
A Representative Application
of a Layered Interface

Modeling Pattern
Peter Shames, Marc Sarrel,

Sanford Friedenthal (Affiliate)
Jet Propulsion Laboratory, California Institute of Technology

© 2016. California Institute of Technology. Government Sponsorship Acknowledged.

July

www.incose.org/symp2016

Introduction
•  Interfaces define

–  How a system interacts with its environment
–  How the components of a system interact

•  Interfaces are specified in many domains
–  Electrical, mechanical, thermal, fluid, human, data

•  System engineers must specify, analyze and verify this range
of interfaces

•  In addition, individual interfaces can be very complex
–  Specification for USB 2 is 650 pages

•  Model Based Systems Engineering offers a method to support
accurate interface specification, and allow common
representation across disciplines

July

www.incose.org/symp2016

Layered Interface Modeling
Approach

•  Leverage layered interface concepts used to define
communication interfaces (e.g., OSI stack)
–  This layered ISO interface model has functioned well as

the basis for the Internet for decades
•  Specify the interface in terms of what is exchanged
•  Realize the interface by transforming the exchange

from application layer to physical layers
•  Define interactions between peer layers of the

interacting components, and between vertical layers of
each component.

July

www.incose.org/symp2016

Why Layered Interfaces
•  Separation of concerns
•  Each layer of the interface describes it’s own

functionality and addresses its own set of
concerns

•  Each layer may be considered separately, or in
combination with others

•  Layers are independent of each other, and can be
combined in permissible ways

•  All layers must function correctly for the interface
to work as a whole.

July

www.incose.org/symp2016

Why Layered Interfaces (cont.)
•  A rich and flexible representation in the model allows

construction of many different views
–  Different interface abstractions are provided, from logical

flows to complete protocol stacks
–  End-to-end data flows, connectivity, and data

transformations
–  Physical connections
–  Protocol specifications
–  Message definitions
–  Complete interface specifications that span discipline

concerns
•  The generation of these views from a single model

ensures their consistency.

July

www.incose.org/symp2016

A Simple Example

•  The simple view is “boxes and lines”
–  What are the interfaces?
–  What are the protocols?

•  End-to-End simple view
–  Send a PDF file from A to B.
–  This is the requirement, what the user sees.

•  Interface Specification
–  Implemented with HTTP, TCP, IP and Ethernet.
–  The protocol stacks in each component are

connected both horizontally and vertically.
•  Simple lists of interface protocols are just not

sufficient to understand the architecture.

Sender

Application

HTTP

TCP

Receiver

Application

HTTP

TCP

IP IP

Ethernet Ethernet

a

b

c

d

e

f

g

h

i j

k

l

m

n o

PDF Files

Sender

Application

Receiver

Application
PDF Files

July

www.incose.org/symp2016

Selection of Focus
•  We can focus on just the TCP layer.

–  How it is connected (horizontally).
–  How it behaves (horizontally).

•  We can focus on just the stack.
–  How it is connected (vertically).
–  How it behaves (vertically).

•  Data logically flows across the horizontal layers,
the TCP spec describes the behavior of the peer
protocol entities.

•  Data actually flows “down the stack” through each
successive layer until it gets to the physical layer
where the “real” connections occurs.

•  “On the wire” the whole stack is visible.

TCP TCP
c

h k

g l

Sender

PDF Files

HTTP

TCP

IP

Ethernet

f

g

h

i

July

www.incose.org/symp2016

Space Data System Example
•  Space data systems are composed of a flight

segment and a ground segment.
•  End-to-End Information Systems track data within

each segment, and between the segments as an
integrated flow.

•  Systems include both mission-specific and shared
multi-mission resources.

•  So, how to accurately describe, model and
characterize these system and their interfaces?

July

www.incose.org/symp2016

End to End Information Flow

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip Mission Context-Logical Jul 2, 2016 2:12:33 PM

Mission Context-Logical

«Subsystem»
 : Ground Computer

«Subsystem»
 : Ground Station

«Subsystem»
 : Display

«System»
 : Ground System

«Subsystem»
 : Avionics Subsystem

«Subsystem»
 : Telecom Subsystem

«Subsystem»
 : Payload

«System»
 : Spacecraft-Physical

temperature

«External»
 : Thermal Source «External»

 : Atmosphere

«External»
 : Atmosphere

«External»
 : User

Temperature
 Data

Thermal
Packet

Digital
Video

Thermal
Packet

Dgital
Stream

rf1 : Radiated
RF Signal

rf2 : Radiated
RF Signal

t2 : Thermal
Emissions

t1 : Thermal
Emissions

•  End to End view of
whole context

•  Major physical element
•  Coarse-grained

decomposition
•  Elides organizations,

ownership and
operational details

•  Does not show
interface or protocol
details yet…

July

www.incose.org/symp2016

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip Black Box Jul 2, 2016 2:16:12 PM

Black Box[]

«Software»
 : Communication SW

 : ~Packet Port

«Component»
 : Transceiver-S

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«Software»
 : C&DH SW

 : Packet Port

«Component»
 : On-board Computer

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«System»
 : Spacecraft-Physical

Thermal
Packet

Subsystem Interface Specification

•  Shows Avionics and Telecom subsystems from End-to-End
view
–  Shows decomposition, component and hardware-software relationships

•  Does not show interface details or protocol stacks

July

www.incose.org/symp2016

Subsystem Interface Realization

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip White Box Mar 12, 2016 3:04:16 PM

Mission Context-Logical White Box[]

«Protocol Entity»
 : Packet Processor

 : Packet Port

 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Protocol Entity»
 : Packet to Frame Processor

 : ~Packet Port

 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«block»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«hardware»

«SDU Link»

Thermal
Packet

Specification

Realization

•  Details of protocol
stack

•  Ownership split
among
components
between IP and
Ethernet layers

•  Interface Binding
Signature

July

www.incose.org/symp2016

Typical Communication Interface Layers
•  Application layer: packet transfer protocol, manages

exchange of packet data between applications.
•  Transport layer: Transmission Control Protocol (TCP),

provides end-to-end, once only, in order, complete delivery of
data.

•  Network layer: Internet Protocol (IP), provides network layer
routing over any number of intermediate network nodes.

•  Data link layer: 1 Gb Ethernet, provides data link layer
services that may involve a fabric of switches and hubs.

•  Physical layer: twisted pair cable (Cat-5) and RJ-45 plug
terminations.

July

www.incose.org/symp2016

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip Black Box1 Jul 5, 2016 11:42:28 AM

Protocol Entity

«Protocol Entity»
TCP

«Provided I/F»
 : TCP Provided I/F

«Required I/F»
 : IP Required I/F

«PDU I/F»
 : TCP I/F

Protocol Entity
•  Every protocol entity at layer

(N) has three ports:
–  the interface that provides

services to the upper (N+1)
layer

–  the interface that requires
services of the lower (N-1) layer

–  the interface with the peer
protocol entity at the same layer

•  There may also be a
management interface, which
can be in-line or separate

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Send Call processing Mar 12, 2016 3:27:15 PM

TCP Send Call processing

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)

Queue data in
the Send BufferSND.NXT :=

SND.NXT +
SEG.LEN

Create a new
segment from
the data in the

Send Buffer

CalcRTO (RTO)

SET (RTO,
REXMT)

Send Call

Add data just
sent to the
Rexmt Queue

Wait until enough data has been
accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip TCP Connection Establishment] Jul 2, 2016 2:19:12 PM

TCP Connection Establishment]

Usual TCP Paths

Client

Server

FIN WAIT 1

FIN WAIT 2

SYN SENT

CLOSING

LAST ACK

LISTEN

SYN RECEIVED

CLOSED

ESTABLISHED

TIME WAIT

CLOSE WAIT

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYN RST

FIN / ACK

FIN / ACK

ACKACKCLOSE() / FIN

CLOSE() PASSIVE OPEN()

July

www.incose.org/symp2016

Protocol Entity Behavior

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Send Call processing Mar 12, 2016 3:27:15 PM

TCP Send Call processing

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)

Queue data in
the Send Buffer SND.NXT :=

SND.NXT +
SEG.LEN

Create a new
segment from
the data in the

Send Buffer

CalcRTO (RTO)

SET (RTO,
REXMT)

Send Call

Add data just
sent to the

Rexmt Queue

Wait until enough data has been
accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip TCP Connection Establishment] Jul 2, 2016 2:19:12 PM

TCP Connection Establishment]

Usual TCP Paths

Client

Server

FIN WAIT 1

FIN WAIT 2

SYN SENT

CLOSING

LAST ACK

LISTEN

SYN RECEIVED

CLOSED

ESTABLISHED

TIME WAIT

CLOSE WAIT

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACK ACK CLOSE() / FIN

CLOSE()PASSIVE OPEN()

•  Activity
on right is
one of
many
contained
in the
states on
the left

July

www.incose.org/symp2016

Protocol Entity Behavior (cont.)
•  Describes how a protocol entity behaves when

receiving a Protocol Data Unit (PDU) from a peer
entity

•  Describes the exchange(s) of PDUs between peers
•  May describe the behavior at the required and

provided interfaces, such as start-up, connection
establishment, and Service Data Unit (SDU)
transformation into PDUs

•  Typically involves describing the dynamics of PDU
exchanges, including nominal and error conditions

July

www.incose.org/symp2016

Protocol Entity Interaction

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip White Box Mar 12, 2016 3:04:16 PM

Mission Context-Logical White Box[]

«Protocol Entity»
 : Packet Processor

 : Packet Port

 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Protocol Entity»
 : Packet to Frame Processor

 : ~Packet Port

 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«block»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«hardware»

«SDU Link»

Thermal
Packet •  Constrains

the
behavior
of peer
protocol
entities

July

www.incose.org/symp2016

Protocol Entity Interaction (cont.)

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Connection Establishment Protocol Mar 12, 2016 3:22:50 PM

TCP Connection Establishment Protocol

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established
ref

CLOSE()
comes through
TCP Provided I/F

Reference to the
interaction for
data exchange.

TIMEOUT
happens
internally to TCP
protocol entity

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

PASSIVE OPEN()
comes through
TCP Provided I/F

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

•  Specifies allowable
interactions between peer
protocol entities

•  Keeps the peer state
machines synchronized

•  Describes the PDU
exchanges you would see
on the wire for a single layer

July

www.incose.org/symp2016

Behavior Context

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip RFC 793 Compliance Mar 12, 2016 3:28:25 PM

RFC 793 Compliance

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 2

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 1

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established
ref

PASSIVE OPEN()
comes through
TCP Provided I/F

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F TIMEOUT

happens
internally to TCP
protocol entity

Reference to the
interaction for
data exchange.

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

«PDU Link»
 : TCP I/F Connector Type

Satisfies = RFC 793

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

•  Shows all behaviors in context
•  Shows compliance with RFC

793 spec
–  Note that Pkt Xfer entity also

complies with RFC 793 spec
at the Required Interface

–  Interface and behavior
•  Behavior on vertical SDU links

typically implementation
specific, i.e. not specified in
standards

July

www.incose.org/symp2016

Interface Physical Layer

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip White Box Mar 12, 2016 3:04:16 PM

Mission Context-Logical White Box[]

«Protocol Entity»
 : Packet Processor

 : Packet Port

 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Protocol Entity»
 : Packet to Frame Processor

 : ~Packet Port

 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«block»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«hardware»

«SDU Link»

Thermal
Packet

July

www.incose.org/symp2016

Electrical Connection

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip RJ45 Description Mar 13, 2016 4:29:25 PM

RJ45 Description

«Hardware»
RJ45 Plug

«PDU I/F»
 : Twisted Pair I/F

pin 3 DB+ white/orange

pin 7 DD+ white/brown

pin 1 DA+ white/green

pin 2 DA- green

pin 4 DC+ blue

pin 5 DC- white/blue

pin 6 DB- orange

pin 8 DD- brown

•  Interfaces may be further
decomposed

•  Get as specific as your problem
demands

•  Physical layer interfaces may be
governed by constraints based on
physical laws
–  Ohm’s law, Kirchhoff's law, laws of

thermodynamics, etc.
–  Instead of activities and state machines

July

www.incose.org/symp2016

Data Packet Structure

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-07-02/Ports & Flows 2016-07-02.mdzip Packets Jul 2, 2016 2:45:08 PM

Packets

constraints
{packet primary header.packet identification.application process identifier = 0x37}
{packet primary header.packet identification.secondary header flag = 0b1}
{packet primary header.packet identification.packet type = 0b0}

parts
packet data field : Thermal Packet Data Field [1]{redefines packet data field}

«PDU Data»
Thermal Packet

parts
packet timestamp : octet [6]{subsets packet secondary header}
telemetry packet type : octet [1]{subsets packet secondary header}
timestamp : octet [3]{subsets user data field}
temperature : octet [2]{subsets user data field}

«block»
Thermal Packet Data Field

parts
packet version number : bit [3]
packet identification : Packet Identification [1]
packet sequence control : Packet Sequence Control [1]
packet data length : octet [2]

constraints
{packet version number = 0b000}

«block»
Packet Primary Header

parts
packet primary header : Packet Primary Header [1]
packet data field : Packet Data Field [1]

«PDU Data»
Space Packet

parts
packet type : bit [1]
secondary header flag : bit [1]
application process identifier : bit [11]

«block»
Packet Identification

constraints
{size(packet secondary header) +
size(user data field)
>= 1 octet}
{size(packet secondary header) +
size(user data field)
<= 65536 octets}

parts
packet secondary header : octet [0..*]
user data field : octet [0..*]

«block»
Packet Data Field

parts
sequence flags : bit [2]
packet sequence count : bit [14]

«block»
Packet Sequence Control

«Specification»
CCSDS 133.0-B-1

«block»
Temperature

parts
bits : bit [8]

«block»
octet

«block»
bit

«satisfy»

«allocate»

Generic Space Packet Specific Thermal Packet

•  Shows how packets
conform to standard

•  Left side is generic
space packet

–  Arrows show typing
–  Boxes show

constraints

•  Right side is
specific thermal
packet

–  Show adaptations
(redefinition,
subsetting and new
constraints)

July

www.incose.org/symp2016

Methodology Summary
•  Nested ports to capture interface details that a

component presents
•  Specification of stacks allows components to be

explicit about what combinations of protocols, and in
what order, they support

•  Reference properties for protocol entities in ports allow
separation of protocol implementation from all the
contexts in which it’s used

•  Power of the method depends on rigor of model
content, rather than visual presentation on SysML
diagrams

July

www.incose.org/symp2016

Summary
•  Layered Interface Modeling Approach provides a

means to model complex interfaces
•  May be elaborated to include additional details as

needed
•  Ties to standards, and subsections of standards
•  Compliance of data structures, behavior and

physical laws
•  Layered Approach

–  Specification vs Realization
–  Layers defined by protocol entities that have peer layer

interactions and layer to next layer interactions.

July

www.incose.org/symp2016

Summary (cont.)
•  Allows construction of full set of

consistent views at desired level of
detail

•  Development of library components
allows re-use of common protocols and
standards

•  Only model what is needed at any
given point

July

www.incose.org/symp2016

Acknowledgements
The trade studies that first defined and used this
method were chartered and funded by the NASA
Space Communications and Navigation (SCaN)
Program Office, with strong management support
from Phil Librecht and encouragement to adopt
OMG SysML™ modeling from Jim Schier. The
authors would also like to acknowledge the
excellent leadership and guidance of the trade
study tasks provided by the co-leads: Wallace Tai
from JPL and Nate Wright from GSFC.

