well**
 - **Weak TOR can delay product delivery**
 - ❑ Can leave ADT to define purpose, scope, depth, epoch, products while designing MAA
 - ❑ ADT view may not match customer view


Scope & Depth Considerations for TOR (Fig. 5)

“As-Is”, “To-Be”, “Should-Be”, & “Evolved Baseline” MAAs* (Fig. 6)

* Adapted from model used by ref. (1)

Conducting Effective Architecture Studies

- **Lets now look at one way to effectively conduct an MAA study**
 - A generic, iterative “design cycle” process
- **Important Note:**
 - MAA studies can be conducted more than one way

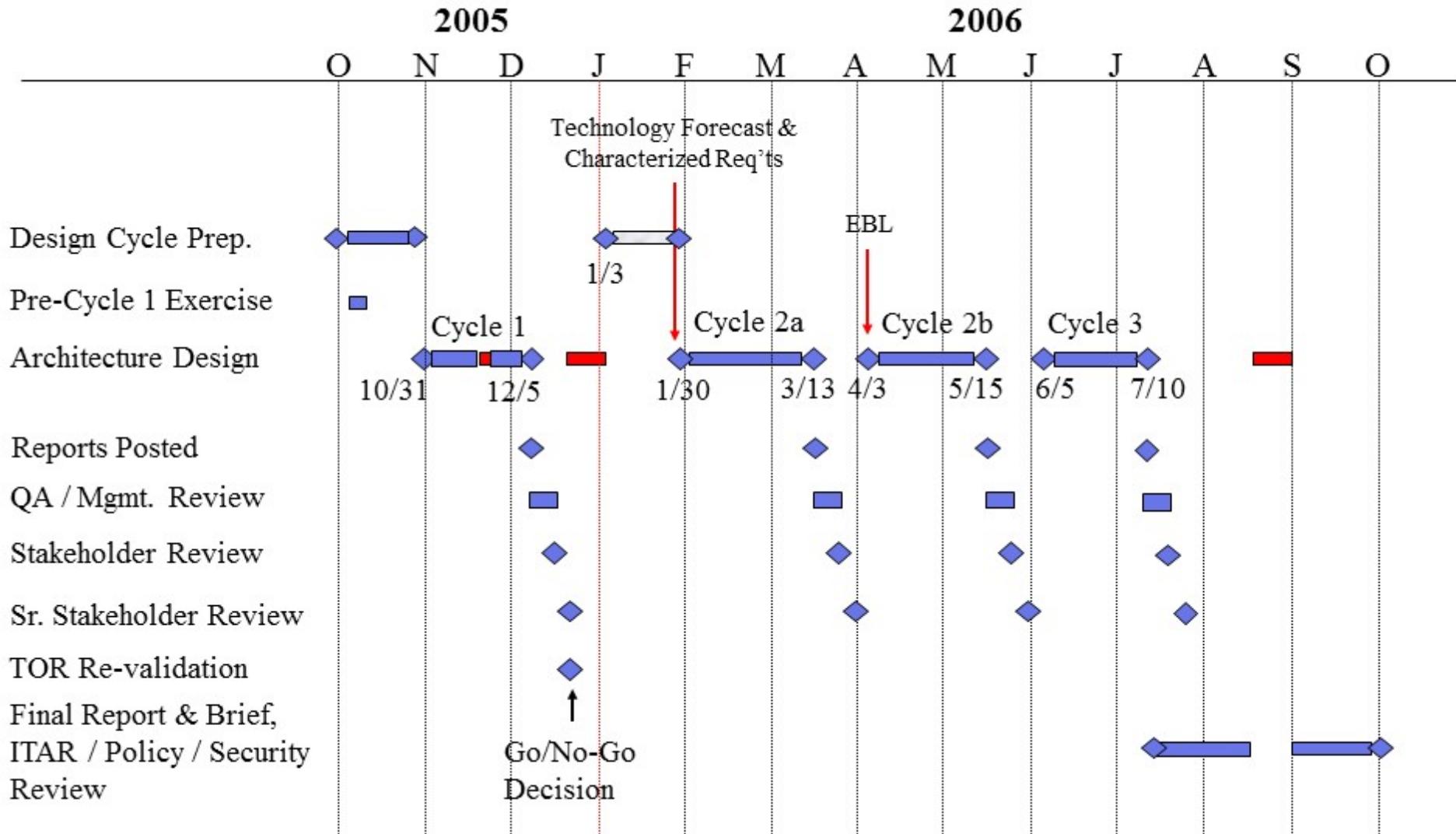
Introduction to Design Cycle Process for Architecture Studies

- **Design cycle process is structured, iterative approach**
 - Based on standard SE technique for conducting requirements development, design, & analysis
 - Brings products to common, coherent reference point in each cycle
 - Maintains synchronization of assumptions, trades & analyses
 - Accelerates start of architecture design
 - Provides discrete opportunities for stakeholder / management review
 - Facilitates systems level integration
 - Improves final report & reduces work required to produce it
- **Other process models (e.g., waterfall, ad-hoc iterative, etc.), less effective for studies with high uncertainty**
 - Waterfall (i.e., linear, unidirectional) processes more effective for tasks that are well understood
 - Ad-hoc iterative processes difficult to keep synchronized

Introduction to Design Cycle Process for Architecture Studies (Cont'd)

- **First time MAA developments are inherently exploratory & uncertain**
 - Teams learn at high rate
 - Unknown-unknowns often emerge as byproduct of design work
 - Can't be planned for in advance
- **Can't plan all study details at outset**
 - Outline general plan (incl. major activities & milestones) early
 - Develop schedule template for each design cycle
 - Allows cycles to be moved & tailored, to minor extent, within general plan
- **Starting design work early accelerates learning**
 - Surfaces unknown-unknowns early
 - Allows adjustments when there is still time to resolve

Design Cycle Approach Overview


Conducted in 3 Cycles

- **Cycle 1: Pathfinder; learn & assess readiness for design**
 - a) “requirements” characterized in form usable for analysis
 - b) metrics compatible with modeling tools
 - c) modeling tools can analyze design to provide desired product set
 - d) desired product set suffices to answer problem statement in TOR
 - Analyze a few architectures that span solution space
 - Surrogates can be used for “requirements”, technology forecast
- **Cycles 2a & 2b:**
 - Conduct comprehensive investigations for broad range of candidate architectures
 - Determine most promising architectures across trade space
- **Cycle 3:**
 - Refine designs & analyses on most promising representative architectures of solution space
 - Recommend single architecture based on criteria in TOR

12-Month MAA Study Design Cycle Template

CY 2005/2006 Example with Pre-Design Products Available (Fig. 7)

Pre-Design Products

Draft Products Developed before Cycle 1

- **Pre-Design Products Accelerate Cycle 1 start**
 - Functional decomposition through performance metrics
 - Generic scalable physical nodes
 - Prepare for modeling use, incl. governing equations / relationships
 - Generic “threads” (see next chart)
 - Types of modeling tools available to analyze nodes
 - Technology forecast (to degree readily available in roadmaps, etc.)
 - MOEs previously used or identified for mission area
 - Summary of known mission area guidance & relevant studies
- **Pre-design products may also include**
 - Data collection templates that support development of technology forecast and “as-is”, “to-be” (planned), & EBL architectures

Architecture Trade Case Matrix

Space Access Example

- **Analyses of individual nodes combine to determine performance / effectiveness of “threads”**
 - *Threads contain all nodes needed to deliver an end-to-end service, e.g.,*
 - *Deliver payload to orbit includes nodes for: launch base, ground station, range, launch vehicle, human C2 entities*
- **Analyses of individual “threads” combine to determine performance / effectiveness of MAA**
 - *ADTs assign combinations of threads to a range of candidate MAAs*
- **Functional decomposition for final MAA solution transferred into NCS functional decomposition table**
 - *Formats similar*

Architecture Trade Case Matrix

Leverages Functional Decomposition Table Format (Table 2)

Space Access Example, Epoch = 20xx

Architecture Solution (How's) =>	1a	1b	1c	2a	2b	2c	3a	3b	3c	4a	4b	4c	5a	5b	5c	6a	6b	6c	
Functions / MOPs (What's)																			
Provide Space Access Capabilities	All ELV			Mix ELV / RLV			All RLV w/Tugs												
Provide Spacelift / Payload Transportation Capabilities																			
- Deliver																			
- Quality																Each "architecture" is a composite of several "threads" designed to meet MOPs			
- Quantity																Architecture #1 represents an all ELV solution where threads 1a, 1b, & 1c might include light, medium, & heavy ELVs, respectively.			
- Timeliness																Architecture #3 represents an all RLV solution with tugs, where threads 3a, 3b, & 3c might include light RLVs, medium RLVs, & medium tugs, respectively.			
- Interoperability																			
- Robustness																			
- Deploy (QQTIR as above)																			
- Retrieve (QQTIR as above)																			
- Return (QQTIR as above)																			
Provide Range / Launch Base Capabilities													Expand as done for Spacelift / Payload Transportation						
Provide On-Orbit Servicing / Utilities Capabilities													Expand as done for Spacelift / Payload Transportation						

Typical Design Cycle Products (Table 3) (1 of 2)

Product	Cycles
User Needs / "Requirements" Classes & Bounding Cases	*, 2a, 2b, 3
Scenarios	1, 2a, 2b, 3
Future Environments / Threat Assessment	1, 2a, 2b, 3
CONOPS	1, 2a, 2b, 3
Doctrine / Policy Assessment	1, 2a, 2b, 3
Functional Decomposition (incl. MOPs / Interface "Req'ts")	1, 2a, 2b, 3
Tradespace & Trade Case Matrix	1, 2a, 2b, 3
Architecture Alternative Point Designs	1, 2a, 2b, 3
"As-Is", "To-Be" (Planned), & EBL Architectures	2b, 3
Technology Forecast	*, 2a, 2b, 3

Note: Shading aggregates products into ADT subteam reports

1) Operations:	Green shading
2) Systems:	Blue shading
3) Analysis:	Yellow shading
4) Architecture SE:	Grey shading

* Surrogates may be used for Cycle 1

Typical Design Cycle Products (Table 3) (2 of 2)

Product	Cycles
MOEs	1, 2a, 2b, 3
Performance / Utility Analyses	1, 2a, 2b, 3
Vulnerability Assessment	1, 2a, 2b, 3
Work Breakdown Structure	1, 2a, 2b, 3
Cost Analysis	1, 2a, 2b, 3
Risk Assessment	1, 2a, 2b, 3
Subteam Technical Reports	1, 2a, 2b, 3
Systems Engineer Report	1, 2a, 2b, 3

Some Additional Recommended Practices for MAA Development

- Set “Should-Be” epoch far enough out for candid discussion
 - 25 years: Allows candid discussion of future architecture
 - 15 years: Discussion highly constrained by current budget
- Keep Cycle 1 short, but apply concerted effort
 - Avoid pressure to use results from Cycle 1 for budget inputs
- Don’t retrofit architectures from prior cycles
 - Just apply what’s been learned to future cycles
- Exercise full solution space in Cycles 1, 2a & 2b
- Start writing ADT report in Cycle 1, refine in Cycles 2 & 3
 - Write reports first (documents of record), then translate to briefings
- Remain impartial

Closing Thoughts

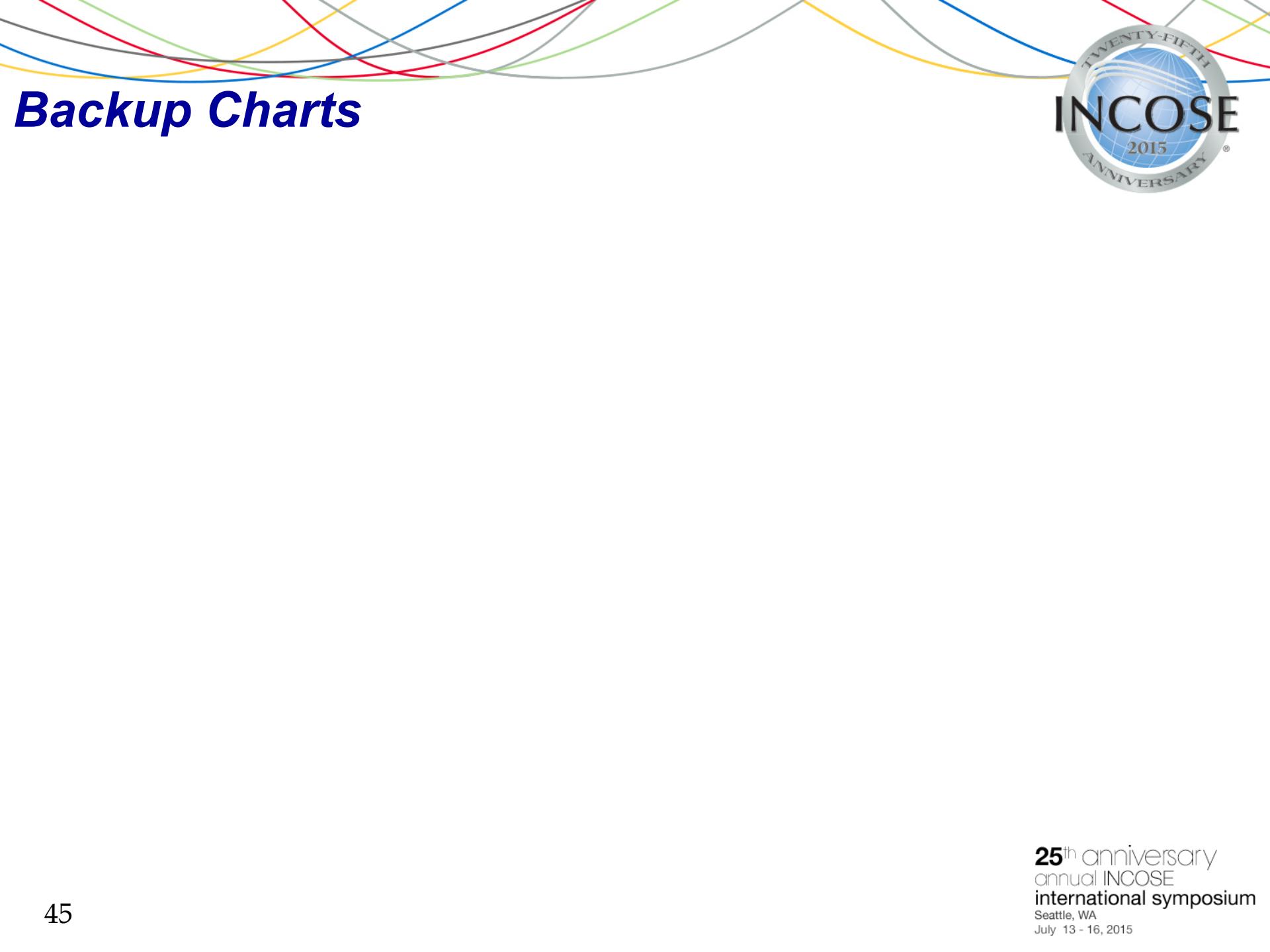
- **Approach presented uses simple extension of SE that can help ADTs, their customers, & stakeholders:**
 - Quickly understand core elements of an enterprise architecture when planning for far-term future
 - Visualize how constituent MAAs might get developed & integrated into an enterprise architecture
- **As approach is based on widely understood SE techniques & terminology, it should:**
 - Be readily usable by wide range of teams without need for special training in more complex & abstract methods
 - Have application beyond space architecture development

Questions ?

25th anniversary
annual INCOSE
international symposium
Seattle, WA
July 13 - 16, 2015

References

- a) *iso-architecture.org*. 2014. “Survey of Architecture Frameworks.” Last accessed 3 September 2014. <http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html>.
- b) *Di Pietro, David A.* 2009. “National Security Space (NSS) Architecture Development Process (Draft).” Briefing to Mr. J. Rouge, Director National Security Space Office, Washington, DC (US). Presented and approved 9 February.
- c) *Di Pietro, David A.* 2009. “Space Mission Architecture Development, Notional Framework and Approach.” Training course presented at the NASA Goddard Space Flight Center, Greenbelt, MD (US). 30 September.
- d) *Di Pietro, David A.* 2014. “A Systems Engineering Approach to Architecture Development.” Briefing presented (<http://www.dtic.mil/ndia/2014system/2014system.html>) at the National Defense Industry Association 17th Annual Systems Engineering Conference, Springfield, VA (US). October 2014.
- e) *NASA Headquarters*. 2012. *NASA Procedural Requirements (NPR) 7120.5E w/Changes 1-10*. NASA Space Flight Program and Project Management Requirements, Figure 2-5. Washington, DC (US): Office of the Chief Engineer.



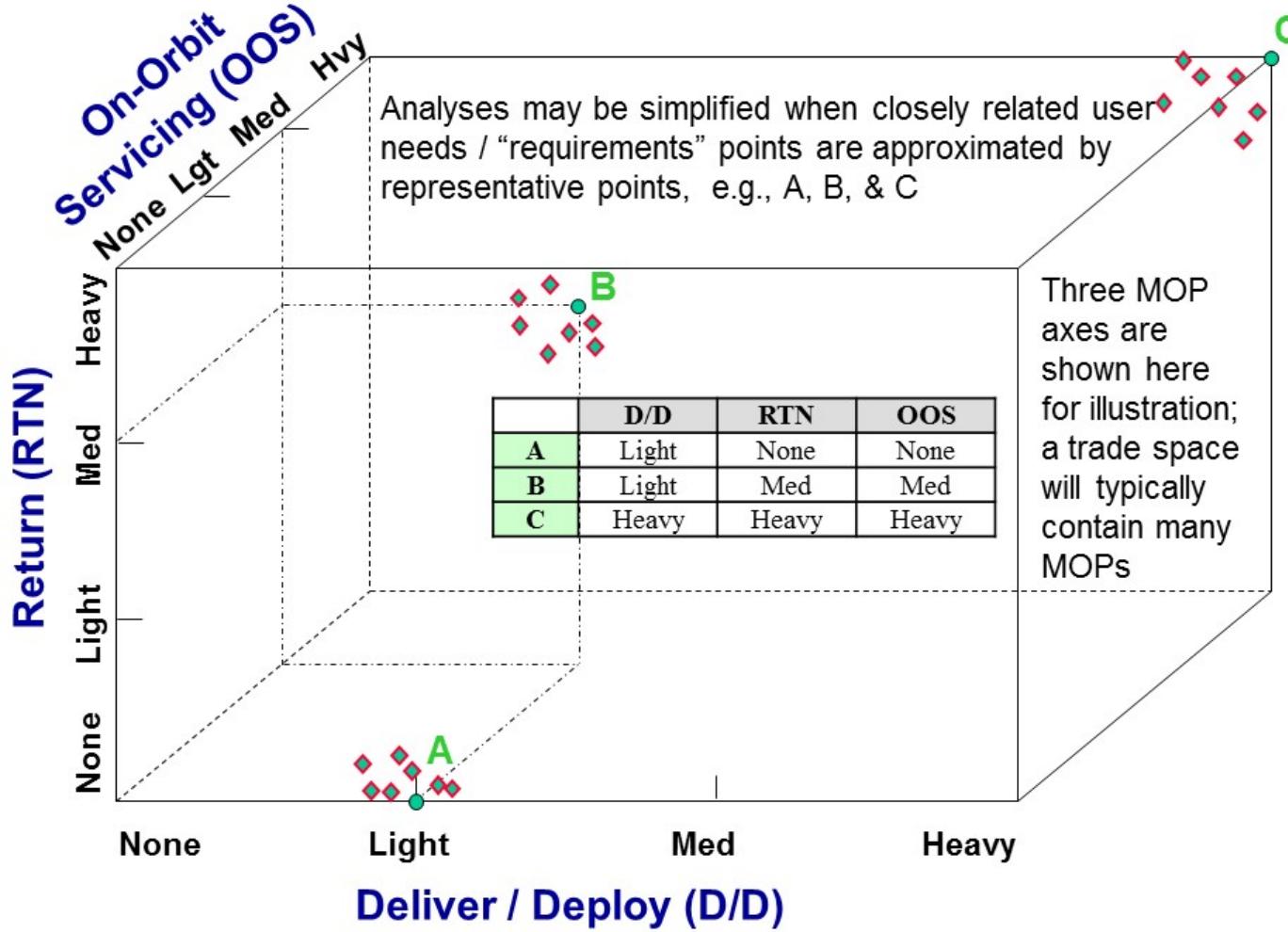
References (Cont'd)

- f) **Razzaghi, Andrea I., Di Pietro, David A., Simon-Miller, Amy A., and Spencer, John R.** 2007. *Enceladus Flagship Mission Concept Study, Revision 1, Edited for Public Release*. NASA Goddard Space Flight Center, Greenbelt, MD (US). 2 November.
- g) **Razzaghi, Andrea I., Di Pietro, David A., Quinn, David A., Simon-Miller, Amy A., and Tompkins, Stephen D.** 2008. "Mission Concepts for Studying Enceladus." Paper presented at Space Technology & Applications International Forum, Albuquerque, NM (US). 14 February.
- h) **G. & C. Merriam Co.** 1975. *Webster's New Collegiate Dictionary*. Springfield, MA (US).
- i) **Wikipedia.** 2014. "Propellant_depot." Last accessed 5 October 2014. http://en.wikipedia.org/wiki/Propellant_depot.
- j) **Wikipedia.** 2014. "Space_tug." Last accessed 5 October 2014. http://en.wikipedia.org/wiki/Space_tug.
- k) **Brown, Charles D.** 1998. *Spacecraft Mission Design. 2nd Edition*. Equation 3.21. Reston, VA (US): American Institute of Aeronautics and Astronautics.

References (Cont'd)

- *l) Hagemeier, Hal E. 2009. Deputy Director, National Security Space Office. Washington, DC (US).*
- *m) Rader, Andrew A., Ross, Adam M., and Fitzgerald, Matthew E. 2014. "Multi-Epoch Analysis of a Satellite Constellation to Identify Value Robust Deployment across Uncertain Futures." Paper presented (<http://seari.mit.edu/publications.php#2015>) at AIAA Space 2014, San Diego, CA, August 2014.*

Backup Charts



Interface Identification

- **Horizontal interfaces (within or among MAAs) can be highlighted on functional decomposition**
 - e.g., transmit data rate / frequency from remote sensing node (Environmental Monitoring MAA) to ground station (SATCOM MAA)
- **Some physical interfaces may need to be standardized**
 - e.g., for some on-orbit servicing nodes
- **Horizontal integration analyses across MAAs validate interfaces are compatible**

Example “Requirements” Trade Space

Space Access Example

