1\ INCOSE

26
@ Edlnburgh UK
‘\ ['ﬁ

July 18 - 21, 2016

Delta Rhapsody

Oskar Berreteaga
ULMA Embedded Solutions

m GGGGGGGG '
000000000000

EEEEE LA L

MONDRAGON 28?';5% gggg | ' ' ' I

UNIBERTSITATEA Embedded Solutions

Agenda

Theoretical concepts
Related work

Architecture

Example

Conclusions & Future Work

o b WODN -

www.incose.org/symp2016

s
ne
.V
26 nu lNCOSE

Edinburgh, UK
July 18 - 21, 2016

Theoretical concepts s

Y LY,
\ T2/
Variability 2@ ' INCOSE

Edinburgh, UK
definition
Software variability is the ability of a software system or artefact to be changed, customized or
configured for its use in a particular context.

A high degree of variability allows the usage of software in a broader range of contexts, i.e. the
software is more reusable. Variability can be viewed as consisting of two dimensions, i.e. space and
time. The space dimension is concerned with the utilization of software in multiple contexts, e.g.
multiple products in a software product family. The time dimension is concerned with the ability of
software to support evolution and changing requirements in its various contexts.

Software Variability Management
Jilles van Gurp, Jan Bosch
http://www.win.tue.nl/~sroubtso/svm2003-proceedings.pdf

www.incose.org/symp2016 3

Theoretical concepts @

v . ..&[
\&1‘. 4
Software Product Lines 2@ - INCOSE

Edinburgh, UK

July 18 - 21, 2016

A software product line is "a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way”.

Two phases are distinguished:

— Domain Engineering refers to activities in which the core assets are
created. An important part of domain engineering is domain analysis, il il

during which a fundamental understanding of the domain and its
commonalities and variability is established. ﬂ Db
— Application Engineering is the phase in which the domain

engineering artefacts are used to create products. Unless variation
points use runtime binding, they are bound during this phase.

Product A Product B

www.incose.org/symp2016 4

Theoretical concepts oy

Software Product Line adoption approach 26

Edinburgh, UK

July 18 - 21, 2016

* Proactive approach, which develops a product line from scratch.

« Extractive approach, which starts with a collection of existing products and incrementally
refactors them to form a product line.

* Reactive approach, which begins with a small, easy to handle product line (possibly consisting of
a single product) and is extended incrementally with new features and implementation artefacts,

thus extending the product line’s scope.

www.incose.org/symp2016 5)

Theoretical concepts s

Y LY,
St v 52
Feature Model 2@ ' INCOSE

Edinburgh, UK
definition
A “feature” is defined as a “prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or system” (Kang 1990). A feature model is a compact
representation of all the products of the Software Product Line (SPL) in terms of “features”.

Feature models are visually represented by means of feature diagrams. Feature models are widely
used during the whole product line development process and are commonly used as input to produce
other assets such as documents, architecture definition, or pieces of code.

Kang, K.C.,Cohen, S.G., Hess, J.A.,Novak, W.E., Peterson, A.S.,
"Feature-oriented domain analysis (FODA) feasibility study"”,
Technical Report CMU/SEI-90-TR-021, SEI,

Carnegie Mellon University, November 1990

www.incose.org/symp2016 6

Theoretical concepts s

a ..H ﬁ[l/
\\ "y
Variability modelling approaches (Heidenreich et al. 2010) 26 'NCOSE

Edmburgh UK
July - 21,2016

* Negative Variability (annotative or 150% model). The negative variability approach relies on having a
150 % model, which means that all the features are allocated in the model, the model contains all the
elements used for all variants of the software product line. During product derivation, the elements of the
model that are not required according to the selected features are removed and the model of the variant
is obtained.

* Positive Variability (compositional or 100% model). The positive variability approach consists of having
a core model with the common or core elements for any product in the product line; and specifying which
new elements must be added when a certain feature or set of features is selected. In this case, during
product derivation, the core model is taken as starting point and elements are added to this model
according to the selected features; and this way the model of the variant is obtained.

* Modification of Model Elements. In this approach, there is a reference or base model and the variant
model is obtained modifying the existing model elements in this model according to the selected features.

www.incose.org/symp2016 7

[heoretical concepts "
L T §
“resly
Variability modelling approaches: Advantages and disadvantages 26 | /'NCOSE

Edinburgh, UK

July 18 - 21, 2016

Negative Variability (annotative or 150% model).
A All the elements are in the same model so getting an overview or spotting feature interactions is easier.

¥ It can increase model complexity especially when there are many variants, as it has to contain model elements for
any product in the product line.

— Understanding or analysing this model could become quite complex.

Positive Variability (compositional or 100% model).
A It helps to cope with model complexity as model elements that are not common ones are in different models.

¥ There can potentially be a large number of model fragments describing the SPL as a whole, and this makes it
more difficult to get an overview of the SPL.

— This makes it also more difficult to identify feature interactions.

Modification of Model Elements.

A It allows changes to be made inside the model elements.
¥V Variability not allowed at architectural level.

www.incose.org/symp2016 8

Theoretical concepts fﬁ,\,

\

Delta Modelling 26 '"CQSE

Edinburgh, UK

July 18 - 21, 2016

definition
Delta modelling is a language-independent approach for modelling system variability.

In delta modelling, a set of systems is described by a designated core system and a set of system

deltas that specify modifications of the core product to obtain other products. A particular system
variant is obtained by applying the modifications of a selected subset of the deltas to the core product.

, . U Delta modelling supports variability modelling approaches:
Delta Modeling for Software Architectures .
Arne Haber1 , Holger Rendel1 , Bernhard Rumpe1 , Ina Schaefer2 " Negatlve
http://www.se-rwth.de/publications/Delta-Modeling-for-Software-Architectures. pdf = Positive
Delta-oriented Architectural Variability Using MontiCore * Modification

Arne Haber , Thomas Kutz, Holger Rendel, Bernhard Rumpe, Ina Schaefer

http://arxiv.org/ftp/arxiv/papers/1409/1409.2317 .pdf . .
U Delta modelling supports SPLE adoption approaches:

= Proactive
= Extractive
= Reactive

www.incose.org/symp2016 9

Theoretical concepts

Delta Modelling conceptual sample

CORE
CORE Model
{ State Machine
DELTA1 DELTA2
':__S__Z__, R [I:__S__Z__' R

DELTA1 Model

State and transition addition

www.incose.org/symp2016

DELTAZ Model

State and transition addition

6\
Ly LR
N\ .J’

2@ " INCOSE

Edinburgh, UK
July 18 - 21, 2016

Based on Delta Modelling adaption
[Ina Schaefer 2010]

10

Theoretical concepts oy

[]
W
Delta Modelling conceptual sample 26 | 'NCOsE
15~ 22016
CORE DELTA1
r=So 2
S2 =
t1 ‘=== .=
*

NEW VARIANT = CORE + DELTA1

www.incose.org/symp2016

NEW VARIANT Model
CORE + DELTA1

Theoretical concepts f"\

Delta modelling: Advantages and disadvantages 26 nu mcoss
S 15 31.2016
Advantages July 18
A

It supports all variability modelling approaches: positive, negative and modification.

A It can handle configuration (variability in space) as well as evolution (variability in time) within a single notation.
Variability in space is related to having several variants or products and variability in time is related to the evolution of
the SPL.

A It can deal with an open variant space where not necessarily all configuration options are known in advance.

A

It supports proactive (complete variability management is performed before starting with application engineering),

reactive (the product line is updated when new variants appear) and extractive (existing products are taken as base
for the core assets) SPLE.

A ltis language independent.
A It supports modular and flexible description of variability and change. It is intuitively understandable and well-
structured.

Disadvantages

V¥ When there is a large number of model deltas describing the SPL as a whole, this makes it more difficult to get an
overview of the SPL.

V Itis more difficult to identify feature interactions.

www.incose.org/symp2016

Related work

Support for variability in Rhapsody

Edlnburgh UK
July 18 - 21, 2016

U IBM Rational Rhapsody gives some support for designing, reuse and envision product line
variants (Scouler and Bakal 2013).

0 The AUTOSAR 4.0 profile of Rhapsody provides support for AUTOSAR variation points in
Rhapsody.

U There are also Product Line Engineering tools that integrate with Rhapsody thus enabling Model
Driven Product Line Engineering:

= Pure::variants for Rhapsody by pure-systems
= Rhapsody/Gears Bridge by BigLever Software

www.incose.org/symp2016 13

Related work

Delta Modelling tools
O Delta Simulink, a tool for delta modelling for Simulink (Haber et al. 2013). ﬁf,’..,f??‘_’i%’bﬂ'ﬁ

U Delta-MontiArc (MontiArc is an existing architecture description language) that offers an
integrated modelling language for architectural variability (Haber et al. 2011).

0 Delta Ecore provides delta modelling on basis of the structured data models conforming to meta
models specified in EMF Ecore (Seidl et al. 2014).

| INCOSE

Delta Programming tools

U Deltadava programming language, a delta-oriented programming approach for Java (Schaefer et
al. 2010).

U The Abstract Behavioural Specification language (ABS) (Clarke et al. 2010a) also proposes a
delta approach for managing variability.

www.incose.org/symp2016 14

Architecture s

W'. .. ’ 7
ol v 5%/
Delta Rhapsody 2@ ' INCOSE

Edmburgh UK
July 21, 201

d We have developed Delta Rhapsody solution, a tool for Delta modelling in
IBM Rhapsody.

A variability modelling approach is provided, which supports positive
variability, negative variability and modification of model elements in IBM

Rhapsody.

www.incose.org/symp2016 15

Architecture e

| O TRAY
‘\ .J(/
Tools & Frameworks 26 || 'NCOSE

Edinburgh, UK
July 18 - 21, 2016

IBM Rational Rhapsody | > To model system CORE & DELTAS

> To place generated New Variant

= eclipse _Feat'ErE > To model & configure variability

£

e
—

Java APl > To generate New Variant into Rhapsody

www.incose.org/symp2016 16

Architecture @:,-X s
"y
Tools & Frameworks 26 ' 'INCOSE

Edinburgh, UK
July 18 - 21, 2016

Delta Rhapsody
FeaturelDE plugin Rhapsody Java API

Eclipse Helios Rhapsody 8.1

VMWare virtual machine

www.incose.org/symp2016 17

Architecture

Process roles (fi.)’ IBM Rational
Rhapsody
f IBD)J=N Feature
eature EVE
— Domain engineering < Mapping
y N files
A Application engineering 4 f IB]=] Feature
CEIEIEY Model

@ IBM Rational
Rhapsody

www.incose.org/symp2016

Design models
CORE & DELTA

Define variability
Feature Model

Define Feature
& Delta mapping

Configure
New Variant

Execute New
Variant Generation

Access
New Variant

s
26 ' INCOSE

Edinburgh, UK
July 18 - 21, 2016

Architecture

Process Flow for Domain Engineer 26 /INCOSE

Edinburgh, UK

July 18 - 21, 2016

Feature Modelling &
Configuration

Feature IDE

Feature-Delta
mapping

> .mappingJ

Java Development

Core & Delta
Repository

IBM Rhapsody

> 1 Core & Delta models visual generation
> 2 Feature Model Configuration visual edition

> 3 Mapping files generation (config file)

D: Developed Application/Module
D: Standard Application/Module 19

www.incose.org/symp2016

Architecture T

. o
L 0/
H H H INCOSE
Process Flow for Application Engineer 26
Edinburgh, UK
July 18 - 21, 2016
Feature Modelling & Default
Configuration ™ _config
Feature IDE 7
Feature-Delta N) Delta
mapping mapping Repository
\ 4
> variant > New Variant
Generator
Java Development IBM Rhapsody

> 1 Feature selection and save into default.config
> 2 Read required Features, Mapping and deltas (model)

> 3 Generate new variant (model) into Rhapsody

D: Developed Application/Module
www.incose.org/symp2016 [T standard Application/Module 20

Architecture o
sy
Core & Delta Modelling 26 | /INCOsE
5 {3 ClimatizationSystem Edinburgh, UK

-G Components ClimatizationSystem Rhapsody Project July 18 - 21, 2016

- E=Prckrges
--£7 ClimatizationSystemCD

‘[Packages CIaSS D|agram paCkage
]E] «stereo_Core» core

£ EJ «stereo_Delta_add» DAlarm

H-57] «stereo_Delta_add» DCooling

£
[
CJ"-Ej «stereo_Delta_add» DTempSensor

= Chimatizatio emSD .
=03 Packages Sequence Diagram package
-5 «stereo_Core» core

[J---@ «stereo_Delta_add» DAlarm
-5 «stereo_Delta_add» DAlarm_Cooling

[E:l «stereo_Delta_add» DAutomatic

(-5 «stereo_Delta_add» DAutomatic_Cooling
#-{7] «stereo_Delta_add» DCooling_Off

G

£ E‘J «stereo_Delta_add» DCooling_On

—sidierentyp
I gfé;‘s‘f;edm StateChart package

a3 Operations

El@ Statecharts

@ «stereo_Core» core

0-(3) «stereo_Delta_add» DAlarm

@ «stereo_Delta_add» DAlarm_Cooling

(2) «stereo_Delta_add» DCooling

@ «stereo_Delta_mod» DAutomatic

-3 «stereo_Delta_mod=» DAutomatic_Cooling
T EVents

-2 Stereotypes

www.incose.org/symp2016 21

Architecture e

| O TRAY
‘\ [} J/
Rhapsody Stereotypes | STATECHART DIAGRAM 1 26 | 'NCOsE

Stereotypes applicable to:

i Edinburgh, UK
1 July 18 - 21, 2016
1

' = Statechart Diagram e GEnCELLEE L P L PR EE P L
™ Stereo Core i . States : ESEQUENCE DIAGRAM
- E . Transitions i i Stereotypes applicable to:
= stereo Delta_add s+ Events | |* Sequence Diagram
| . Com Class
. Action o

= stereo Delta rem T | Message

| CLASS DIAGRAM 1= Event
= StereO_Delta_idle i Stereotypes applicable to: 1= Timeout
| = Object Model Diagram E E = Interaction Operator
E - Class E i " Interaction Occurrence
= Association | = SystemBorder
i . Realization E
. Dependency i
. Interface i
;. Actor E
L Package !

www.incose.org/symp2016 22

Architecture s

Rhapsody Stereotypes (Example) 26 - INCosE

Edinburgh, UK
July 18 - 21, 2016

BEK J HeatingControl

-0 Components
=+ Packages

=-£7) ClimatizationSystem(Cd
- Packages

-2 Stereotypes

=-§7) ClimatizationSystemStm
-2 Classes

Stereotypes are used to tag each model so the Bm»-[%a:;:;ﬁns

developed application will be able to process the £ Statecharts

model according to the function it has. #-(*2) «stereo_Corex core

El@ astereo_Delta_add» DAlarm

@" «stereo_Delta_add» DAlarm_Cooling
Ef «stereo_Delta_add» DCooling

@@ «stereo_Delta_mod=» DAutomatic

#-(°2) «stereo_Delta_mods» DAutomatic_Cooling

#-ZE Events

57 PredefinedTypes (REF)
I &£ PredefinedTypesCpp (REF)
www.incose.org/symp2016 23

i N
Architecture @

Supported diagrams N S - | 26 | 'NCOsE
—— %* E - Edinburgh, UK
\ 1 T [July 18 - 21, 2016
_ L i
= Statechart Diagram N/ ~N
= Class Diagram —
= Sequence Diagram
i o Ml el Bl
lemo | |
too_cool) |
Job
& 1 |
- e ; |
g
F——— |
Sequence Diagram Class Diagram

www.incose.org/symp2016 24

Architecture s

Ny,
s
Enhanced Delta visualization 26 |/ INCOSE
Edinburgh, UK
.

July 18 - 21, 2016
i DeltaAdd
DeltaAdd S R
DeltaRem

temp_reached J’;

DeltaMod ‘\—W ‘

DeltaMod

—

DeltaRem

www.incose.org/symp2016

25

Architecture sy
o)
Enhanced Delta visualization ’ 26 | !NCOsE
A Edinburgh, UK

T off_heater idle July 18 - 21, 2016
. on_heater
DeltaAdd ' | '
DeltaRem

failure_cleared

DeltaMod

failure

Stereo_Delta_add stereotyped Delta sample
Blue elements belong to Core model.
Green elements are added and highlighted for this Delta model.

www.incose.org/symp2016 26

Architecture ﬁfﬁ
Enhanced Delta visualization 26 .'f‘{{’“

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd
DeltaRem

DeltaMod

Stereo_Delta_rem stereotyped Delta sample
Blue elements belong to Core model.

Red elements are removed

and highlighted for this Delta model.

www.incose.org/symp2016 27

Architecture

Enhanced Delta visualization

DeltaRem
DeltaMod

Transition : 1 in DAutomatic

LAY
vy
26 ' ~INCOSE

Edinburgh, UK
July 18 - 21, 2016

M

|' heating

_ temp_reached .

e

C—

General | Description | Tags | Propetties |

| too_cool |

Name : ‘too_cool

Stereotype:

Target ‘ heating

stereo_Delta_mod in ClimatizationSystemStm v @]m

¥ |[_] Ovenidden

Trigger : too_cool in ClimatizationSystemStm

Guard : I

-

[T]overidden

www.incose.org/symp2016

Stereo_Delta_mod stereotyped Delta sample

Blue light elements belong to Core model.

Red elements are removed, blue bold elements are modified

(attributes) and green elements are added.

28

Example f:&.\

Case study overview \ INcoss
Edmburgh UK

Climatization System is a toy example for showing the usage of Delta Rhapsody. July 18- 21,20

Having a Core as the most basic system, this can be transformed based on different
Deltas, modifying the core with new features.

The manual heating system is mandatory and the new applicable features are:
« Add a cooling system
« Automate the system
 Add an alarm system

www.incose.org/symp2016 29

Example

Feature Modelling & Configuration

CimatizationSystemFeatureModel

I

Functionality | | Cooling | | Alam

/C

\\.
Automatic | Manual

Alam = Automatic

A>aw

Mandatory
Optional
Alternative
Abstract
Concrete

www.incose.org/symp2016

S

2@ < INCOSE
Edinburgh, UK
July 18 - 21, 2016
30

Core
(class diagram)

www.incose.org/symp2016

Example

Climatization

Control

Heater

A
!{v'l". i&/'/
26 INcose

Edinburgh, UK
July 18 - 21, 2016

31

Example

Core
(state machine diagram)

\' heating

off_heater

A

Sl

on_heater

www.incose.org/symp2016

e

g
26 ' INCOsE

Edinburgh, UK
July 18 - 21, 2016

32

Core

(sequence diagram)

Example

User :Control :Heater
I |
| |
on_heater() - i |
| |
,on() -
I l
| |
| |
| |

i i,

:User

:Control

‘Heater

j;jf; off_heater()

www.incose.org/symp2016

A
!{v'l". i&/'/
26 INcose

Edinburgh, UK
July 18 - 21, 2016

33

Delta Cooling
(class diagram)

www.incose.org/symp2016

Example

Climatization

4

Control

Heater

A~
26 ' /INCOSE

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

34

Delta Cooling

Example

(state machine diagram)

heating - 2_ heater

off_heater ’

i
|

idle

on_cooler

off_cooler

-

«stereo_Delta_add»
cooling

«stereo_Delta_add»
tal
sarhp compressor_running

«stereo_Delta_add»
ready

—

} «stereo_Delta_add»
running
fan_running

www.incose.org/symp2016

e
26 | INcost

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

35

Delta Cooling

Example

(sequence diagram)

26 onnucl INCOSE
Edinburgh, UK
July 18 - 21, 2016

User:User

:Control

‘Heater

:User

:Control :Heater

" off heater(

offQ)

|
|
<
l
|
|
I
l

e
o

;j','?;'; off_cooler()

k 4

DeltaAdd

www.incose.org/symp2016

36

Example

Delta Alarm

(class diagram) Gmatization
S N
[
= astareo_Deha_zdds
Control Alarm

Heater

www.incose.org/symp2016

e
26 | INcost

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

37

Example

Delta Alarm
(state machine diagram)

www.incose.org/symp2016

.."\IL".'A
TSRS off_heater <_: idle ’
on_heater l
failure_ceared
failure

«stereo_Delta_adi
failure

e
26 | INcost

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

38

Example

Delta Alarm_Cooling
(state machine diagram)

heating

’
!
/
\ ."‘
off_heater i
= . idle on_cooler
e -
7
£ e
™~ | 2 —_‘_‘«.\
on_heater \
N
\t
off_cooler *,
Y
A
\
\'n
kY
failure_cleared
failure —

failure

failure

startup

N
N\, /
- running i
.r"-'
1 - " fan_running

~, COmPressor_running
N

\
\

\'\,I v ready '
Rl

www.incose.org/symp2016

A
!{v'l". i&/'/
26 INcose

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

39

Example e
P @

Delta Alarm 2@ - INCOSE
. Edinburgh, UK
(sequence diagram) iy 18-21, 2016
:Control :Heater :Alarm
l | |
L. failure() ‘ |
!onO » |

sound_and_led()

\
| w
| \
| \
| |
| | |
| | |
L L L DeltaAdd

www.incose.org/symp2016 40

Example e

Delta Alarm_Cooling 26 | 'NCOsE
. Edinburgh, UK
(sequence diagram) iy 18-21, 2016
:Contrd :Codler :ABrm
! l |
l< failure() ! |
|onO | |
: : sound_and_led()
| | b
| | |
| | |
| | | DeltaAdd
s =il =11=

www.incose.org/symp2016 41

Delta Automatic
(class diagram)

www.incose.org/symp2016

Climatization

‘H

Control

Heater

A~
26 ' /INCOSE

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

42

Example

Delta Automatic
(state machine diagram)

heaﬁng H idl

~ temp_reached | t

‘ too_cool

www.incose.org/symp2016

o

Wiy
26 ' INcose

Edinburgh, UK
July 18 - 21, 2016

DeltaMod

43

Example

Delta Automatic_Cooling
(state machine diagram)

"~ heatng | . temp_reached | =5 -
too_cool -

cooling

- startp |
T\, compressor_running

!
4
\

| R
Y ready
._

S

."/l“

temp_reached

~" fan_running

www.incose.org/symp2016

A~
26 ' /INCOSE

Edinburgh, UK
July 18 - 21, 2016

DeltaMod

44

Example

Delta Automatic
(sequence diagram)

:Temp_Sensor

:Control

:Heater

too_cool()

I ..

www.incose.org/symp2016

A
!{v'l". i&/'/
26 INcose

Edinburgh, UK
July 18 - 21, 2016

DeltaAdd

45

Example N
P @

Delta Automatic_Cooling 26 | INCOsE
(S e q uence d i a g ram) :Temp_Sensor :Control :Heater :Cooler \Iii:r:gurgh,zgé

l | |

’ temp_heater() »] |

\ too_cool() |

: on_heater() » |

I off_cooler() : >

temp_cooler: |

| hot() |

: on_cooler() ! >

| off_heater() >

| 1 |

|] | DeltaAdd

| l |

L dis e - .

www.incose.org/symp2016 46

Example o

sd.mapping W)
Mapping files 26 1 C

productline ClimatizationSystem; Edinburgh, UK
July 18 - 21, 2016

features Automatic, Cooling, Alarm;

delta DAlarm when Alarm;

delta DAutomatic when Automatic;

delta DCooling when Cooling;
productline ClimatizationSystem; delta DAlarm_Cooling after DAlarm && DCooling when Alarm && Cooling;

features Automatic, Cooling, Alarm; delta DAutomatic_Cooling after DAutomatic && DCooling when Automatic && Cooling;

delta DAlarm when Alarm;

delta DAutomatic when Automatic; . . X .
. . productline ClimatizationSystem;
delta DCooling when Cooling;

delta DAlarm_Cooling after DAlarm && DCooling when Alarm && Cooling; features Automatic, Cooling, Alarm;

delta DAutomatic_Cooling after DAutomatic && DCooling when Automatic && Cooling;

delta DAlarm when Alarm;

Stmmapplng delta DAutomatic when Automatic;
Cd_mapping delta DCooling when Cooling;

www.incose.org/symp2016 Based on ABS language 47

Example

New Variant

Features: Cooling + Alarm + Automatic
Deltas: DAlarm + DAutomatic + DCooling

S
!{‘.1.. i';/f/
26 ' /INCOSE

Edinburgh, UK
July 18 - 21, 2016

Class diagram

Alarm

Temp_Sensor

1

Control

1

www.incose.org/symp2016

48

Example o

New Variant 2@ - INCOSE
Features: Cooling + Alarm + Automatic Sy 18- 31 2016

Deltas: DAlarm + DAutomatic + DCooling + DAlarm_Cooling + DAutomatic_Cooling

s " N
\[cooling

temp_reached idle too_hot startup

compressor_running

S t a t e Ch a rt di a gr am heating too_cool temp_reached eady

failure_cleared \\
running
failure failure é/Aaﬂure

- J

fan_running

www.incose.org/symp2016 49

New Variant

Example

Features: Cooling + Alarm + Automatic
Deltas: DAlarm + DAutomatic + DCooling + DAlarm_Cooling + DAutomatic_Cooling

www.incose.org/symp2016

1 [

| [User]

:Control

\
:Alarm

| | :Control |

[:Heater

[

| [liser]

«Contral

]

[

+Cooly

| [licer-icer 1 [-Contral s

Cox

ler

:Contrd | [:Coder ||

:AbBrm]

:Temp_Sensor

:Control ‘ ‘Heater ‘

L

:Heater

and_led(

gt

S
!{‘.1.. i';/f/
26 ' /INCOSE

Edinburgh, UK
July 18 - 21, 2016

Sequence Diagram

50

RECORDED DEMO =~y

Edinburgh, UK
/18 - 21, 2016

New Variant generation demonstration
(Application Engineer role)

www.incose.org/symp2016 51

/

ile Edit Navigate Search Project Sample Run Window Help

4 v giN | =] =l B O) R R Y I R R I I I S BT Quick Access 'f‘g\i‘;oebug
[% Package Explorer 52 B Y= 0 @ ClimatizationSystemFeatureModel Model 52 = 0 0= Outline 52 B =B
b 2 ClimatizationSystem » Ch
4 & ClimatizationSystemFeatureModel 4 Constraints
(@B src l Chamiznik | Legend: Mamm = Automatic
1 = JRE System Library [jrel 8.0 73] & Mandatory
b (= configs Optional
b (= features A Alternative
@ modelxml | Abstract
[Concrete
Aam = Automatic
Feature Diagram | Feature Order‘ Source!
2 Problems @ Javadoc [E) Declaration ' B Console $2 T+ B~vfv=0

No consoles to display at this time.

File Edit Navigate Search Project Sample

A S e | e

[£ Package Explorer 52
b & ClimatizationSystem
4 & ClimatizationSystemFeatureModel
(# src
i = JRE System Library [jre1.8.0 73]
I (= configs
b (= features
& modelxml

-

Ll

=

Run Window Help

S R R CRRT P RIR AR R R

]

@ ClimatizationSystemFeatureModel Model 53

Legend:
s Mandatory
& Optonal

=

8

Quick Access

Feature Diagram | Feature Order, Source‘

Declaration Bl Console 52

No consoles to display at this time.

= Problems

|| | @) e

5= Outline 2 B = 8
» Ch
4 Constraints

Aam = Automatic

<+ B-rfv= 08

Conclusions e

& T RAY
‘\ [} J/
Support for variability: Delta Rhapsody 26 | 'NCOsE
A Rhapsody based Delta Modelling solution provided. Sanpuran, UK

A Application Engineering workload simplified.

The prototype has been applied in a real case study of the transportation
sector with good results:

A The current models (core and deltas) are easier to understand than the complete model that
was previously used.

A The required time to develop variant models is reduced.
A The inclusion of future new products is easier.

V¥ The extra cost required must be also considered: especially the time required to model the
core and deltas at domain engineering.

www.incose.org/symp2016 54

0 . | N 7
"y
O Validate the tool in other domains. 26 | /~INcosE
O Empirical validation to measure the benefits of using the tool Edinburgh, UK
taking into account the learning curve of the domain engineer.

U Define appropriate workflows for:

= Maintenance when core is changed:
Integration of deltas in the core.
Maintenance of released variants.

= Modification of Deltas during Application Engineering:
Process for deciding if it should be reused in the Domain Engineering scope.

U Delta Rhapsody

Generate Rhapsody checkers to ensure design coherence through Domain Engineering
phase.

= Mapping file generation GUI development.

= Automatic Test Generation.

= Use Design Manager as repository for core and delta models.
= Allow more than one state machine diagram per project.

Future Work (f\

www.incose.org/symp2016 95

References s

. Batory, D., Sarvela, J., Rauschmayer, A. 2004. “Scaling Step-Wise Refinement.” IEEE Trans. Software Eng. 30(6).
. Clarke, X. D., Muschevici, R., Proenga, J., Schaefer, I., Schlatte, R. 2010a. “Variability Modelling in the ABS Language, Chapterin 26
Formal Methods for Components and Objects.” Volume 6957 of the series Lecture Notes in Computer Science: 204-224 Edinburgh, UK
. Clarke, D., Helvensteijn, M., Schaefer, I. 2010b. “Abstract Delta Modelling.” ACM Sigplan Notices: 13-22. July 18 - 21, 2016
. Clements, P. and Northrop, L. 2010. Software Product Lines: Practices and Patterns. Boston, MA: Addison-Wesley.
. Estefan, J. A. 2008. “Survey of Model-Based Systems Engineering (MBSE) Methodologies.” Rev. B, INCOSE Technical
Publication, Document No.: INCOSE-TD-2007-003-01 (paper presented at the International Council on Systems Engineering, San
Diego, CA, June 10, 2008).
. Haber, A., Holldobler, K., Kolassa, C., Look, M., Milller, K., Rumpe, B., Schaefer,l. 2013. "Engineering Delta Modelling
Languages.”(paper presented at the Proceedings of the 17th International Software Product Line Conference (SPLC), Tokyo,
September, 2013): 22-31.
. Haber, A., Holldobler, K., Kolassa, C., Look, M., Rumpe, B., Miller, K., Schaefer, I. 2013. “Engineering Delta Modelling
Languages.” Proceedings of the 17th International Software Product Line Conference: 22-31.
. Haber, A., Kolassa, C., Manhart, P., Nazari, P. M. S., Rumpe, B., Schaefer,l. 2013.“First-class variability modelling in matlab/
simulink.” (paper presented at the International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, |. 2011. “Delta-Oriented Architectural Variability Using Monticore.”
Proceedings of the 5th European Conference on Software Architecture: Companion Volume: 6.
. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F. 2011. “Hierarchical Variability Modelling for Software
Architectures” (paper presented at the Proceedings of International Software Product Lines Conference, August 2011).
. Halmans, G., Pohl, K. 2004. “Communicating the variability of a software-product family to customers. Inform. “Forsch. Entwickl.
18: 113-131.
. Heidenreich, F., Sanchez, P., Santos, J., Zschaler, S., Alférez, M., Aradjo, J., Fuentes, L., Kulesza, U., Moreira, A., Rashid, A. 2010.
“Relating feature models to other models of a software product line: a comparative study of feature mapper and VML.”
Transactions on aspect-oriented software development VII. 69-114.

www.incose.org/symp2016 56

References o

A .
'y

. Kang, K.C.,Cohen, S.G,, Hess, J.A.,Novak, W.E., Peterson, A.S., "Feature-oriented domain analysis (FODA) feasibility study", INCOSE
Technical Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, November 1990. 26 |

. Katz, S., and Mezini, M. 2011. “A Common Case Study for Aspect-Oriented Modelling”. Berlin, Heidelberg: Springer-Verlag. Edinburgh, UK

. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U. 2014. “Delta-oriented model-based integration testing of large-scale July 18 - 21, 2016
systems.”J. Syst. Softw. 91 63-84 ‘

. Mhenni, F., Nguyen, N., Choley, J.Y. 2013. “Towards the Integration of Safety Analysis in a Model-Based System Engineering
Approach with SysML, Design and Modelling of Mechanical Systems.” Lecture Notes in Mechanical Engineering (2013): 61-68
(paper presented at Fifth International Conference Design and Modelling of Mechanical Systems, Djerba, Tunisia, March 2013).

. Murray, J. 2012. “Model Based Systems Engineering (MBSE)”, Media Study.

. Schaefer, |. 2010. “Variability modelling for model-driven development of software product lines.” VaMoS: 85-92

. Schaefer, |., Bettini, L., Bono, V., Damiani, F., Tanzarella, N. 2010. "Delta-oriented programming of software product lines.” (paper
presented at Proc. of 15th Software Product Line Conference, Sep 2010)).

. Schaefer, |., Bettini, L., Damiani, F. 2011. “Compositional type-checking for delta oriented programming.” (paper presented at the

10th International Conference on Aspect-Oriented Software Development, AOSD 2011): 43-56.

. Schaefer, |., Bettini, L., Damiani, F., Tanzarella, N. 2010.”Delta-Oriented Pro%ramming of Software Product Lines.” Proceedings of
the 14th international conference on Software product lines: going beyond: 77-91.

. Schaefer, I., Damiani, F. 2010. “Pure Delta-oriented Programming”. FOSD 2010.

. Schaefer, |., 2012, “Efficient Incremental Testing of Variant-Rich Software Systems”, The 23rd CREST Open Workshop Change
Impact Analysis and Testing of Software Product Lines.

. Scouler, J.L., Bakal, M.R. 2013. “Product Design for Variants: Considerations, incentives, and best practices.” http://www.ibm.com/
developerworks/rational/library/product-design-variants/.

. Seidl, C., Schaefer, I., ABmann, U. 2014. “DeltaEcore - A Model-Based Delta Language Generation Framework.” Modellierung:
81-96

. Thim, T., Kastner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T. 2014. “FeaturelDE: An Extensible Framework for Feature-
Oriented Software Development.” Science of Computer Programming, 79(0): 70-85.

. 'II\'lrigaux, J. C. 2010. “Modelling variability requirements in software product lines: a comparative survey,” Tech. rep., FUNDP
amur.

. Van Gurp, J., Bosch, J., Svahnberg, M. 2001. “On the notion of variability in software product lines.” Software Architecture, 2001.
Proceedings. Working IEEE/IFIP Conference on: 45

www.incose.org/symp2016 57

www.incose.org/symp2016

Q&A

Thank you

W'y /
2@ ' INCOSE
Edinburgh, UK

July 18-21, 2
58

