
1 © 2016 California Institute of Technology. Government sponsorship acknowledged.

ESEM: Automated Systems Analysis using
Executable SysML Modeling Patterns

July 18, 2016, Nerijus Jankevičius
No Magic Europe

2 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Outline

•  Current	State	of	Prac.ce	and	Need	for	MBSE	
•  TMT	Applica.on	
•  Executable	System	Engineering	Method	(ESEM)	
•  Demo	video	
•  Summary	

3 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Authors

•  Nerijus Jankevičius, nerijus@nomagic.com
•  Product Manager @ No Magic Europe
•  Leads the development of MBSE tools and solutions since 1997
•  OMG member, co-author of UML and SysML languages

3	

Robert Karban is a senior systems architect at the Jet Propulsion lab
in the Systems Engineering and Formulation Division. Robert works in
the domain of Model Based Systems Engineering (MBSE) as the task
lead on providing a Model Based Engineering Environment (MBEE)
for projects and applies modeling in the Thirty Meter Telescope
project. 	

Maged Elaasar is a senior software architect at the Jet Propulsion
Laboratory in the Systems Engineering and Formulation Division. 	

4 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Thirty Meter Telescope (TMT)
www.tmt.org

•  Developed	by	TMT	Interna.onal	Observatory	(TIO)	
  JPL	par.cipates	in	several	subsystems	of	TMT	
 APS	(and	AO)	team	uses	MBSE	to	analyze	requirements,	
produce	design,	and	perform	analysis	

•  Alignment	and	Phasing	System	(APS)	
 Sensor	responsible	for	measuring	the	pre-adap.ve	op.cs	
wavefront	quality	

	

5 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Current Practice to Future Practice

Today: Standalone
models related through
documents

Future: Shared system model
with multiple views, and
connected to discipline models

Source	:		MBSE	101	by	Elyse	Fosse	

6 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Model Based Systems Engineering

•  MBSE	is	the	formalized	applica.on	of	modeling	
techniques	to	support	system	requirements,	design,	
analysis,	verifica.on,	valida.on	and	documenta.on	
ac.vi.es	

•  MBSE	expresses	a	system	using	a	Systems	Modeling	
Language	(SysML),	a	profile	of	UML	

•  MBSE	is	oTen	applied	with	a	method	like	Object	
Oriented	System	Engineering	Method	(OOSEM)	

•  OOSEM	maps	onto	the	ISO	systems	engineering	process	
and	integrates	top-down	(func%onal	decomposi%on)	
approach	with	model-based	approach	

7 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Model-based V-Process at JPL

8 © 2016 California Institute of Technology. Government sponsorship acknowledged.

 OpenMBEE
 https://github.com/Open-MBEE

•  Provides	a	plaWorm	for	modeling	that	integrates	JPL’s	

mission	environment	OpenCAE,	by	incorpora.ng	a	model	
repository	that	can	be	accessed	for	example	with	a	rich	
SysML	desktop	client	(MagicDraw)	and	a	light-weight	web-
based	client	(ViewEditor)	

•  The	model	repository	provides	the	following	features:	
  Basic	Infrastructure	for	Version,	Workflow,	Access	Control	
  Flexibility	of	content	
  Support	for	Web	Applica.ons	and	Web-based	API	access	
  Mul.-tool	and	mul.-repository	integra.on	across	engineering	and	
management	disciplines	

	

9 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Systems Analysis

•  Carry	out	quan.ta.ve	assessments	of	systems	in	
order	to	select	and/or	update	the	most	efficient	
system	architecture	and	to	generate	derived	
engineering	data.		

•  System	analysis	provides	a	rigorous	approach	to	
technical	decision-making.	It	is	used	to	perform	
trade-off	studies,	and	includes	modeling	and	
simula.on,	cost	analysis,	technical	risks	analysis,	
and	effec.veness	analysis.		

10 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Requirements Verification

•  A	kind	of	systems	analysis	that	assesses	whether	a	
system	design	meets	the	objec.ves	and	sa.sfies	the	
constraints	that	are	implied	by	the	system	
requirements	

11 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Proposed Approach

•  Next	phase	of	system	modeling	emphasizes	
executable	models	to	enhance	understanding	,	
precision,	and	verifica.on	of	requirements	

•  Executable	Systems	Engineering	Method	(ESEM)	
augments	the	OOSEM	ac.vi.es	by	enabling	
executable	models	
 ESEM	produces	executable	SysML	models	that	verify	
requirements	
  Includes	a	set	of	analysis	pa`erns	that	are	specified	with	
various	SysML	structural,	behavioral	and	parametric	
diagrams	
 Also	enables	integra.on	of	supplier/customer	models	

12 © 2016 California Institute of Technology. Government sponsorship acknowledged.

TMT MBSE Objectives

•  Use	MBSE	to	define	executable	SysML	model	that	captures	
requirements,	opera.onal	scenarios	(use	cases),	system	
decomposi.on,	rela.onships	and	between	subsystems,	
etc.	

•  Use	the	model	to	analyze	the	system	design	for	
  	power	consump.on,	mass,	and	dura.on	

•  Produce	engineering	documents	
  Requirement	Flow	Down	Document	
  Opera.onal	Scenario	Document	
  Design	Descrip.on	Document	
  Interface	Control	Documents	

•  Uses	standard	languages	and	techniques	where	prac%cal	
to	avoid	custom	soTware	development	

13 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Typical Analysis Activities
Using ESEM

•  Capture	opera%onal	use	cases	with	es.mated	dura.ons	of	
ac.ons,	e.g.	
  Post	segment-exchange	alignment:	requirement:	2h;	CBE	1h19m	

•  Capture	power	and	mass	characteris%cs	of	components		
•  Iden.fy	involved	subsystems,	e.g.	Telescope	Control	System	

(TCS),	M1	Control	System	(M1CS)	
•  Iden.fy	interfaces	and	interac%ons	among	subsystems	
•  Analyze	associated	scenarios	
•  Automa.cally	verify	system	requirements	are	met	
•  Derive	requirements	for	TMT	subsystems	
•  Develop/refine	.ming	requirements	for	algorithms,		internal	

and	external	interface	commands	

14 © 2016 California Institute of Technology. Government sponsorship acknowledged.

MagicDraw
Cameo Simulation Toolkit

•  Model	execu.on	framework	and	infrastructure:	
Model	debugging	and	anima.on	environment	
Pluggable	engines,	languages	and	evaluators	
User	Interface	prototyping	support	
Model	driven	configs	and	test	cases	

•  The	standard	based	model	execu.on	of:	
Ac.vi.es	(OMG	fUML	standard)	
Composite	structures	(OMG	PSCS)	
Statemachines	(W3C	SCXML	standard)	
Ac.ons/scripts	(JSR223	standard)		
Parametrics	(OMG	SysML	standard)	
Sequence	diagrams	(OMG	UML	Tes.ng	Profile)	

15 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Analysis of Architecture
and Design

Max	dura.on	Post-segment	exchange:	7200s	5000s	
Number	of	exposures	of	45s		4			6	
Max	peak	power	consump.on	in	dome:	8.5kw		8.1kw	
Number	of	motors	with	50W	10	12	

Update Requirements Analyze
Conceptual
Design

Analyze Realization
Design/Specification

OCD,	Requirements,	ICD,	DDD	
Pass/fail	

1	

2	
3	

4	

5	

6	

16 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Executable System Engineering Method
(ESEM)

•  Step	1:	Formalize	Requirements	
•  Step	2:	Specify	Design	
•  Step	3:	Characterize	Components	
•  Step	4:	Specify	Analysis	Context	
•  Step	5:	Specify	Opera.onal	Scenarios	
•  Step	6:	Specify	Analysis	Configura.ons	
•  Step	7:	Run	Analysis	

17 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 1: Formalize Requirements

•  Requirement	Pa`ern	
 Customer	Side	

 Define	the	textual	requirement	with	a	Requirement	
 Op.onally	define	a	design	black	box	specifica.on	with	a	Block	with	
relevant	value	proper.es	
 Op.onally	refine	the	Requirement	with	a	Constraint	Block	on	the	
black	box	design	Block	

 Supplier	Side	
 Define	a	design	black	box	specifica.on	with	a	Block	(that	refines	
the	customer’s	black	box	Block	if	any	and	provides	.ghter	property	
values)	
 Refine	the	textual	Requirement	by	a	Constraint	Block	(if	not	
already	defined	by	the	customer)	

18 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Satisfy, refine, bind

19 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 1: Formalize Requirements

20 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 2: Specify Design

•  Follow	OOSEM	to	define	two	white	box	
specifica.ons	that	specialize	the	black	box	
specifica.on		
 Conceptual	Specifica.on	
 Realiza.on	Specifica.on	

•  Decompose	the	white	box	designs	into	Blocks	
represen.ng	the	subsystems	

21 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Black Box Level

Project level
components
communicate
with APS black
box block

APS	Black	Box	

TCS	

M1CS	

ESW	

CS	

Operator	

22 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 2: Realization

System Decomposition Hierarchy

23 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 2: Conceptual Model

Communication between state machine specified components over ports

PEAS	
SH	

M1CS	

24 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 3: Characterize Components

•  Add	relevant	pa`erns	to	the	design	Block	to	make	it	
executable	

•  Example:	Roll-up	Pa`ern	
 Constrained	value	represents	an	aggregate	value	that	is	
propaga.ng	up	a	hierarchy	of	subcomponents	
 Sta.c	roll-up	(e.g.,	mass	roll-up)	
 Dynamic	roll-up	(e.g.,	power	roll-up)	

25 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Parametric Rollup Pattern

26 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 3: Characterize Components

Power Rollup Pattern

State constraints

27 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Automation

28 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 3: Characterize Components

Power Roll-up Pattern Application

29 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 4: Specify Analysis Context

•  Analysis	Context	Pa`ern	
 Abstract	analysis	context	Block	composes	both	the	design	
black	box	Block	and	white	box	Block	
 Analysis	proper.es	defined	on	the	analysis	context	Block	
(e.g.,	peak	power,	power	margin)	
 Analysis	parametric	model	on	the	analysis	context	that	
computes	and	binds	analysis	values	

30 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 4: Specify Analysis Context

Analysis Context Pattern

31 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 4: Specify Analysis Context

Analysis Context Parametric Model

32 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 5: Specify Operational Scenarios

•  Opera.onal	Scenario	Pa`ern	
  Concrete	analysis	context	Block	that		

  Represents	one	opera.onal	scenario	(e.g.,	power	configura.on)	
  Specializes	the	abstract	analysis	context	Block	
  Redefines	context’s	proper.es	with	scenario-specific	values	
  Defines	an	owned	behavior	(sequence	diagram)	as	scenario	driver	

  Changes	the	states	of	the	different	components,	by	sending	them	signals,	
causing	the	rolling-up	to	occur	automa.cally	

  Can	specify	dura.on	constraints	to	.me	the	injec.on	of	signals	thus	
controlling	.me	spent	in	a	certain	state		

  Can	use	state	constraints	(on	components)	to	verify	during	execu.on	if	a	
component	is	actually	in	expected	state		

33 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 5: Specify Operational Scenarios

Operational Scenario Driver

34 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 2: Conceptual Model

Communication between state machine specified components over ports

PEAS	
SH	

M1CS	

35 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 6: Specify Scenario Configurations

•  Scenario	Condi.on	Pa`ern	
  A	decomposi.on	tree	of	instance	specifica.ons	represen.ng	
the	state	of	the	scenario	

 Can	be	presented	in	tabular	form	
  Rows	represent	the	instance	specifica.ons	(e.g.,	component)	
  Columns	represent	values	(e.g.,	opera.ng	power)	from	the	instance	
specifica.ons	

•  Issues	
  Hard	to	keep	instance	specifica.ons	in	sync	with	Block	hierarchy	

 Mi.ga.on:	tool	automa.on	
  Instance	specifica.ons	cannot	be	displayed	in	IBDs	

 Mi.ga.on:	use	full	specializa.on	tree	of	singleton	Blocks	for	each	
scenario	

36 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 6: Specify Analysis Configurations

Scenario Initial Condition Pattern

37 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Step 7: Run Analysis

•  Run	the	configured	analysis	with	a	simula.on	
engine	on	the	ini.al	condi.ons	to	get	the	final	
condi.ons:	

•  Produce	the	following	views	on	final	condi.ons	
 Table	showing	final	analysis	values	(e.g.,	peak	power)	and	
the	constraint’s	pass/fail	status	for	each	scenario	
 Timelines:	state	changes	for	components	over	.me	
 Value	profiles:	total	rolled	up	values	over	.me	

38 © 2016 California Institute of Technology. Government sponsorship acknowledged.

System Level Analysis

39 © 2016 California Institute of Technology. Government sponsorship acknowledged.

TMT Model

•  Customer	and	supplier	model	in	same	SysML	
project,	APS	and	Adap.ve	Op.cs	

•  Project	level	(customer)	conceptual	elements	re-
used	for	simula.on	in	downstream	design	

•  Analysis:	Dura.on,	Power	and	Mass		
	
h`ps://github.com/Open-MBEE/TMT-SysML-Model	
	

40 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Summary & Outlook

•  It	is	possible	to	automate	requirements	verifica.on	in	SysML	
models	

•  Introduced	a	new	Executable	System	Engineering	Method	that	
consists	of	a	set	of	pure	SysML	analysis	pa`erns	

•  The	method	can	be	executed	using	an	Off	the	shelf	simula.on	
engine	for	SysML	

•  big	interest	in	other	projects	at	JPL	
	
•  Trigger	Analysis	from	Web	interface	and	auto-generate	documents	
•  Integrate	analysis	engine	(solver)	
•  Integrate	FMI	units	

41 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Thank You !

Visit No Magic booth at H1-H2

42 © 2016 California Institute of Technology. Government sponsorship acknowledged.

The	 research	 was	 carried	 out	 at	 the	 Jet	 Propulsion	 Laboratory,	 California	
Ins.tute	of	Technology,	under	a	contract	with	the	Na.onal	Aeronau.cs	and	
Space	Administra.on	and	No	Magic	Inc.	
The	 TMT	 Project	 gratefully	 acknowledges	 the	 support	 of	 the	 TMT	
collabora.ng	 ins.tu.ons.	 	They	are	the	Associa.on	of	Canadian	Universi.es	
for	 Research	 in	 Astronomy	 (ACURA),	 the	 California	 Ins.tute	 of	 Technology,	
the	University	of	California,	the	Na.onal	Astronomical	Observatory	of	Japan,	
the	 Na.onal	 Astronomical	 Observatories	 of	 China	 and	 their	 consor.um	
partners,	 and	 the	Department	of	 Science	and	Technology	of	 India	and	 their	
supported	 ins.tutes.	 This	 work	 was	 supported	 as	 well	 by	 the	 Gordon	 and	
Be`y	Moore	Founda.on,	the	Canada	Founda.on	for	Innova.on,	the	Ontario	
Ministry	 of	 Research	 and	 Innova.on,	 the	 Na.onal	 Research	 Council	 of	
Canada,	 the	 Natural	 Sciences	 and	 Engineering	 Research	 Council	 of	 Canada,	
the	 Bri.sh	 Columbia	 Knowledge	 Development	 Fund,	 the	 Associa.on	 of	
Universi.es	for	Research	in	Astronomy	(AURA)	and	the	U.S.	Na.onal	Science	
Founda.on.	

Acknowledgments

43 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Reference

•  Karban,	R.,	Jankevičius,	N.,	Elaasar,	M.	“ESEM:	Automated	Systems	Analysis	
using	Executable	SysML	Modeling	Pa`erns”,	(to	appear	in	the	proceedings	
of	INCOSE	Interna.onal	Symposium	(IS),	Edinburgh,	Scotland,	2016.)	

•  Karban,	R.,	“Using	Executable	SysML	Models	to	Generate	Systems	
Engineering	Products”,	NoMagic	World	Symposium,	Allen,	TX,	2016	

•  Open	Source	TMT	model:	
h`ps://github.com/Open-MBEE/TMT-SysML-Model	

•  Open	Source	Engineering	Environment:	h`ps://github.com/Open-MBEE	
•  A	Prac.cal	Guide	to	SysML,	3rd	Edi.on,	Chapter	17	by	Friedenthal,	Moore,	

and	Steiner	
•  Zwemer,	D.,		“Connec.ng	SysML	with	PLM/ALM,	CAD,	Simula.on,	

Requirements,	and	Project	Management	Tools”,	May	2016	

44 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Backup

45 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Conceptual Design

Operational behavior captured with
state machines and activity models

1	

2	

46 © 2016 California Institute of Technology. Government sponsorship acknowledged.

Conceptual behavior model

Communicating
state machines

Dynamic and fixed
duration constraints

Duration analysis results verified
against requirement for a particular
configuration

1	

2	

3	

4	

47 © 2016 California Institute of Technology. Government sponsorship acknowledged.

OpenMBEE Core Integration

MMS	repository	

Model	of	Document	in	
MagicDraw/Model	Development	Kit	

Rendered	and	editable	document	in		
Web	interface	View	Editor	

