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» Adaptability of system architectures is important 26 "=

July 18 - 21, 2016

 Flexibility without requiring significant up-front investment
« Dynamics of customers needs/market, technologies, policies
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Adaptability =
» Original meaning of adaptability In S

ecosystem
= Can be formulated as:

lim P.(S - S'|E)= lim P:(S—-S'
lim P(S = S'IE) = lim P(S = )

www.incose.org/symp2016 4



Previous Studies e

aw B
J'!

— (Ross, A., et. al. 2007) e Titos:
« Change agent is internal

« Depends on how many configurations the current
one can switch to

— (Gu, P., et. al. 2004)

« Summation of normalized savings in change tasks

— (Shaw, et. al., 2001)

* Objective measures are needed

— Some others

* Rely on specific modeling methods that bring in
restrictions of those methods
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Analysis to Previous Studies -1~ 755

26 | 'NCOsE
* ROSS, A., et- al. 2007: Ililﬁlmbur%hj[LJJI:
— Focused on how many configurations can be
switched to
Other
/ Configurations
—_— We need indicgtions.of:
Are these configurations
g“”?”t | maintaining the same goal of
onfiguration

the system? Are they useful?
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Analysis to Previous Studies -2 55

Vsl

. (Gu, P, et. al. 2004): Summation of normalized 26, "~
savings in change tasks

— Focused on how many designs can be switched to

Other Designs

We need indications of:
/ Are these other designs
useful? How many
T mandatory/optional goals
Current (performance, functional) are
Design satisfied?
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Analysis to Previous Studies -3 7T~
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* (Shaw, et. al., 2001) 26'“C°sE

* ODbjective measures are needed
— Depends on user satisfaction

— We need a metric that depends on system design
characteristics
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Evaluating Adaptable Systems S
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- If we follow the original meaning of adaptability in ecosystems 26\. :;;’Eps_s

— Encourage common criteria in research i
— Ensure the metric reflects truly adaptable system

Otherwise, counter-example can happen:
Low adaptability score

1000 999 Designs
/ Designs / of High
of Low VS gerforn:art}ge,
. upports
> Eg\xormance, s All Fli/FI)issions
Current Supports to Current
Design Missions Design
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Mission Evaluation Space o\
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» Characterize system 26 o

Edinburgh, UK
g O | S July 18 - 21, 2016

 Mission state machine

— Amission: trajectory (et Y
 Support to a mission Xx:

S(X) — [O : 1] Example: Simplified missions of an airplane engine
Reference: Federal Aviation Administration FAR 33
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How to Characterize Some N\
Missions as More Important? " %
» Existing methods:

— Weight

— Probability

* Good enough?
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How to Model Some Missions as i~

aw B

~ More Important? Bl
 Not suitable:

— Counter-example for “weights”. 10 unimportant missidhs |
with weight 0.1 = 1 important mission with 17?

10
0.1=1
{i=1}

— Counter-example for “probabilities”. missions with low
probabilities may actually be important and must be
supported
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Our Concept o\

* Missions: two types 26 TR
— Required missions: R P
— Optional missions: Q
E.g., S(Q) indicates how many optional missions are supported
« Each mission can then be associated with a list of user-
defined properties:
— E.g., Financial gain, probabilities and weights, etc.
« Use mission space in adaptability definition

— Overcame problems with some existing work: missing elements
of modeling goals/missions
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System Design Tool Chain

Er

Example 26 o
EdmburghUK
Design GUI DSE Optimization Adapta_bility Other Modules...
Tool Analysis
N

GUI: Graphical User Interface

DSE: Design Space Exploration: Generate ALL possible designs, based on

all possible connection and parameterizations of all available components
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Example Case: Aircraft Engine @.\./
 Engine architectures generated with DSE 26 """

July 18 - 21, 2016
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Adaptability Fy

« System goal: all the missions defined in evaluation space Q\{' .'.ﬂ.._f |
»  Definition: 26 IRCOSE

— The ability of a system in fulfilling the goals when facing changes emationalsyrmpasi
«  Categories: S

— Perfectly Adaptable: metric value =1
»  Support all missions with 0 additional cost

— Mostly Adaptable: metric value = [0.5, 1)
» Support all missions within switching cost threshold (Ct)

— Partially Adaptable: metric value = (0, 0.5)
» Within Ct, support all required missions and only part of optional

— Non-Adaptable: metric value = 0
+  Within Ct, only support required missions
»  Cost: plugin cost functions
« Capability:
— Conform with ecosystem definition
— Now enable it to be computable in industry

First introduced in DARPA Adaptive Vehicle Make (AVM) portfolio of programs, and also in: Zhu, H. “Designing
Systems with Adaptability in Mind”, Complex Systems Design & Management (CSD&M), Paris, 2015. Formally
defined here.
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Optimal Level of Abstraction Frsay

!' . .. "/
o Original Ecosystem "y

easily computable

Edinburgh, UK

Ada ptablllty July 18 - 21, 2016

Generic, Inheritance
Computable,

Our Definition
Cannot be Higher

Specific : Multi-Dimensional \
Models (May Petri Net . bbbl Varkov Networks
Modeling

not be
Generic)
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Example Case: Aircraft Engine 55

* Design Process: R
— Mission analysis
— DSE generates all possible designs

— Adaptabllity Tool outputs adaptability metric
for each design

www.incose.org/symp2016 18



Engine Mission Evaluation Space

« Simplified

Table 2. Flight Mission Segments

26

Baseline aircraft

Transatlantic jet

Er

INCOSE

Edinturgh, UK

Commercial jet 5

One-engine-inoperative True True True
Takeoff Gradient of Climb 1.2% 1.2% 1.2%
Climb Rate 1000ft/min 1500ft/min 1500ft/min

Cruise Range

700 nautical miles

4000 nautical miles

2000 nautical miles

Table 3. Considered Missions

- 21,2016

1 takeoff low gradient low climb rate large cruise range | land optional
2 takeoff low gradient low climb rate mid cruise range land required
3 takeoff low gradient low climb rate short cruise range | land required
4 takeoff high gradient low climb rate large cruise range | land optional
5 takeoff high gradient low climb rate mid cruise range land optional
6 takeoff high gradient low climb rate short cruise range | land optional
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Example Engine Cost Analysis

« Commercial tool (SEER)
with Model-based
Design*

« Reference:

Zhu, H., et. al. “Exploring Early
Stage Cost-Estimation Methods
Using Off-the-Shelf Tools: A Case
Study”, Complex System Design

and Management (CSD&M) 2016.

*Courtesy Galorath Inc.
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Arché.har - SEER-H

o ). [ |

Help

AP I

File Edit Estimate View Reports Charts Tools Options Collaboration Window

IPHEB 9 /-ARBEOHEER

Work Elements

i 1.6: Core_Compressor

| fi 1.7:Core_Turbine

i 1.8 Core_Combustor
e} 1.9:Single_Fan_{nDTC)
----- & 1.10: Core_Diffuser

----- i 1.11: Fan_Diffuser

P @449 feen Blaoals

m

Inputs
rParameters |/ Schedule & Qtys ( Labor Rates, Co
Mechanical/Structural: Core_Turbine Least
j PRODUCT DESCRIPTION
L L Weight (Ib) 1,730,
. i-Volume (cubic fest) 12.9¢

_—_} MATERIAL COMPOSITION
Percent Aluminum/Mall
Lo Percent Steel Alloy @ Charts

Reports

(Quit:k Fstimate ( Netail Fstimate

Ready

Production Cost All

Work Elements: 14
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Adaptability Tool (f_\
w
* Receive design 26&;;;;“;@,::?5“5
Information from

July 18 - 21, 2016

upstream tools ey s . 10 e X
Input Engine Data: l From TXT File l From XML File l Via SOA ‘
¢« A ts multiple dat
cceptis multipie data |
Output Metric: Output Copy Output
fo r' I l atS Total: 14 componenttypes, 12 architectures,7 mission segments. -
Press the Qutput button... =
. g CostThreshold: 50000000
° E t I ' l t Ad t b I t Mission 1: take-off, lowclimbrate . largecruisedistance . land : optional
S I a- e a- a- I I Mission 2: take-off, lowclimbrate . midcruisedistance | land : required
. . Mission 3: take-off, lowclimbrate . shortcruisedistance . land : required
Mission 4. engine-failure-takeoff, lowclimbrate , largecruisedistance , land : optional
e rl C O r e a_C eS I g n Mission 5: engine-failure-takeoff . lowclimbrate . midcruisedistance . land : optional
Mission 6: engine-failure-takeoff, lowclimbrate , shortcruisedistance | land : optional
Total Missions=6
Architecture 1
Supported req missions: 2, optional missions: 2 -

www.incose.org/symp2016 21



Adaptability Metric Properties -1 (f.\,,
',;[/

» Variation with switching cost threshold*°.......
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Adaptability Metric Properties -2

» Variation with switching cost functions *
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Adaptability Evaluation Output

« For each engine architecture

Architecture 3:

Supported req missions: 2, optional missions: 2

Best arch 11 within extra cost threshold: support required=2, opt=4
SWCost: 197 MUSD

Adaptability: 0.606

Architecture 6:

Supported req missions: 2, optional missions: 2

Best arch 6 within extra cost threshold: support required=2, opt=2
Adaptability: 0.25

Architecture 9:

Supported req missions: 2, optional missions: 4

Best arch 9 within extra cost threshold: support required=2, opt=4
SWCost: 0 USD

Adaptability: 1

Coincident with known finding in

aerodynamics literature!
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Summary and Conclusions ey

|
Y,

Mission-based adaptability’s empirical mathematical properties are simple Lt .
and indicate this formulation resolves issues with previous approaches: 26 | 'NCOsE

Edinburgh, UK

July 18 - 21, 2016

« Use of mission space captures integral factors

* Optimal level of abstraction
 Framework allows evaluation of architectures

« Simplicity provides engineers rules of thumb for quickly evaluating the
systems they design
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