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Introduction 

• Adaptability of system architectures is important 

• Flexibility without requiring significant up-front investment 

• Dynamics of customers needs/market, technologies, policies 
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Adaptability 

• Original meaning of adaptability in 

ecosystem 

 Can be formulated as: 

 

lim
𝑡→∞
𝑃𝑡 𝑆 → 𝑆

′ 𝐸) = lim
𝑡→∞
𝑃𝑡(𝑆 → 𝑆′) 
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Previous Studies 
– (Ross, A., et. al. 2007) 

• Change agent is internal  

• Depends on how many configurations the current 
one can switch to 

– (Gu, P., et. al. 2004)  
• Summation of normalized savings in change tasks 

– (Shaw, et. al., 2001) 
• Objective measures are needed 

– Some others 
• Rely on specific modeling methods that bring in 

restrictions of those methods 
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Analysis to Previous Studies -1 

• Ross, A., et. al. 2007:  

– Focused on how many configurations can be 

switched to 
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We need indications of: 
Are these configurations 
maintaining the same goal of 
the system?  Are they useful? 

Current 

Configuration 

Other 

Configurations 
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Analysis to Previous Studies -2 

• (Gu, P., et. al. 2004): Summation of normalized 

savings in change tasks  

– Focused on how many designs can be switched to 
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Current 

Design 

Other Designs 

We need indications of: 
Are these other designs 
useful?  How many 
mandatory/optional goals 
(performance, functional) are 
satisfied? 
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Analysis to Previous Studies -3 

• (Shaw, et. al., 2001) 

• Objective measures are needed 

– Depends on user satisfaction 

– We need a metric that depends on system design 

characteristics 
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Evaluating Adaptable Systems 
• If we follow the original meaning of adaptability in ecosystems 

– Encourage common criteria in research 

– Ensure the metric reflects truly adaptable system 

Otherwise, counter-example can happen: 

 

9 

Current 

Design 

1000 

Designs 

of Low 

Performance, 

Low 

Supports to 

Missions 

Current 

Design 

999 Designs 

of High 

Performance, 

Supports to 

All Missions 

High adaptability score Low adaptability score 

vs. 
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Mission Evaluation Space 

• Characterize system 
goals 

• Mission state machine 

– A mission: trajectory 

 

• Support to a mission x:  

         S(x) = [0,1] 
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Example: Simplified missions of an airplane engine 

Reference: Federal Aviation Administration FAR 33 
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How to Characterize Some 

Missions as More Important? 
• Existing methods: 

– Weight 

– Probability 

 

• Good enough? 
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How to Model Some Missions as 

More Important? 
• Not suitable: 

– Counter-example for “weights”:  10 unimportant missions 

with weight 0.1 = 1 important mission with 1? 

 

 

 

– Counter-example for “probabilities”: missions with low 

probabilities may actually be important and must be 

supported 

 

 0.1

10

𝑖=1

= 1 
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Our Concept 

• Missions: two types 
– Required missions: R 

– Optional missions:  Q 

E.g., S(Q) indicates how many optional missions are supported 

• Each mission can then be associated with a list of user-
defined properties: 
– E.g., Financial gain, probabilities and weights, etc. 

• Use mission space in adaptability definition 
– Overcame problems with some existing work: missing elements 

of modeling goals/missions 
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System Design Tool Chain 

Example 
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DSE 
Optimization 

Tool 
Adaptability 

Analysis 

Design GUI 

   
Other Modules… 

GUI: Graphical User Interface 

DSE: Design Space Exploration: Generate ALL possible designs, based on 

all possible connection and parameterizations of all available components 
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Example Case: Aircraft Engine 

• Engine architectures generated with DSE 
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Adaptability 
• System goal: all the missions defined in evaluation space 

• Definition: 
– The ability of a system in fulfilling the goals when facing changes 

• Categories: 
– Perfectly Adaptable:  metric value = 1 

• Support all missions with 0 additional cost 

– Mostly Adaptable:      metric value = [0.5, 1) 
• Support all missions within switching cost threshold (Ct) 

– Partially Adaptable:    metric value = (0, 0.5) 
• Within Ct, support all required missions and only part of optional 

– Non-Adaptable:         metric value = 0 
• Within Ct, only support required missions 

• Cost: plugin cost functions 

• Capability: 
– Conform with ecosystem definition 

– Now enable it to be computable in industry 
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First introduced in DARPA Adaptive Vehicle Make (AVM) portfolio of programs, and also in: Zhu, H. “Designing 

Systems with Adaptability in Mind”, Complex Systems Design & Management (CSD&M), Paris, 2015. Formally 

defined here. 
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Optimal Level of Abstraction 

Our Definition 

Original Ecosystem 
Meaning of 
Adaptability 

Petri Net 
Multi-Dimensional 
Modeling 

Markov Networks 

Generic, 

Computable, 

Cannot be Higher 

Inheritance 

Specific 

Models (May 

not be 

Generic) 

Abstract, Primitive, Not 

easily computable  
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Example Case: Aircraft Engine 

• Design Process: 

– Mission analysis 

– DSE generates all possible designs 

– Adaptability Tool outputs adaptability metric 

for each design 
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Engine Mission Evaluation Space 
• Simplified 

Table 2. Flight Mission Segments 
 Baseline aircraft  Transatlantic jet  Commercial jet  

One-engine-inoperative True True True 

Takeoff Gradient of Climb 1.2% 1.2% 1.2% 

Climb Rate 1000ft/min 1500ft/min 1500ft/min 

Cruise Range 700 nautical miles 4000 nautical miles 2000 nautical miles 

 Table 3. Considered Missions 
1 takeoff  low  gradient low climb rate large cruise range land optional 

2 takeoff  low  gradient low climb rate mid cruise range land required 

3 takeoff  low  gradient low climb rate short cruise range land required 

4 takeoff  high gradient low climb rate large cruise range land optional 

5 takeoff  high gradient low climb rate mid cruise range land optional 

6 takeoff  high gradient low climb rate short cruise range land optional 
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Example Engine Cost Analysis 

• Commercial tool (SEER) 

with Model-based 

Design* 

• Reference: 
Zhu, H., et. al. “Exploring Early 

Stage Cost-Estimation Methods 

Using Off-the-Shelf Tools: A Case 

Study”, Complex System Design 

and Management (CSD&M) 2016. 
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*Courtesy Galorath Inc. 



July 

www.incose.org/symp2016 

Adaptability Tool 
• Receive design 

information from 

upstream tools 

• Accepts multiple data 

formats 

• Estimate Adaptability 

Metric for each design 
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Adaptability Metric Properties -1 

• Variation with switching cost threshold 
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Adaptability Metric Properties -2 

• Variation with switching cost functions 
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Adaptability Evaluation Output 

Architecture 3: 
Supported req missions: 2, optional missions: 2 
Best arch 11 within extra cost threshold: support required=2, opt=4 
SWCost: 197 MUSD 
Adaptability: 0.606 

Architecture 6: 
Supported req missions: 2, optional missions: 2 
Best arch 6 within extra cost threshold: support required=2, opt=2 
Adaptability: 0.25 

Architecture 9: 
Supported req missions: 2, optional missions: 4 
Best arch 9 within extra cost threshold: support required=2, opt=4 
SWCost: 0 USD 
Adaptability: 1 

• For each engine architecture 

Coincident with known finding in 
aerodynamics literature! 
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• Use of mission space captures integral factors 
– Overcame previous issues: missing modeling elements leading to misleading measures 

– Avoided deviations from original ecosystem meaning  

• Optimal level of abstraction 
– Generic, computable, unrestricted by concrete modeling techniques 

• Framework allows evaluation of architectures 
– Architecture drives aspects of future designs useful for today’s change dynamics 

• Simplicity provides engineers rules of thumb for quickly evaluating the 

systems they design 
– Extensible with added sophistication 

Summary and Conclusions 

25 

Mission-based adaptability’s empirical mathematical properties are simple 

and indicate this formulation resolves issues with previous approaches: 


