
Delta Rhapsody
Oskar Berreteaga

ULMA Embedded Solutions

1

July

www.incose.org/symp2016

Agenda
1 | Theoretical concepts
2 | Related work
3 | Architecture
4 | Example
5 | Conclusions & Future Work

2

July

www.incose.org/symp2016

Theoretical concepts
Variability

definition
Software variability is the ability of a software system or artefact to be changed, customized or
configured for its use in a particular context.
A high degree of variability allows the usage of software in a broader range of contexts, i.e. the
software is more reusable. Variability can be viewed as consisting of two dimensions, i.e. space and
time. The space dimension is concerned with the utilization of software in multiple contexts, e.g.
multiple products in a software product family. The time dimension is concerned with the ability of
software to support evolution and changing requirements in its various contexts.

Software Variability Management
Jilles van Gurp, Jan Bosch
http://www.win.tue.nl/~sroubtso/svm2003-proceedings.pdf

3

July

www.incose.org/symp2016

Theoretical concepts
Software Product Lines

A software product line is "a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way”.

Two phases are distinguished:
–  Domain Engineering refers to activities in which the core assets are

created. An important part of domain engineering is domain analysis,
during which a fundamental understanding of the domain and its
commonalities and variability is established.

–  Application Engineering is the phase in which the domain
engineering artefacts are used to create products. Unless variation
points use runtime binding, they are bound during this phase.

4

July

www.incose.org/symp2016

Theoretical concepts
Software Product Line adoption approach

•  Proactive approach, which develops a product line from scratch.
•  Extractive approach, which starts with a collection of existing products and incrementally

refactors them to form a product line.
•  Reactive approach, which begins with a small, easy to handle product line (possibly consisting of

a single product) and is extended incrementally with new features and implementation artefacts,
thus extending the product line’s scope.

5

July

www.incose.org/symp2016

Theoretical concepts
Feature Model

definition
 A “feature” is defined as a “prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or system” (Kang 1990). A feature model is a compact
representation of all the products of the Software Product Line (SPL) in terms of “features”.
Feature models are visually represented by means of feature diagrams. Feature models are widely
used during the whole product line development process and are commonly used as input to produce
other assets such as documents, architecture definition, or pieces of code.

Kang, K.C.,Cohen, S.G., Hess, J.A.,Novak, W.E., Peterson, A.S.,
"Feature-oriented domain analysis (FODA) feasibility study",
Technical Report CMU/SEI-90-TR-021, SEI,
Carnegie Mellon University, November 1990

6

July

www.incose.org/symp2016

Theoretical concepts
Variability modelling approaches (Heidenreich et al. 2010)

•  Negative Variability (annotative or 150% model). The negative variability approach relies on having a

150 % model, which means that all the features are allocated in the model, the model contains all the
elements used for all variants of the software product line. During product derivation, the elements of the
model that are not required according to the selected features are removed and the model of the variant
is obtained.

•  Positive Variability (compositional or 100% model). The positive variability approach consists of having
a core model with the common or core elements for any product in the product line; and specifying which
new elements must be added when a certain feature or set of features is selected. In this case, during
product derivation, the core model is taken as starting point and elements are added to this model
according to the selected features; and this way the model of the variant is obtained.

•  Modification of Model Elements. In this approach, there is a reference or base model and the variant
model is obtained modifying the existing model elements in this model according to the selected features.

7

July

www.incose.org/symp2016

Theoretical concepts
Variability modelling approaches: Advantages and disadvantages

Negative Variability (annotative or 150% model).
▲  All the elements are in the same model so getting an overview or spotting feature interactions is easier.
▼  It can increase model complexity especially when there are many variants, as it has to contain model elements for

any product in the product line.
–  Understanding or analysing this model could become quite complex.

Positive Variability (compositional or 100% model).
▲  It helps to cope with model complexity as model elements that are not common ones are in different models.
▼  There can potentially be a large number of model fragments describing the SPL as a whole, and this makes it

more difficult to get an overview of the SPL.
–  This makes it also more difficult to identify feature interactions.

Modification of Model Elements.
▲  It allows changes to be made inside the model elements.
▼  Variability not allowed at architectural level.

8

July

www.incose.org/symp2016

Theoretical concepts
Delta Modelling

definition
Delta modelling is a language-independent approach for modelling system variability.
In delta modelling, a set of systems is described by a designated core system and a set of system
deltas that specify modifications of the core product to obtain other products. A particular system
variant is obtained by applying the modifications of a selected subset of the deltas to the core product.

9

Delta Modeling for Software Architectures
Arne Haber1 , Holger Rendel1 , Bernhard Rumpe1 , Ina Schaefer2
http://www.se-rwth.de/publications/Delta-Modeling-for-Software-Architectures.pdf

Delta-oriented Architectural Variability Using MontiCore
Arne Haber , Thomas Kutz, Holger Rendel, Bernhard Rumpe, Ina Schaefer
http://arxiv.org/ftp/arxiv/papers/1409/1409.2317.pdf

q Delta modelling supports variability modelling approaches:
§  Negative
§  Positive
§  Modification

q Delta modelling supports SPLE adoption approaches:

§  Proactive
§  Extractive
§  Reactive

July

www.incose.org/symp2016

Theoretical concepts
Delta Modelling conceptual sample

10

S2
S3

t2 + +

DELTA1

S1
S2

t1

CORE

S2
S4

t3 + +

DELTA2

CORE Model
State Machine

DELTA1 Model
State and transition addition

DELTA2 Model
State and transition addition

Based on Delta Modelling adaption
[Ina Schaefer 2010]

July

www.incose.org/symp2016

Theoretical concepts
Delta Modelling conceptual sample

11

S2
S3

t2 + +

DELTA1

S1
S2

t1

CORE

S1
S2

t1
NEW VARIANT = CORE + DELTA1

S3
t2

+

NEW VARIANT Model
CORE + DELTA1

July

www.incose.org/symp2016

Theoretical concepts
Delta modelling: Advantages and disadvantages

Advantages

▲  It supports all variability modelling approaches: positive, negative and modification.
▲  It can handle configuration (variability in space) as well as evolution (variability in time) within a single notation.

Variability in space is related to having several variants or products and variability in time is related to the evolution of
the SPL.

▲  It can deal with an open variant space where not necessarily all configuration options are known in advance.
▲  It supports proactive (complete variability management is performed before starting with application engineering),

reactive (the product line is updated when new variants appear) and extractive (existing products are taken as base
for the core assets) SPLE.

▲  It is language independent.
▲  It supports modular and flexible description of variability and change. It is intuitively understandable and well-

structured.
Disadvantages

▼  When there is a large number of model deltas describing the SPL as a whole, this makes it more difficult to get an
overview of the SPL.

▼  It is more difficult to identify feature interactions.

12

July

www.incose.org/symp2016

Related work
Support for variability in Rhapsody

q  IBM Rational Rhapsody gives some support for designing, reuse and envision product line

variants (Scouler and Bakal 2013).

q  The AUTOSAR 4.0 profile of Rhapsody provides support for AUTOSAR variation points in
Rhapsody.

q  There are also Product Line Engineering tools that integrate with Rhapsody thus enabling Model
Driven Product Line Engineering:
§  Pure::variants for Rhapsody by pure-systems
§  Rhapsody/Gears Bridge by BigLever Software

13

July

www.incose.org/symp2016

Related work
Delta Modelling tools
q  Delta Simulink, a tool for delta modelling for Simulink (Haber et al. 2013).
q  Delta-MontiArc (MontiArc is an existing architecture description language) that offers an

integrated modelling language for architectural variability (Haber et al. 2011).
q  Delta Ecore provides delta modelling on basis of the structured data models conforming to meta

models specified in EMF Ecore (Seidl et al. 2014).

Delta Programming tools
q  DeltaJava programming language, a delta-oriented programming approach for Java (Schaefer et

al. 2010).
q  The Abstract Behavioural Specification language (ABS) (Clarke et al. 2010a) also proposes a

delta approach for managing variability.

14

July

www.incose.org/symp2016

Architecture
Delta Rhapsody

q  We have developed Delta Rhapsody solution, a tool for Delta modelling in

IBM Rhapsody.

q  A variability modelling approach is provided, which supports positive
variability, negative variability and modification of model elements in IBM
Rhapsody.

15

July

www.incose.org/symp2016

Architecture
Tools & Frameworks

16

IBM Rational Rhapsody > To model system CORE & DELTAS
> To place generated New Variant

> To model & configure variability

> To generate New Variant into Rhapsody Java API

July

www.incose.org/symp2016

Architecture
Tools & Frameworks

17

VMWare	virtual	machine	

Windows	7	

Eclipse	Helios	 Rhapsody	8.1	

Delta	Rhapsody	

JDK	8	

FeatureIDE	plugin	 Rhapsody	Java	API	

July

www.incose.org/symp2016

Architecture
Process roles

18

Domain engineering

IBM Rational
Rhapsody

Design models
CORE & DELTA

Feature
Model

Define variability
Feature Model

Mapping
files

Define Feature
& Delta mapping

Application engineering

IBM Rational
Rhapsody

Access
New Variant

Feature
Model

Configure
New Variant

Delta	Rhapsody	 Execute New
Variant Generation

July

www.incose.org/symp2016

Architecture
Process Flow for Domain Engineer

IBM	Rhapsody	Java	Development	

Feature	Modelling	&	
ConfiguraIon	
Feature	IDE	

Core	&	Delta	
Repository	

Feature-Delta	
mapping	

	
.mapping	

>	1	Core	&	Delta	models	visual	generation	
>	2	Feature	Model	Configuration	visual	edition	
>	3	Mapping	files	generation	(config	file)	

Developed	ApplicaIon/Module	

Standard	ApplicaIon/Module	 19

July

www.incose.org/symp2016

Architecture
Process Flow for Application Engineer

20

IBM	Rhapsody	Java	Development	

Feature	Modelling	&	
ConfiguraIon	
Feature	IDE	

Delta	
Repository	

Default	
.config	

Feature-Delta	
mapping	

	
.mapping	

New	Variant	Variant	
Generator	

>	1	Feature	selection	and	save	into	default.config	
>	2	Read	required	Features,	Mapping	and	deltas	(model)	
>	3	Generate	new	variant	(model)	into	Rhapsody	

Developed	ApplicaIon/Module	

Standard	ApplicaIon/Module	

July

www.incose.org/symp2016

Architecture
Core & Delta Modelling

21

ClimatizationSystem Rhapsody Project

Class Diagram package

StateChart package

Sequence Diagram package

July

www.incose.org/symp2016

Architecture
Rhapsody Stereotypes

§  stereo_Core
§  stereo_Delta_add
§  stereo_Delta_mod
§  stereo_Delta_rem
§  stereo_Delta_idle

22

STATECHART	DIAGRAM	
Stereotypes	applicable	to:	
§  Statechart	Diagram	
§  States	
§  TransiIons	
§  Events	
§  AcIon	
§  OperaIon	

CLASS	DIAGRAM	
Stereotypes	applicable	to:	
§  Object	Model	Diagram	
§  Class	
§  AssociaIon	
§  RealizaIon	
§  Dependency	
§  Interface	
§  Actor	
§  Package	

SEQUENCE	DIAGRAM	
Stereotypes	applicable	to:	
§  Sequence	Diagram	
§  Class	
§  Classifier	Role	
§  Message	
§  Event	
§  Timeout	
§  InteracIon	Operator	
§  InteracIon	Occurrence	
§  System	Border	

July

www.incose.org/symp2016

Architecture
Rhapsody Stereotypes (Example)

23

Stereotypes are used to tag each model so the
developed application will be able to process the
model according to the function it has.

July

www.incose.org/symp2016

Architecture
Supported diagrams

§  Statechart Diagram
§  Class Diagram
§  Sequence Diagram

24

Sequence Diagram Class Diagram

Statechart Diagram

July

www.incose.org/symp2016

Architecture
Enhanced Delta visualization

25

DeltaAdd
DeltaRem
DeltaMod

DeltaRem

DeltaMod

DeltaAdd

July

www.incose.org/symp2016

Architecture
Enhanced Delta visualization

 DeltaAdd
DeltaRem
DeltaMod

Stereo_Delta_add stereotyped Delta sample
Blue elements belong to Core model.

Green elements are added and highlighted for this Delta model.

26

July

www.incose.org/symp2016

Architecture
Enhanced Delta visualization

27

DeltaAdd
DeltaRem
DeltaMod

Stereo_Delta_rem stereotyped Delta sample
Blue elements belong to Core model.

Red elements are removed
and highlighted for this Delta model.

July

www.incose.org/symp2016

Architecture
Enhanced Delta visualization

28

DeltaAdd
DeltaRem
DeltaMod

Stereo_Delta_mod stereotyped Delta sample
Blue light elements belong to Core model.

Red elements are removed, blue bold elements are modified
(attributes) and green elements are added.

July

www.incose.org/symp2016

Example
Case study overview
Climatization System is a toy example for showing the usage of Delta Rhapsody.
Having a Core as the most basic system, this can be transformed based on different

Deltas, modifying the core with new features.

The manual heating system is mandatory and the new applicable features are:
•  Add a cooling system
•  Automate the system
•  Add an alarm system

29

July

www.incose.org/symp2016

Example
Feature Modelling & Configuration

30

July

www.incose.org/symp2016

Example
Core
(class diagram)

31

July

www.incose.org/symp2016

Example
Core
(state machine diagram)

32

July

www.incose.org/symp2016

Example
Core
(sequence diagram)

33

July

www.incose.org/symp2016

Example
Delta Cooling
(class diagram)

34

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Cooling
(state machine diagram)

35

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Cooling
(sequence diagram)

36

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Alarm
(class diagram)

37

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Alarm
(state machine diagram)

38

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Alarm_Cooling
(state machine diagram)

39

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Alarm
(sequence diagram)

40

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Alarm_Cooling
(sequence diagram)

41

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Automatic
(class diagram)

42

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Automatic
(state machine diagram)

43

DeltaMod

July

www.incose.org/symp2016

Example
Delta Automatic_Cooling
(state machine diagram)

44

DeltaMod

July

www.incose.org/symp2016

Example
Delta Automatic
(sequence diagram)

45

DeltaAdd

July

www.incose.org/symp2016

Example
Delta Automatic_Cooling
(sequence diagram)

46

DeltaAdd

July

www.incose.org/symp2016

Example
Mapping files

47 Based on ABS language

cd.mapping

	

productline	ClimatizationSystem;	

features	Automatic,	Cooling,	Alarm;	

	

delta	DAlarm	when	Alarm;	

delta	DAutomatic	when	Automatic;	

delta	DCooling	when	Cooling;	

delta	DAlarm_Cooling	after	DAlarm	&&	DCooling	when	Alarm	&&	Cooling;	

delta	DAutomatic_Cooling	after	DAutomatic	&&	DCooling	when	Automatic	&&	Cooling;	

stm.mapping

	

productline	ClimatizationSystem;	

features	Automatic,	Cooling,	Alarm;	

	

delta	DAlarm	when	Alarm;	

delta	DAutomatic	when	Automatic;	

delta	DCooling	when	Cooling;	

delta	DAlarm_Cooling	after	DAlarm	&&	DCooling	when	Alarm	&&	Cooling;	

delta	DAutomatic_Cooling	after	DAutomatic	&&	DCooling	when	Automatic	&&	Cooling;	

sd.mapping

	

productline	ClimatizationSystem;	

features	Automatic,	Cooling,	Alarm;	

	

delta	DAlarm	when	Alarm;	

delta	DAutomatic	when	Automatic;	

delta	DCooling	when	Cooling;	

July

www.incose.org/symp2016

Example
New Variant
Features: Cooling + Alarm + Automatic
Deltas: DAlarm + DAutomatic + DCooling

48

Class diagram

July

www.incose.org/symp2016

Example
New Variant
Features: Cooling + Alarm + Automatic
Deltas: DAlarm + DAutomatic + DCooling + DAlarm_Cooling + DAutomatic_Cooling

49

idle

heating
too_cool

temp_reached

failure

failure_cleared

failure

cooling

startuptoo_hot

ready

compressor_running

running

failure

fan_running

temp_reachedstatechart diagram

July

www.incose.org/symp2016

Example
New Variant
Features: Cooling + Alarm + Automatic
Deltas: DAlarm + DAutomatic + DCooling + DAlarm_Cooling + DAutomatic_Cooling

50

Sequence Diagram

July

www.incose.org/symp2016

RECORDED DEMO

New Variant generation demonstration
 (Application Engineer role)

51

July

www.incose.org/symp2016

DEMO video
•  Video de generación de variante

52

July

www.incose.org/symp2016

DEMO video

53

July

www.incose.org/symp2016

Conclusions
Support for variability: Delta Rhapsody

▲  Rhapsody based Delta Modelling solution provided.
▲  Application Engineering workload simplified.

The prototype has been applied in a real case study of the transportation

sector with good results:
▲  The current models (core and deltas) are easier to understand than the complete model that

was previously used.
▲  The required time to develop variant models is reduced.
▲  The inclusion of future new products is easier.
▼  The extra cost required must be also considered: especially the time required to model the

core and deltas at domain engineering.

54

July

www.incose.org/symp2016

Future Work
q  Validate the tool in other domains.
q  Empirical validation to measure the benefits of using the tool

taking into account the learning curve of the domain engineer.
q  Define appropriate workflows for:

§  Maintenance when core is changed:
•  Integration of deltas in the core.
•  Maintenance of released variants.

§  Modification of Deltas during Application Engineering:
•  Process for deciding if it should be reused in the Domain Engineering scope.

q  Delta Rhapsody
§  Generate Rhapsody checkers to ensure design coherence through Domain Engineering

phase.
§  Mapping file generation GUI development.
§  Automatic Test Generation.
§  Use Design Manager as repository for core and delta models.
§  Allow more than one state machine diagram per project.

55

July

www.incose.org/symp2016

References
•  Batory, D., Sarvela, J., Rauschmayer, A. 2004. “Scaling Step-Wise Refinement.” IEEE Trans. Software Eng. 30(6).
•  Clarke, X. D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R. 2010a. “Variability Modelling in the ABS Language, Chapterin

Formal Methods for Components and Objects.” Volume 6957 of the series Lecture Notes in Computer Science: 204-224
•  Clarke, D., Helvensteijn, M., Schaefer, I. 2010b. “Abstract Delta Modelling.” ACM Sigplan Notices: 13-22.
•  Clements, P. and Northrop, L. 2010. Software Product Lines: Practices and Patterns. Boston, MA: Addison-Wesley.
•  Estefan, J. A. 2008. “Survey of Model-Based Systems Engineering (MBSE) Methodologies.” Rev. B, INCOSE Technical

Publication, Document No.: INCOSE-TD-2007-003-01 (paper presented at the International Council on Systems Engineering, San
Diego, CA, June 10, 2008).

•  Haber, A., Hölldobler, K., Kolassa, C., Look, M., Müller, K., Rumpe, B., Schaefer,I. 2013. ”Engineering Delta Modelling
Languages.”(paper presented at the Proceedings of the 17th International Software Product Line Conference (SPLC), Tokyo,
September, 2013): 22–31.

•  Haber, A., Hölldobler, K., Kolassa, C., Look, M., Rumpe, B., Müller, K., Schaefer, I. 2013. “Engineering Delta Modelling
Languages.” Proceedings of the 17th International Software Product Line Conference: 22-31.

•  Haber, A., Kolassa, C., Manhart, P., Nazari, P. M. S., Rumpe, B., Schaefer,I. 2013.“First-class variability modelling in matlab/
simulink.” (paper presented at the International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).

•  Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I. 2011. “Delta-Oriented Architectural Variability Using Monticore.”
Proceedings of the 5th European Conference on Software Architecture: Companion Volume: 6.

•  Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F. 2011. “Hierarchical Variability Modelling for Software
Architectures” (paper presented at the Proceedings of International Software Product Lines Conference, August 2011).

•  Halmans, G., Pohl, K. 2004. “Communicating the variability of a software-product family to customers. Inform. “Forsch. Entwickl.
18: 113–131.

•  Heidenreich, F., Sánchez, P., Santos, J., Zschaler, S., Alférez, M., Araújo, J., Fuentes, L., Kulesza, U., Moreira, A., Rashid, A. 2010.
“Relating feature models to other models of a software product line: a comparative study of feature mapper and VML.”
Transactions on aspect-oriented software development VII: 69-114.

56

July

www.incose.org/symp2016

•  Kang, K.C.,Cohen, S.G., Hess, J.A.,Novak, W.E., Peterson, A.S., "Feature-oriented domain analysis (FODA) feasibility study",
Technical Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, November 1990.

•  Katz, S., and Mezini, M. 2011. “A Common Case Study for Aspect-Oriented Modelling”. Berlin, Heidelberg: Springer-Verlag.
•  Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U. 2014. “Delta-oriented model-based integration testing of large-scale

systems.”J. Syst. Softw. 91 63-84
•  Mhenni, F., Nguyen, N., Choley, J.Y. 2013. “Towards the Integration of Safety Analysis in a Model-Based System Engineering

Approach with SysML, Design and Modelling of Mechanical Systems.” Lecture Notes in Mechanical Engineering (2013): 61-68
(paper presented at Fifth International Conference Design and Modelling of Mechanical Systems, Djerba, Tunisia, March 2013).

•  Murray, J. 2012. “Model Based Systems Engineering (MBSE)”, Media Study.
•  Schaefer, I. 2010. “Variability modelling for model-driven development of software product lines.” VaMoS: 85-92
•  Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N. 2010. ”Delta-oriented programming of software product lines.” (paper

presented at Proc. of 15th Software Product Line Conference, Sep 2010)).
•  Schaefer, I., Bettini, L., Damiani, F. 2011. “Compositional type-checking for delta oriented programming.” (paper presented at the

10th International Conference on Aspect-Oriented Software Development, AOSD 2011): 43–56.
•  Schaefer, I., Bettini, L., Damiani, F., Tanzarella, N. 2010.”Delta-Oriented Programming of Software Product Lines.” Proceedings of

the 14th international conference on Software product lines: going beyond: 77-91.
•  Schaefer, I., Damiani, F. 2010. “Pure Delta-oriented Programming”. FOSD 2010.
•  Schaefer, I., 2012, “Efficient Incremental Testing of Variant-Rich Software Systems”, The 23rd CREST Open Workshop Change

Impact Analysis and Testing of Software Product Lines.
•  Scouler, J.L., Bakal, M.R. 2013. “Product Design for Variants: Considerations, incentives, and best practices.” http://www.ibm.com/

developerworks/rational/library/product-design-variants/.
•  Seidl, C., Schaefer, I., Aßmann, U. 2014. “DeltaEcore - A Model-Based Delta Language Generation Framework.” Modellierung:

81-96
•  Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T. 2014. “FeatureIDE: An Extensible Framework for Feature-

Oriented Software Development.” Science of Computer Programming, 79(0): 70-85.
•  Trigaux, J. C. 2010. “Modelling variability requirements in software product lines: a comparative survey,” Tech. rep., FUNDP

Namur.
•  Van Gurp, J., Bosch, J., Svahnberg, M. 2001. “On the notion of variability in software product lines.” Software Architecture, 2001.

Proceedings. Working IEEE/IFIP Conference on: 45

57

References

July

www.incose.org/symp2016

Q&A

Thank you

58

