

26th annual **INCOSE**
international symposium

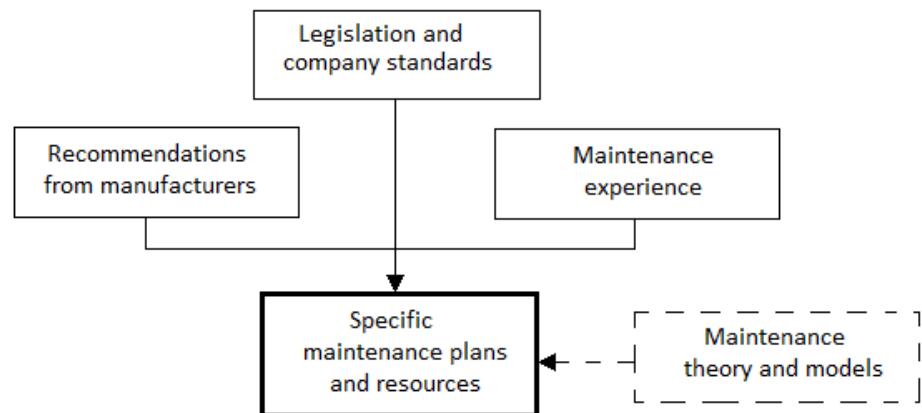
Edinburgh, UK
July 18 - 21, 2016

Maintenance Optimization Approaches for Condition Based Maintenance: a review and analysis

Mario Marcondes Machado
UFRJ - Federal University of Rio de Janeiro, Brazil

Cecilia Haskins
NTNU - Norwegian University of Science and Technology, Norway

European
Regulatory Proceedings Journal
Hokstad Geneva Survey John
Application management Aven
Bretzfelder Ana
Norway Kirwan University Inc Comm
Science Minimal maintena
Study Hansen Electrotechnical FMEA RCM N
Case Marcel York Railway Colloquium
Human preventive Press
Information


Agenda

- Motivation and objectives
- Approach and contribution
- Problems
- Analysis
- Results
- Final Considerations and Future Work

Motivation and Objectives

Offshore operators ought to apply maintenance optimization (MO) and find a balance between the costs and benefits of maintenance decisions
(Condition-based maintenance (CBM) decisions)

- The idea: Review the literature (applications) in order to find and/or propose a concept model for a CBM system

Maintenance strategy development (Rausand & Høyland, 2004)

Approach and Contribution

Identifying the main attributes of MO approaches, the main actors and their roles, the problems frequently reported, etc.

In this qualitative research, a set of applications was analyzed under a SE approach resulting in two theoretical constructs

- ✓ A concept map and a set of Guidelines for a CBM program implementation plan

A Previous Conducted Survey

Year	Publications [n.]
-1969	1
1970 – 1974	4
1975 – 1979	17
1980 – 1984	20
1985 – 1989	45
1990 -	25
Total	112

Source: (Dekker, 1996)

Category	Publications
Proposed model	48*
Case study	42
Application tool	14
Discussion paper	8

* 22 applied to real data and 26 with no further details on model application. Based on (Dekker, 1996:232).

Search words: **“maintenance”, “replacement”, “repair”, “optimization”, “application(s) and “case study(ies)”**

as inputs on the INSPEC database

Recent Cases (from different industry sectors)

Filtered according to the theory under construction

Methods and/or techniques	Cases	Freq.
Empirical modeling	(3), (4), (5) and (6)	4
Markov decision methods	(3) and (4)	2
Simulation	(7) and (9)	2
Gamma process	(1) and (7)	2
Weibull distribution	(2)	1
Wiener process	(5)	1
Total		12

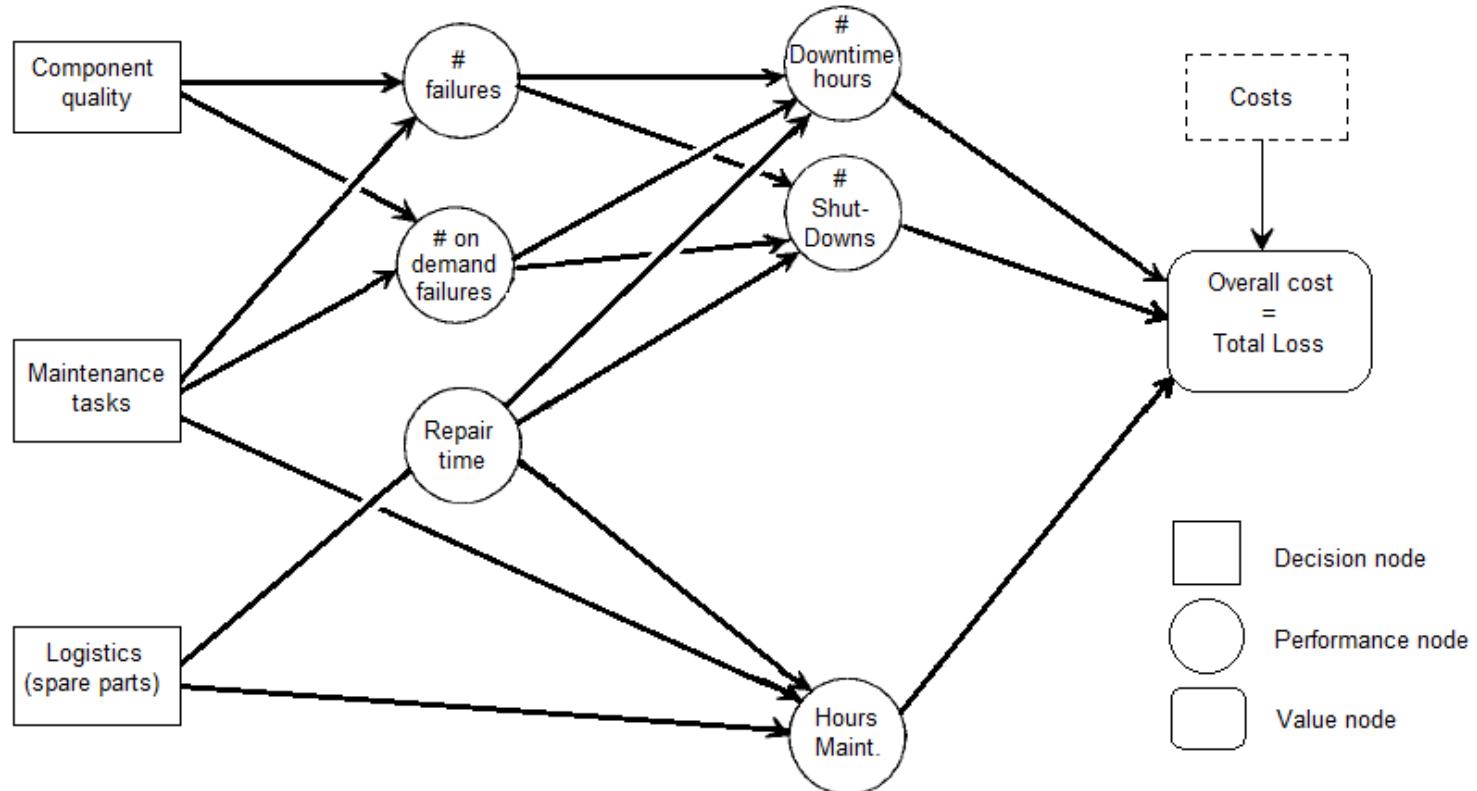
4 - Case-studies
4 - Proposed models
2 - Application tool
2 - Discussion papers

Applications 3, 4, 7 and 9 are Markov related approaches

Application 7 is a combined approach

Problems and Concerns (reported by key-informants)

“... concern data collection and analysis. Application of models requires a good formulation of the problem, which is not easy since most concepts used (such as failure), allows various interpretations.


Furthermore, many models are not robust against violations of assumptions or misinterpretation of their concepts.”

Dekker (1996)

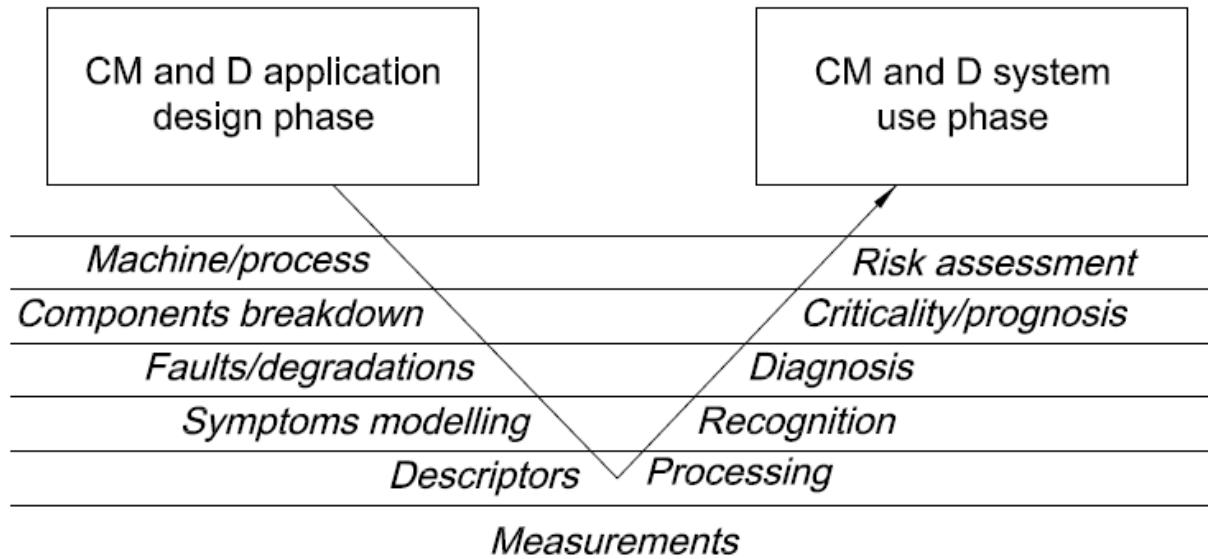
“... in spite of the great number of methods, mathematical models for maintenance optimization are hardly used in practice. One reason can be that there are often difficulties in providing the proper amount of data.”

Welte, Vatn and Heggset (2006)

Models

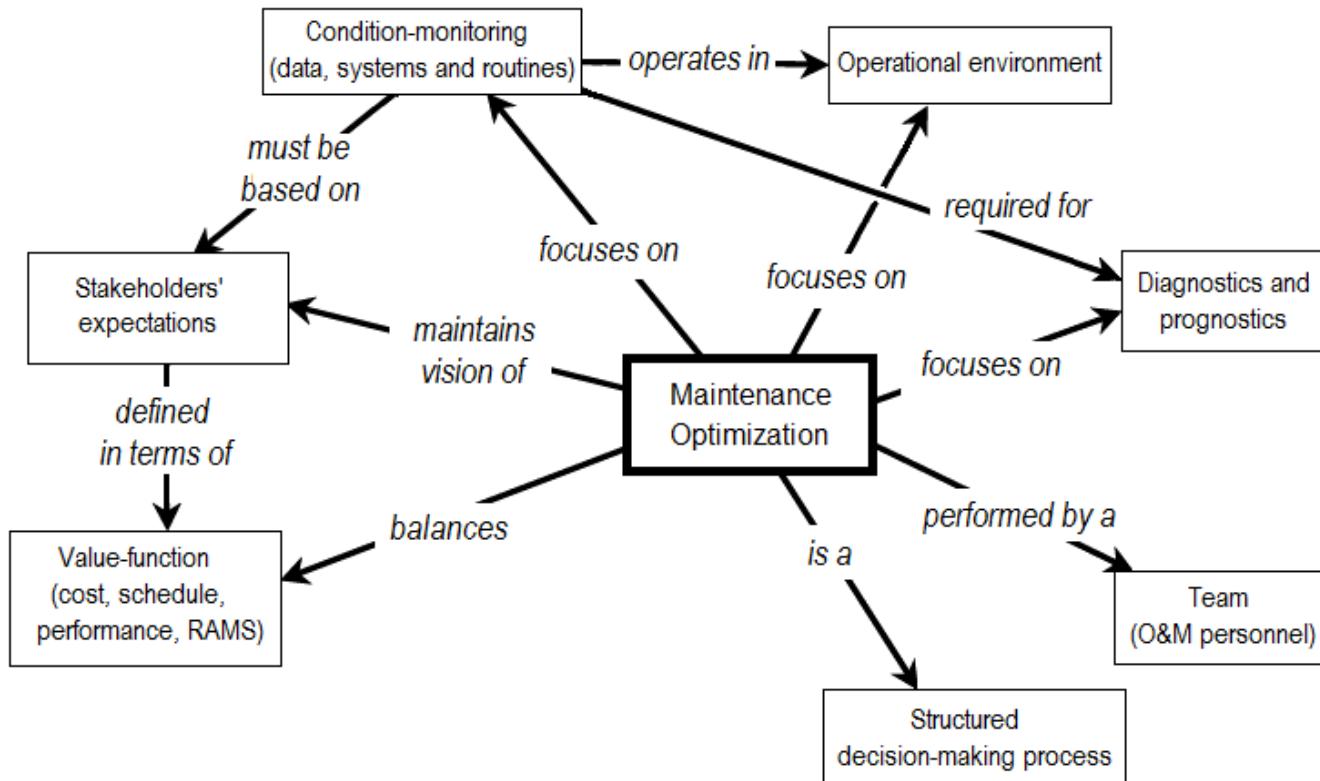
Influence diagram for a maintenance optimization model (Vatn, Hokstad and Bodsberg, 1996)

Findings from key-informants



“... the need for such diverse expertise may be one of the reasons why it has been so hard to implement model based maintenance approaches (...)”

... decision theory, data analysis and expert judgement methods are essential to establish credible input data (...) and a thorough operational experience is required to establish optimal methods”.


Vatn, Hokstad and Bodsberg (1996)

Guidance from Standards

Condition monitoring and diagnostics (CM&D). Source: ISO 13379:2003

Results (a concept map)

Concept map for CBM ontology, inspired by (Bahill et al, 2002)

Results (guidelines for an implementation plan)

Step 1 - Formulation of the problem

Information about the system and the actions open to management
System functions, importance and boundaries
Goals and scope of analysis
Agreed terminology
System's states space/criteria

Step 2 - Construction of a model of the system

System degradation in time and possible consequences for the system
System functions and the respective failure characteristics
Databases, data collection and criticality analysis
Condition monitoring routines and degradation mechanisms

Step 3 - Calculation of solution through the model

An objective-function and optimization technique
Diagnostics and prognostics analysis
Experiments

Step 4 - Testing of the model/solutions

Evaluation of the model parameters and results
Tuning up the models

Step 5 - Establishment of controls of the solution;

Assess the system's condition

Step 6 - Implementation and follow-up

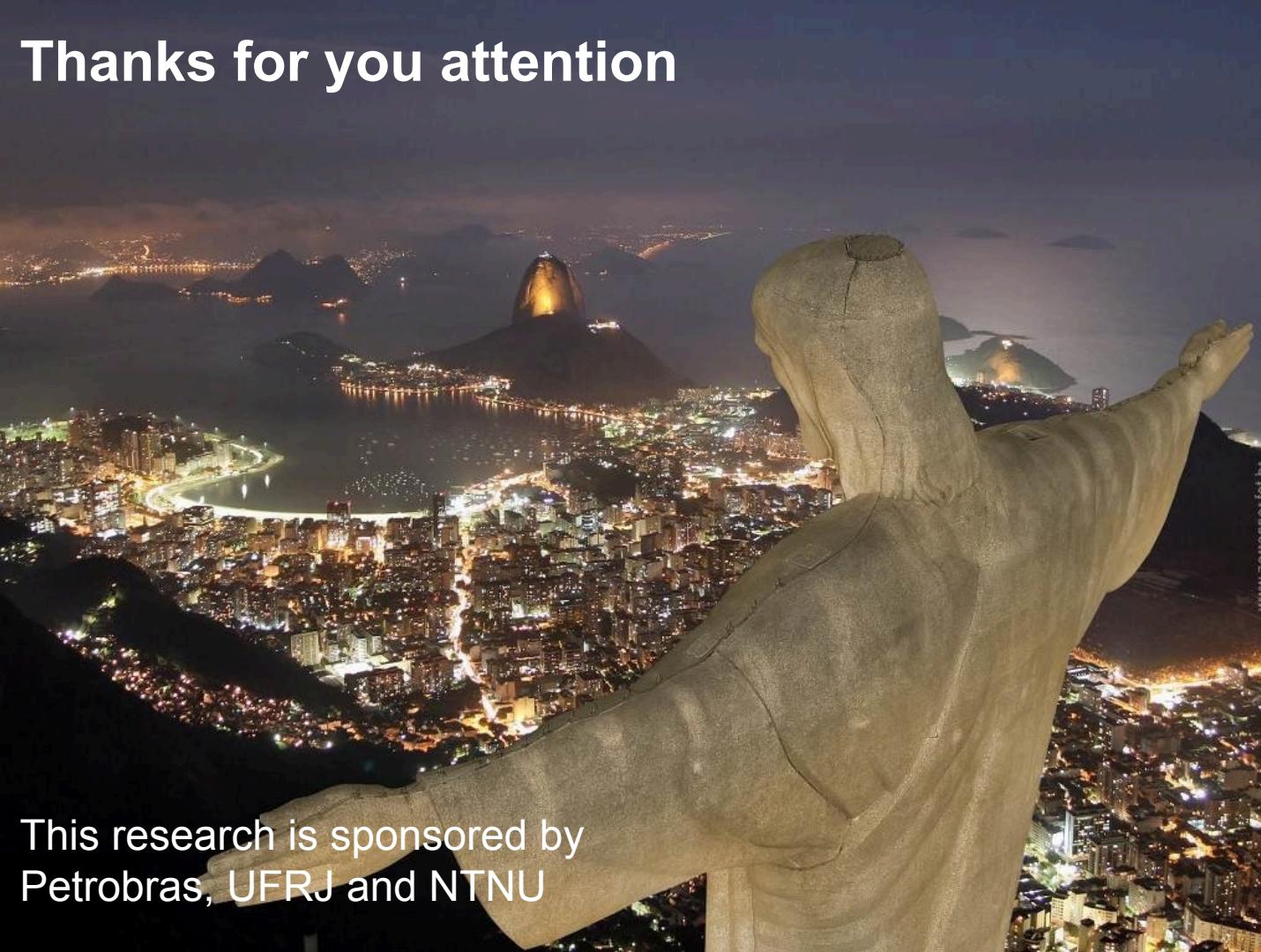
Decision-making (communication and reasoning)
Maintenance action (planning, scheduling and execution)
Feedback.

Final Considerations

(requirements for the maintenance organization)

- Managing communication, coordination and collaboration among specialists
- Establish:
 - A structured decision-making process (with a proper analytical capacity)
 - Expert's judgment methods and a strong notification culture (routines for machine event's recording) and
 - Machine monitoring and feedback routines (put forth on analysis)
- Improve, if necessary, the related work-processes

Summary and Future Work


In summary

- ✓ System availability is one of the most important headings leading to the best maintenance and renewal strategy
- ✓ Actions should address the most relevant degradation mechanisms and
- ✓ System condition should form the basis for O&M decision

As future work (for the related PhD)

- Apply Markov methods for CBM
- Develop a Simulation model and perform experiments in order to identify relevant aspects for decision-making and
- Interview practitioners and experts (in Norway and in Brazil) in order to develop a condition-monitoring network for the Brazilian offshore operational environment.

Thanks for you attention

Edinburgh, UK
July 18 - 21, 2016

Mario M. Machado

mario.m.marcondes@ntnu.no
mariomarcondes2000@yahoo.com.br
mmarcondes@petrobras.com.br

This research is sponsored by
Petrobras, UFRJ and NTNU

(Appendix) Table 3 – Applications of maintenance optimization

N.- Publication category / Characteristics	1-CS	2-AT	3-PM	4-PM	5-PM	6-CS	7-CS	8-AT	9-CS	10-DP	11-DP	12-PM
Author / Year	Saarela et al, 2014	Hidalgo & Souza, 2014	May and Mcmillan, 2014	Jirsak et al, 2014	Ebenne et al, 2014	Machado et al, 2014.	Welte, Vatn and Heggset, 2006.	Medina-Oliva et al, 2014	Lundtofte and Solbakke, 2014	Dekker, 1996	Heng et al, 2009	Vatn, Hokstad and Bodsberg, 1996
Industry-sector / application level (unit or system) / equipment type	Nuclear power generation / unit / Air Filters	Hydro power generation / unit / Speed regulators of Hidro generators	Wind power generation / system / Offshore Wind turbines	Water utility / unit / Rapid Gravity Filter	Space / system / Satellite	Oil & Gas / system / Power generation (Gas turbine engines of a FPSO)	Hydro power generation / system / Hydro power components	Maritime transportation / system / Fuel engines	Oil & Gas / system / (FPSO - Power generation; Recompression and; Water injection)	All / NA / NA	All / NA / NA	Processing plant (generic) / unit / components of a processing plant
Maint. Optimization problem / Approach type (problem statement) / Obs.	Predictive maint. / RUL Modeling	Predictive maint. / Reliability / multicriteria	Scheduled maint. - Probabilistic	Scheduled maint. Probabilistic / Hidden Markov model	Scheduled maint. PHM - Prognosis and Health Monitoring	Predictive maint. / RUL Modeling (Empirical TTF modeling for gas metering valve related faults)	Scheduled maint. Optimization / Probabilistic (Markov chain model / Gamma distribution)	Predictive maint. / PHM - Prognosis and Health Monitoring - application in KASEM e-maintenance	RAM analysis model using MCS and Markov method	Discussion paper	Discussion paper	Scheduled maint, optimization / Multi-objective linear optimization model
Objective/value-function / Method(s)	TTF estimations	PM intervals by using decision's preference (min cost or maximiza reliability/ PROMETHEE	Min. Costs of CBM under system detection rates and False alarms	Condition-monitoring / Markov process	Health monitoring and prognostics	Data driven TTF estimations	Condition-monitoring / Markov	Minimize the effects of unexpected system failures / predictive diagnostics	RAM analysis and comparison between MCS and Markov method.	Survey / Search on the ISPEC database	Survey	Min. Cost by optimal maint. schedule for components of a system according to performance measures.
Decision figures (criteria) / Performance variables	Dif. Pressure etc.	Reliability and costs	Costs, detection rates, false alarms	Performance Data	Cond. Monitoring data	Exhaust temperature spread	Cond. Monit. data, costs and discount rate	Cond. Monit. data	Time to failure	NA	NA	RAMS and costs
Model used (Stochastic process) / Constrains taken	Gamma process	PROMETEE method / Exponential	Hidden Markov Model/Chain	Hidden Markov Model	Wiener process	Regression-based model	Markov chain model / Gamma distribution and MCS	Software KASEN e-maintenance	Markov method and MCS	Survey	Survey	Weibull law