Energy per unit volume before = Energy per unit volume after

1.2 12 Forces in a Climb
R +2pvy + pghy = Py +5pv, + pgh,

Glenn
Research
Center

The often cited example of the

L
Bernoulli Equation or *Bernoulli climbangle= ¢
- Effect" is the reduction in pressure
Flow velocity which occurs when the fluid speed
V.
1

increases. m=aircraft mass
a =acceleration

% Ay<A, Equations:

w

P Increased fluid speed,
1 ;
decreased internal pressure.

Fexcos(c) - L sin(c)

Flight Path

L cos(c) + F sin{c) - Dsin(c) - W =m a .

=M a orizontal

. V2>V F cos(c) - L sin{c) - D cos(c)
P& : P2 < P1 Definition of Excess Thrust: F — D = Fgy

L cos(c) + Fysin(c) = W =m ayertical

= M Ayyorizontal

L= Lift

D =Drag
W = Weight
F =Thrust
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Abstract s
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e Specialists in individual engineering disciplines (ME, EE, CE, ChE, etc.) 2@ - INCOSE
sometimes argue their fields have “real physical phenomena”, physical laws Edinburgh, UK
based in the “hard sciences”, and first principles, often claiming that Systems
Engineering lacks the equivalent phenomena foundation. This talk will
explain why the opposite is true, and how “re-planting” systems engineering
in MBSE / PBSE supports the emergence of new hard science phenomena-
based domain disciplines, based on higher level system patterns.

 The importance of this perspective is not just philosophical, but a reminder
that there are ever-higher levels of systems with their own emergent
phenomena, first principles, and physical laws. Recent successes include
ground vehicles, aircraft, marine vessels, and biochemical networks. Those
of future interest include distribution networks, biological organisms and
ecologies, market systems and economies, health care delivery or other
societal service systems, military conflict systems, and agile innovation.

 The intended audience is anyone facing these higher-level systems
challenges, and the objective is improved awareness of Systems
Phenomenon tools of science and engineering addressing them.
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* Engineers and scientists are increasingly concerned with
understanding or designing large, complex systems.

* |s current Systems Engineering up to this challenge?

1SN
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Two “Phase Changes” in Technical Disciplines

Wy
1. Phase change leading to traditional STEM zsﬁdfn.bwa:fss
disciplines:
— Beginning around 300 years ago (Newton’s time)
—Ev

2. Phase change leading to future systems disciplines:

— Beginning around our own time 5



In a matter of a 300 years. ..

* the accelerating emergence of Science, Technology,
Engineering, and Mathematics (STEM) . ..

* has lifted the possibility, quality, and length of life for
a large portion of humanity . ..

* while dramatically increasing human future potential.

e By 20th Century close, strong STEM capability was
recognized as a critical ingredient to individual and

collective prosperity. '



The length of human life AT
has been dramatically extended: R
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Food Expenditures
Share of Disposable Personal Income
1929 - 2009

Simply feeding ourselves
consumes less labor and time:
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GDP per Capita of the US
1870 to 2011

Source: Maddison for 1870 to 2006
Extended with BEA data for 2007-2011
Expressed in 2005 constant $ prices
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The range of individual human travel s

has vastly extended: e - litost

Edinburgh, UK
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US passenger travel per capita per day by all modes.
Sources of data: Grubler, US Bureau of the Census , US Department of Transportation



26 INCOSE

Edinburgh, UK

In recent decades the human- populated world has become vastly
more interconnected, complex, and challenging . . .

Offering both expanding opportunities and threats.

From the smallest known constituents of matter and life, to the
largest-scale complexities of networks, economies, the natural
environment, and living systems . . .

Understanding and harnessing the possibilities have become even
more important than before.




Systems progress has come with
challenging side effects: 26
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Not all human progress has been STEM-driven

* For example, the spread of market capitalism can
be argued to have also lifted human life.

* Nevertheless STEM has been a major contributor:

Impact

Notable STEM Drivers (samples)

Increased life expectancy

Reduced infant mortality

Life sciences, nutritional science

Reduced food production cost

Agronomy, herbicides, fertilizers, mechanization

Increased GDP per capita

Mechanized production, mechanized distribution

Increased range of travel

Vehicular, civil, and aerospace engineering

Increased traffic fatalities

Vehicular engineering, civil engineering

Increased carbon emissions

Vehicular engineering; mechanized production
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Emergence of Science and Engineering e
 The “hard sciences”, along with the “traditional”

engineering disciplines and technologies based on

those sciences, may be credited with much of this

amazing progress, as well as challenges.

* How should Systems Engineering be compared to
engineering disciplines based on the “hard sciences”?



Phenomena-Base Engineering Disciplines

* The traditional engineering disciplines have their technical 26 | INoosE

bases and quantitative foundations in the hard sciences:

Phenomena Scientific Basis Representative Scientific

Engineering

Discipline

Laws

Mechanical Mechanical Phenomena Physics, Mechanics, Newton’s Laws
Engineering Mathematics, ...

Chemical Chemical Phenomena Chemistry, Periodic Table
Engineering Mathematics. . . .

Electrical Electromagnetic Electromagnetic Theory | Maxwell’s Equations, etc.
Engineering Phenomena

Civil Engineering | Structural Phenomena Materials Science, . . . Hooke’s Law, etc.




The Traditional Perspective oy
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e Specialists in individual engineering disciplines (ME, EE, CE, ChE, 2@ ~INCOSE
etc.) sometimes argue that their fields are based on: T

— “real physical phenomena”,
— physical laws based in the “hard sciences”, and first principles,

* sometimes claiming that Systems Engineering lacks the equivalent
phenomena based theoretical foundation.

B =0 N L . .0
E—-B =B HOW() = ihg [ (D))
VxH=J+9

1444

[

* Instead, Systems Engineering is sometimes viewed as:
— Emphasizing process and procedure
— Critical thinking and good writing skills
— Organizing and accounting for information

* But not based on an underlying “hard science”



Traditional Perspective, continued @:'\M
 That view is perhaps understandable, given the first 50 years 26\ | ¥ cose
of Systems Engineering Sntgh,

* “Science” or “phenomenon” of generalized systems have for
the most part been described on an intuitive basis, with
limited reference to a “physical phenomenon” that might be
called the basis of systems science and systems engineering:

— For example, emergence of patterns out of agent interactions in
complex systems

— Fascinating, but not yet the basis of generations of life-changing
human progress such as has marked the last 300 years

1.0
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However. ..

* The same might be said of physics before Newton, chemistry

before Lavoisier & Mendeleev, electrical science before Faraday &
Maxwell, etc.

* Moreover, Systems Engineering is also undergoing a “phase

change” that might be compared to the emergence of phenomena
understanding in the other engineering disciplines. ..



MBSE, PBSE: A Phase Change in oy
Systems Engineering e st

Edinburgh, UK

While models are not new to STEM . ..

 Model- Based Systems Engineering (MBSE): We increasingly represent
our understanding of systems aspects using explicit models.

e Pattern-Based Systems Engineering (PBSE): We are beginning to
express parameterized family System Models capable of representing
recurring patterns.

* This is a much more significant change than just the emergence of
modeling languages and IT toolsets, provided the underlying model
structures are strong enough:

— Remember physics before Newtonian calculus




The System Phenomenon AN
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* In the perspective described here, by system we 0@ - INCOSE
mean a collection of interacting components:

External -~
“Actors” .

System

* Where interaction involves the exchange of energy,
force, mass, or information, . . .

 Through which one component impacts the state of
another component, . ..

* And in which the state of a component impacts its
behavior in future interactions.



The System Phenomenon

e Phenomena of the hard sciences are in each case 26 i

instances of the following “System Phenomenon”:

— behavior emergent from the interaction of behaviors
(phenomena themselves) a level of decomposition lower.

* |n each such case, the emergent interaction-based
behavior of the larger system is a stationary path of the

action integral:

J

t2 ' | External .-~
S = / L{z,z,t)dt “Adors.
J

System
Component

* Reduced to simplest forms, the resulting equations of

motion (or if not solvable, empirically observed paths)
provide “physical laws” subject to scientific verification.



The System Phenomenon ffx

* Instead of Systems Engineering lacking the kind of  2%......

theoretical foundation that the “hard sciences”
bring to other engineering disciplines, . ..

— It turns out that all those other engineering disciplines’
foundations are themselves dependent upon the System

Phenomenon.

— The underlying math and science of systems provides

the theoretical basis already used by all the hard
sciences and their respective engineering disciplines.

— It is not Systems Engineering that lacks its own
foundation—instead, it has been providing the
foundation for the other disciplines!



The System Phenomenon

A traditional view:

Our view:

Systems Engineering

Emerging Engineering
Disciplines

T

L]

Traditional Engineering
Disciplines

Traditional Engineering
Disciplines

w

o

Systems Engineering
Discipline

Graditional Physical Phenomena ‘t

Ghe System PhenomenoD

— It is not Systems Engineering that lacks its own
foundation—instead, it has been providing the
foundation for the other disciplines!
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Historical Example 1:
Chemistry

Modern Chemist Periodic Table of the Elements Pauling: Chemical Bond

 Chemists, and Chemical Engineers, justifiably consider
their disciplines to be based on the “hard phenomena”
of Chemistry:

— A view that emerged from the scientific discovery and
verification of laws of Chemistry.

— Chemical Elements and their Chemical Properties, organized
by the discovered patterns of the Periodic Table.

— Chemical Bonds, Chemical Reactions, Reaction Rates,
Chemical Energy, Conservation of Mass and Energy.

— Chemical Compounds and their Properties.

26 INCOSE

Edinburgh, UK



However. ..

e All those chemical properties and behaviors are
emergent consequences of interactions that occur
between atoms’ orbiting electrons (or their quantum

equivalents), along with the rest of the atoms they
orbit.

 These lower level interactions give rise to patterns that
have their own higher level properties and

relationships, expressed as “hard science” laws.

26 INCOSE

Edinburgh, UK



Chemistry, continued

 The “fundamental phenomena” of Chemistry,
along with the scientifically-discovered / verified
“fundamental laws / first principles” are in fact . . .
* Higher level emergent system patterns
and . ..

* Chemistry and Chemical Engineering study and
apply those system patterns.

25



Historical Example 2:
The Gas Laws and
Fluid Flow

g
26 INCOSE

Edinburgh, UK

&

Daniel Bernoulli

 The discovered and verified laws of gases and of
compressible and incompressible fluid flow by
Boyle, Avogadro, Charles, Gay-Lussac, Bernoulli, and

others are rightly viewed as fundamental to science
and engineering disciplines.

Pressure Temperature

for a fixed mass of gas

N
at constant temperature
Energy per unit volume before = Energy per unit volume after
S 2 1,2
- temperature ; + pghy = P, +5pv, + pgh,
T2>T1
ressure ingtic otential
T1 . ner nert ner -
de er uni er uni The oftep cited _examp_le of the_
volumel Ivolume Bernoulli Equation or *Bernoulli
ow velocity

-
z
c
3
g
4—_’.
3
N

—
—
-
o O pressure

Volum Gas constant (
I
AN Effect" is the reduction in pressure
0 volume V 7 city / which occurs when the fluid speed
1 »  goincreases.
! |
o > A,<A
|
i . F —— <
p 1 : Piston = 2 1
>
. >
Workina fluid : I Force applied _——— Vo> Vg
| Working fluid ! | P<P
v 2 1 26
Cylinder -— P Increased fluid speed,
1
ds

decreased internal pressure.



Gas Laws, continued - ———— o &
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However. ..

e All those gaseous properties and behaviors are emergent
consequences of interactions that occur between atoms or
molecules, and the containers they occupy, and the external
thermal environment

* These lower level interactions give rise to patterns that have
their own higher level properties and relationships,
expressed as “hard sciences” laws.




Gas Laws, continued

So . .. W
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* The “fundamental phenomena” of gases,
along with the scientifically-discovered /
verified “fundamental laws and first
principles” are in fact .. ..

* higher level emergent system patterns

so that. ..

 Mechanical Engineers, Thermodynamicists,
and Aerospace Engineers can study and
apply those system patterns.




More Recent Historical Examples

Denoting the angular velocity w, the equations of motion are:

26 INCOSE
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Dynamics of Road Vehicle
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Center

* Biological Regulatory Networks = L

Equations: D
L cos(c) + F sin{c) - Dsin(c) - W =m a,ca

F cos(c) - L sin{c) - D cos(c)
Definition of Excess Thrust: F — D = Fgy
JO urna l L cos(c) + Fysin(c) - W =m aygical
F.xcos(c) - L sin(c)
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Agile innovation

Future Applications

Utility and other distribution networks
Biological organisms and ecologies

Market systems and economies

Health care delivery, other societal services

Systems of conflict

2
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Strengthening the Foundations of MBSE &

* Model-Based Systems Engineering requires a strong enough 26 INCOSE
underlying Metamodel and Systems Science to equip it for the S 31 20t
challenges and opportunities of these higher level systems.

 Example: The model framework of behavior emerging from
interactions is at the center of the S*Metamodel framework:

= e e e — e e mm ey

What Is the Smallest Model of a System?

William D. Schindel
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An illustration of Related SE Impact: @
Design Review g - icoSE

Edinburgh, UK

Model-Based Design Review:
— An example of beneficial impact of the System Phenomenon viewpoint

Poses six key questions for any Design Review
— To determine if a candidate design is likely to satisfy system requirements

Note Question 2, comparing Black Box behavior that emerges from
White Box interactions.

Whether viewed as composition (bottoms up) or decomposition
(top down) . ..



Six Questions for Design Review:

¢ Output B

Subject System

Input A

em e

1. Understand Validated
Technical Requirements

2. |s the Decomposition
Technically Correct?

/
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What You Can Do

* Practice expressing your systems’ requirements and designs
using models that explicitly represent their interactions:

— The S*Metamodel provides a framework; see examples
and references

* For the higher level systems challenging your efforts, look
for opportunities to discover, express, and verify hard
system patterns (repeatable parameterized models) of their
higher level “phenomena”:

— See the S*Patterns examples and references

 Help INCOSE make progress: Participate in the INCOSE
Patterns Working Group on a related project on this subject:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

26 ) INCOSE
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