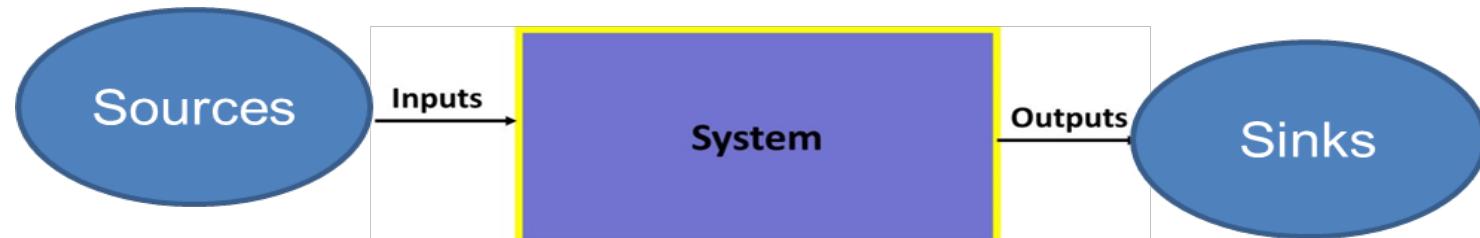


26th annual **INCOSE**
international symposium

Edinburgh, UK
July 18 - 21, 2016

Quantifying Sustainability in System Design

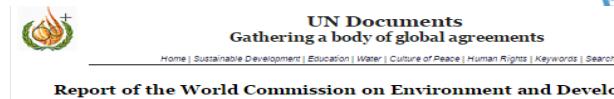
Dr. Ronald S. Carson, Fellow, ESEP
Seattle Pacific University


Outline

- Systems Engineering and System Design
- Sustainability and Appropriateness
- Mapping Syllabus to Course Description
- Quantifying Sustainability
- Quantifying Appropriateness
- System Design and Analysis using Measures
- Lessons Learned and Conclusions

Systems Engineering and Systems Design

- [EGR4610: Systems Design](#): “Provides an analysis and design of engineered systems as they relate to their appropriate application and environmental, economic, and societal sustainability. Students will use a systematic approach, including life cycle assessment, and explore impacts on society, including public policy.”
- “Systems Engineering” per IEEE* 1220 (2005): “An interdisciplinary collaborative approach to derive, evolve, and verify a life-cycle balanced system solution which satisfies customer expectations and meets public acceptability.” See also ISO**/IEC/IEEE 15288:2015.



*Institute for Electrical and Electronics Engineers;

**International Standards Organization

Sustainability and Appropriateness

- “**Sustainable development** seeks to meet the needs and aspirations of the present without compromising the ability to meet those of the future.” (Brundtland 1987)
 - Must define “needs and aspirations” and “compromising”
 - Should apply to the present as well (“instantaneous sustainability”)
- **Appropriate Technology:**
“Technology that is suitable to the social and economic conditions of the geographic area in which it is to be applied, is environmentally sound, and promotes self-sufficiency on the part of those using it.”

Report of the World Commission on Environment and Development: Our Common Future
Transmitted to the General Assembly as an Annex to document A/42/427 - Development and International Co-operation: Environment

Table of Contents

Acronyms and Note on Terminology

Chairman's Foreword

From One Earth to One World

Part I. Common Concerns

1. A Threatened Future

I. Symptoms and Causes

II. New Approaches to Environment and Development

2. Towards Sustainable Development

I. The Concept of Sustainable Development

II. Equity and the Common Interest

III. Strategic Imperatives

IV. Conclusion

3. The Role of the International Economy

I. The International Economy, the Environment, and Development

II. Decline in the 1980s

III. Enabling Sustainable Development

IV. A Sustainable World Economy

Part II. Common Challenges

4. Population and Human Resources

I. The Links with Environment and Development

II. The Population Perspective

III. A Policy Framework

5. Food Security: Sustaining the Potential

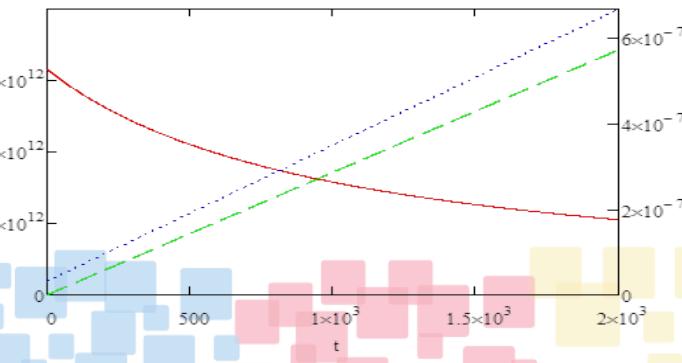
Report of the World Commission on Environment and Development: Our Common Future

Course Design

Plus a group design & analysis project

Week / Topic	Mapping to Course Description	Topics
• Introduction to System Design	Design of systems. Quantify sustainability (depletion time).	Introduction to basic systems engineering concepts, including boundaries and context. Introduce sustainable and appropriate concepts. Quantify resource depletion time.
• Interactions of Engineering Disciplines	Review basic physics and engineering so that students from different disciplines are not lost.	Describe coupled effects of design solutions on engineering disciplines.
• Exergy	Quantify sustainability (exergy).	Calculate exergy changes in systems for energy and materials
• Design for the Life-cycle	Life cycle assessment.	Evaluate sustainability issues from concept through disposal
• Multi-criteria Decision-making	Systematic design approach; life-cycle impacts of designs.	Decision trees, Kepner-Tregoe, Analytic Hierarchy Process
• Managing Design Resources	Systematic design approach; life-cycle impacts of designs.	Budgets, allocations, tolerances.
• Topology and Boundaries	Systematic design approach.	System impacts on context. Boundaries, zones, penetrations.
• Design for Safety and Reliability:	Systematic design approach; understand impacts on society.	Failure rate, consequences, severity and criticality.
• Designing using Laws and Standards	Systematic design approach; understand impacts on public policy.	Sources of standards and laws, effects of diverse jurisdictions by life cycle phase.
• Designing for Humans: Human-systems Integration	Systematic design approach; understand impacts on people. Appropriate application.	Anthropometrics, cognition and decision-making, appropriateness.

Quantifying Sustainability – Depletion Time

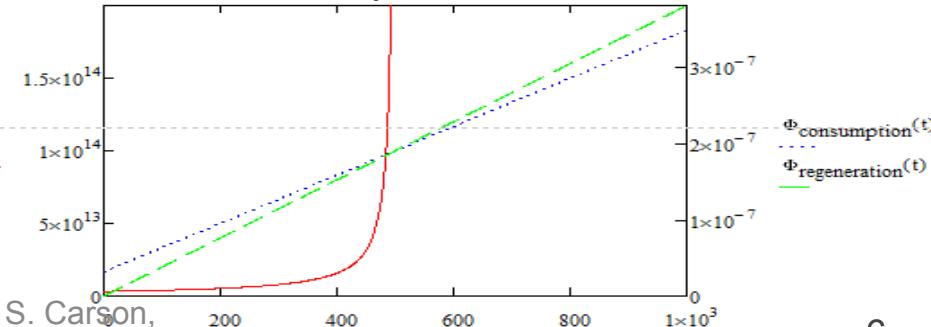


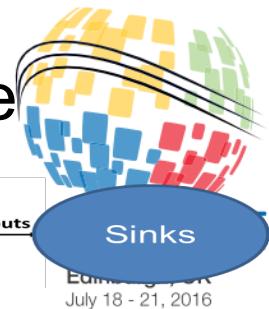
- Resource depletion time
 - Applies to Sources and Sinks

$$\tau(t) = \frac{M_{reserve}(t)}{(\Phi_{consumption}(t) - \Phi_{regeneration}(t))}$$

- Time-dependencies are sensitive to technologies and costs (supply and demand)

Depletion time falls when consumption increases and exceeds regeneration.

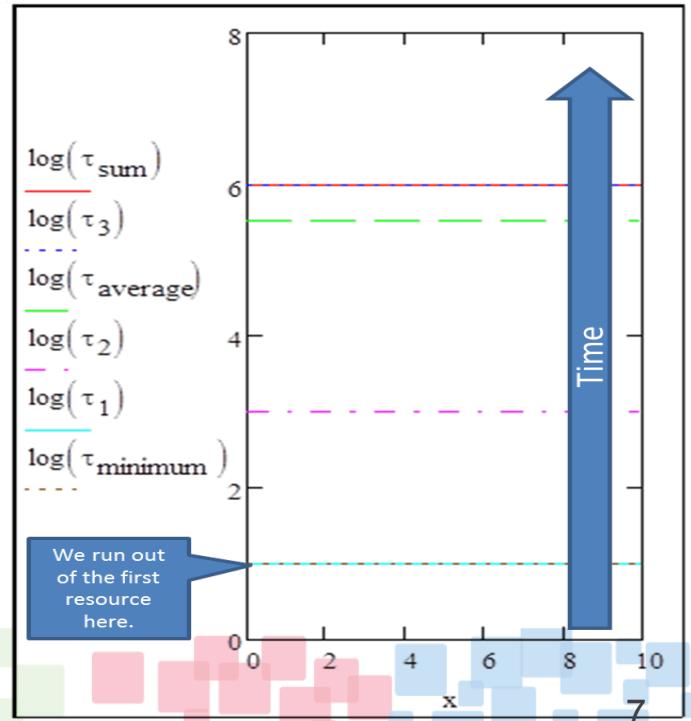

Dr. Ronald S. Carson,
Seattle Pacific University


“Sustainable” requires $\tau = \infty$
or $\tau(t) \geq \tau_{initial}$

Lems, S., HJ van der Kooi, J de Swaan Arons, “The sustainability of resource utilization”, *Green Chem* 4:308-313 (2002)

Depletion time increases when regeneration exceeds consumption.

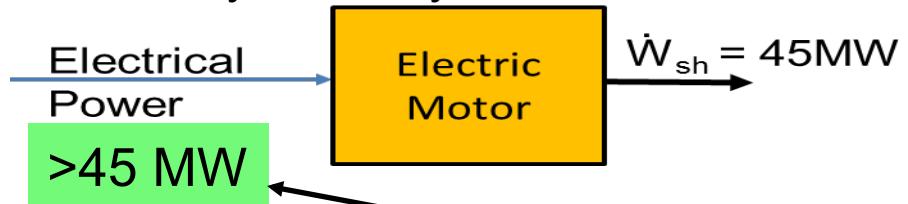
Quantifying Sustainability – System Depletion Time



- System resource depletion time is the *minimum* time considering all required resources

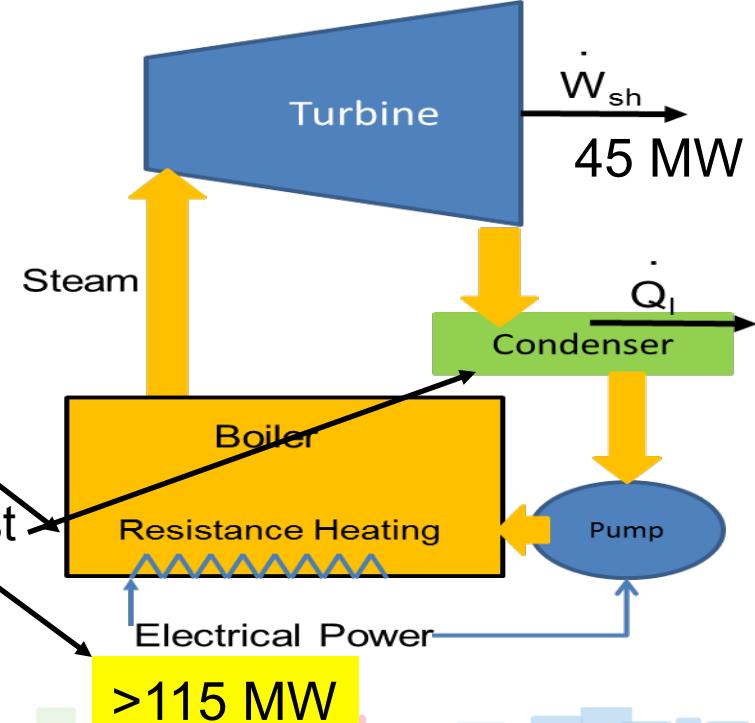
$$\tau_{\text{system}} = \min(\tau_1, \tau_2, \tau_3)$$

- We must examine *all* system resources


Even if an energy *resource* is infinite, the conversion *technology* is not

Quantifying Sustainability – Exergy

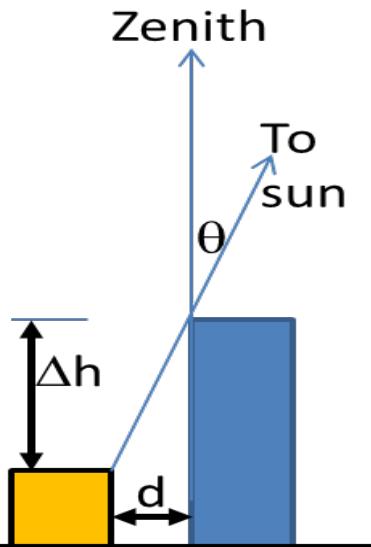
- Exergy, X (“available work”)
 - Why is one system better than another?



- Input exergy X_{in} is different
- Exergy is destroyed by irreversibility

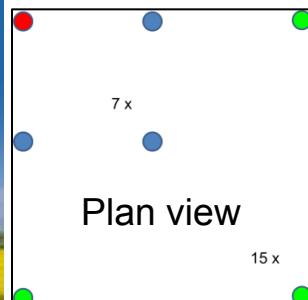
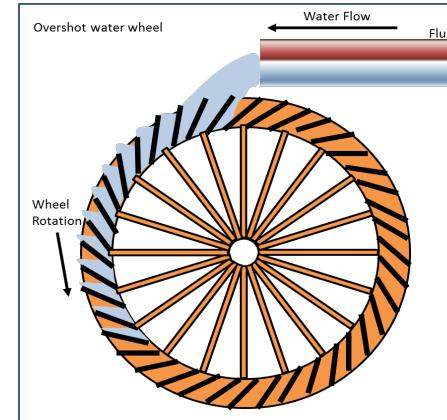
$$X_{destroyed} = T \downarrow 0 S_{gen}$$

- Available heat out may be irreversibly lost and unrecoverable (more $X_{destroyed}$)


$X_{destroyed}$ is the *depleted* resource

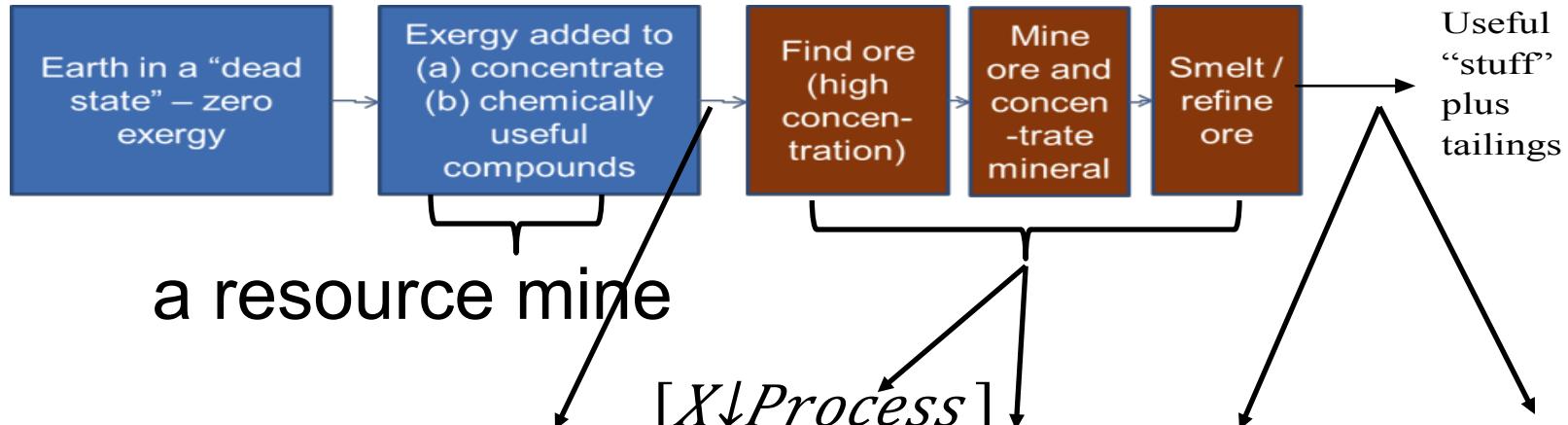
Instantaneous Sustainability

- Flowing power resources are subject to *instantaneous* sustainability considerations if one use compromises another
- Affects solar, wind, water power
- Solar shadowing can compromise some users

Edith's old Chevy Cavalier is parked in front of her tiny Ballard house as development encroaches.

“Up” House, 1438 NW 46th St., Seattle, USA
Seattle Times, Pacific NW Magazine, 8 October 2015 (Alan Berner)
<http://www.seattletimes.com/pacific-nw-magazine/searching-for-edith-macefield/>


Instantaneous Sustainability – Water and Wind

- Water and wind resources are similarly subject to *instantaneous* sustainability considerations – one user can immediately affect other users
 - Recharge rate for the gravitational potential energy limits density of power extraction along rivers (W/m)
 - Recharge rate for wind limits density of wind turbines (W/m²)

<https://www.mitchelltech.edu/media/library/Videos/48/cover/honda-windfarm.jpg>

Exergy of Materials

- Exergy balance
$$X\downarrow InOre + (W\downarrow in + Q\downarrow in) - X\downarrow Destroyed$$
- **Inputs** are the exergy of the ore and processing
- **Outputs** are the desired product and unusable materials (tails)
- Some exergy is **destroyed** because of irreversible processes

Reducing Exergy Loss to Improve Efficiency

- The *overall* efficiency is measured as

$$\eta = \text{Desired output}/\text{Inputs} = X\downarrow \text{OutMaterial} / X\downarrow \text{InOre}$$

- A sustainability goal is to reduce the exergy of tails and exergy destroyed

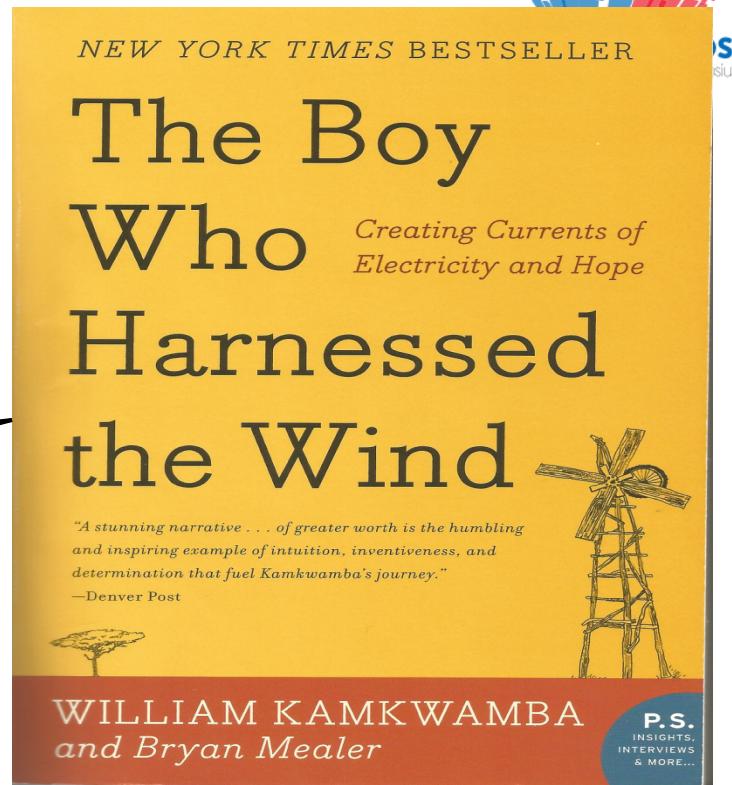
$$X\downarrow \text{InOre} + X\downarrow \text{Process} \xrightarrow{0} X\downarrow \text{Destroyed} = X\downarrow \text{OutMaterial} + X\downarrow \text{InSink}$$
$$X\downarrow \text{InOre} + X\downarrow \text{Process} \cong X\downarrow \text{OutMaterial}$$

$\eta \approx 1$

- Process exergy should include restoration and remediation of the resource and sink

Example – Uranium Fuel Cycle (LWR)*

- Desired output is electricity (1 TWh)
- Reactor* exergy input vs. output is > 40x
- Little exergy is *destroyed*, but most is unavailable without recycling the uranium
- Overall efficiency is $\eta = 0.0036 \times 10^{16} / 1.56 \times 10^{16} = 0.23\%$


*Tani, Filippo et al., "Exergy-based Comparison of the Nuclear Fuel Cycles of Light Water and Generation IV Reactors", *Proceedings of 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy* (Lausanne, Switzerland) [ECOS 2010]

Process Step (Uranium State)	Exergy Output (10^6 TJ)
In situ (Uranium Ore)	1.56
Mining and Milling (U_3O_8)	1.482
Uranium Conversion (UF_6)	1.475
Enriched Fuel (UF_6)	0.147
Enrichment Tailings (UF_6)	<u>1.32</u>
Fuel Fabrication (UO_2)	0.146
Nuclear Reactor Electricity generation	<u>0.0036</u> (1 TWh)
Waste disposal	0.13

Quantifying Appropriateness

- Qualitative scale based on the **degree of match(t)** between the technology throughout its life cycle and
 - Local resources
 - Local environment
 - Individual (or social group) knowledge and skill
- *Appropriate for the individual* ←
- *But not Sustainable* ←
 - This is an example of finite system depletion time because of *limited* windmill resources (materials, knowledge and skill)

System Design & Analysis Using Measures

Teaching Topic	Measures
<ul style="list-style-type: none">• Design for the Life-cycle	System resource depletion time Exergy management (input, tailings, destruction) vs. life cycle phase
<ul style="list-style-type: none">• Multi-criteria Decision-making	System design optimization based on resource depletion and exergy management
<ul style="list-style-type: none">• Managing Design Resources	Overall efficiency; resource allocations
<ul style="list-style-type: none">• Topology and Boundaries	Inputs, outputs, susceptibility and protection for natural and induced environments
<ul style="list-style-type: none">• Design for Safety and Reliability	Failure rates, consequences and mitigation
<ul style="list-style-type: none">• Designing using Laws and Standards	Degree of conformance, effects of different jurisdictions throughout the life cycle
<ul style="list-style-type: none">• Designing for Humans: Human-systems Integration	Human factors measures for ergonomics, cognition, bio-engineering; person-centered design

Lessons Learned and Conclusions

- Student course evaluations: overall score 4.2/5 (Spring 2015)
 - “Most helpful” topics
 - System life cycle from conception through disposal
 - Multi-criteria decision-making
 - Topology and boundaries in system design
- Positive effect on Senior Design projects
 - Multi-disciplinary considerations benefited students
 - 3/3 Seniors agreed or strongly agreed that course was helpful or very helpful
- Engineering faculty very supportive of continuing this new course
- Quantitative sustainability measures provide analytical tools for assessing the impacts of systems on their environment and contexts
- Quantitative sustainability measures guide system design through alternatives with different contextual impacts