

26th annual **INCOSE**
international symposium

Edinburgh, UK
July 18 - 21, 2016

System Engineer Design Support via System Dynamics Modeling of Cybersecurity Operations

Presenter: Keith D. Willett, CISSP, ISSAP
Enterprise Security Architect, DoD

PhD Candidate at Stevens Institute of Technology

Agenda

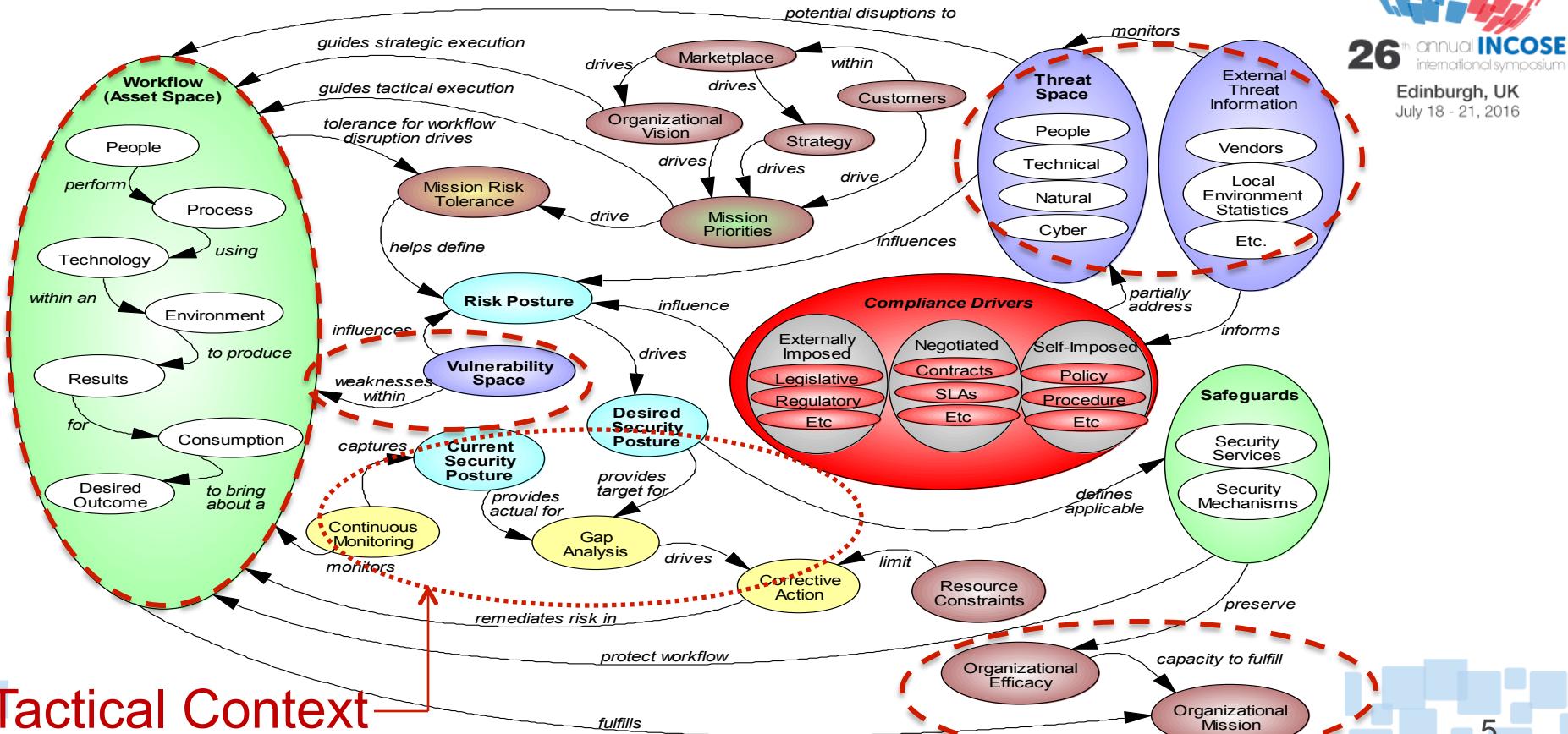
- The Problem
- A Solution
 - Solution Approach
 - Strategic & Tactical Context
 - The Model
 - Conclusions
 - Future

The Problem

Lack of systems engineering (SE) decision support for tradeoff analysis in system of systems (SoS) design.

ModSim Approach

- **Type:** system dynamics modeling (SDM)
- **Tool:** STELLA/iThink
- **Focus:** cybersecurity operations, anomaly processing
- **Perspective:** quantity and time of anomalies processed
- **Intent:**
 - Discern baseline of quantity and time
 - Find fit of prospective solution
 - Determine impact
 - Modify model according to projected effects
 - Compare results to baseline for localized and systemic effect
- **Case Study:** cybersecurity decision patterns (CDPs) as one proposed solution under *Integrated Adaptive Cyberspace Defense* (IACD)

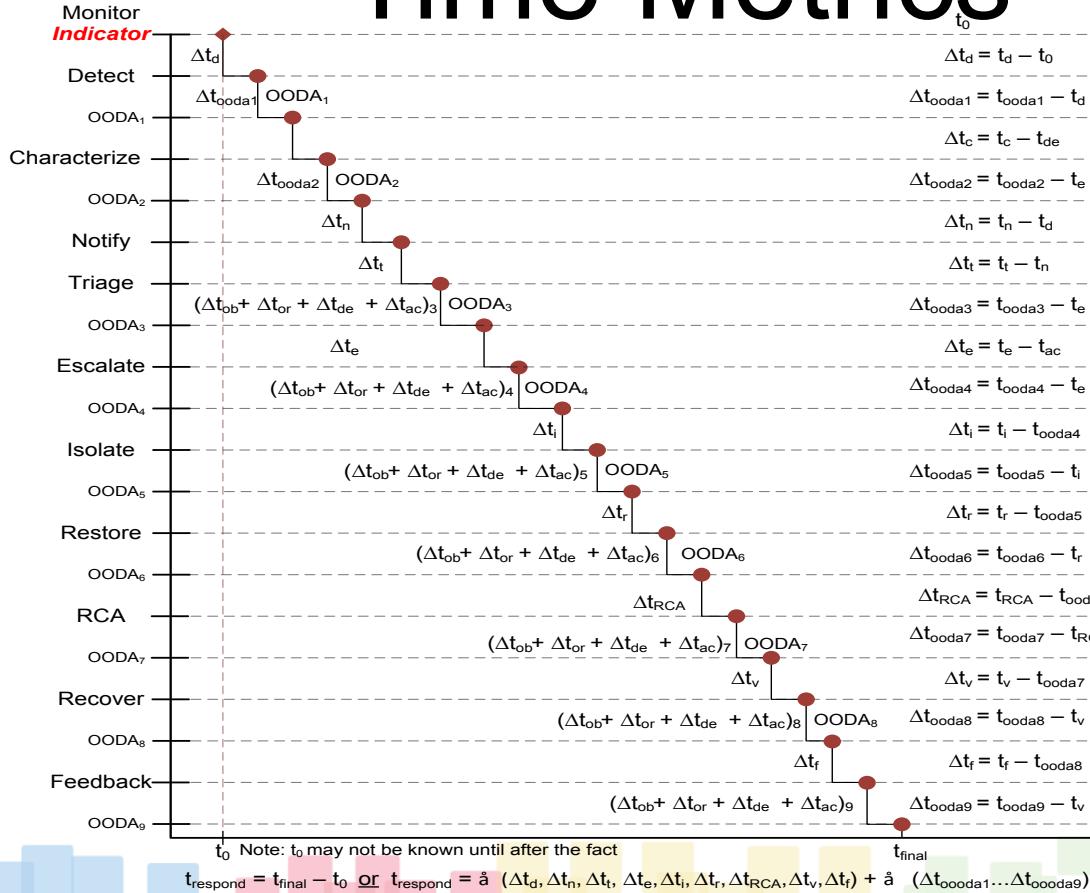

Strategic Context

26th annual INCOSE international symposium

Edinburgh, UK

July 18 - 21, 2016

Tactical Context


Tactical Context

(Cybersecurity Operations Workflow Phases)

1. **Monitor**: ongoing observation with intent to raise awareness
2. **Detect**: indicator of anomaly
3. **Characterize**: known-known, known-unknown, unknown-unknown, unknown-known
4. **Notify**: first tier support
5. **Triage**: determine priorities
6. **Escalate**: send to subject matter expert
7. **Isolate**: contain threat or threat effects
8. **Restore**: restore effective operations even at diminished efficiency
9. **Root Cause Analysis**: identify root cause of problem
10. **Recover**: recover effective & efficient operations to desired performance level
11. **Feedback**: minimize recurrence and effects of recurrence

Time Metrics

t_0 is initiation of indicator
 t_d is initiation of detection process
 Δt_d is duration of detection process
 t_{0oda1} is initiation of OODA process
 Δt_{0oda1} is duration of OODA process
 t_n is initiation of characterize process
 Δt_n is duration of characterize process
 t_{0oda2} is initiation of OODA process
 Δt_{0oda2} is duration of OODA process
 t_t is initiation of triage process
 Δt_t is duration of triage process
 t_e is initiation of escalate process
 Δt_e is duration of escalate process
 t_{0oda3} is initiation of OODA process
 Δt_{0oda3} is duration of OODA process
 t_i is initiation of isolate process
 Δt_i is duration of isolate process
 t_r is initiation of restore process
 Δt_r is duration of restore process
 t_{RCA} is initiation of root cause analysis (RCA) process
 Δt_{RCA} is duration of RCA process
 t_{0oda4} is initiation of OODA process
 Δt_{0oda4} is duration of OODA process
 t_v is initiation of recover process
 Δt_v is duration of recover process
 t_{0oda5} is initiation of OODA process
 Δt_{0oda5} is duration of OODA process
 t_f is initiation of feedback process
 Δt_f is duration of feedback process
 t_{0oda6} is initiation of OODA process
 Δt_{0oda6} is duration of OODA process
 t_{0oda7} is initiation of OODA process
 Δt_{0oda7} is duration of OODA process
 t_{0oda8} is initiation of OODA process
 Δt_{0oda8} is duration of OODA process
 t_{0oda9} is initiation of OODA process
 Δt_{0oda9} is duration of OODA process

26th annual INCOSE International symposium
 Edinburgh, UK
 July 18 - 21, 2016

OODA:
 - Observe
 - Orient
 - Decide
 - Act

SDM Structure

- For each of the 11 workflow phases:
 - Capture anomaly processing time and quantity
- Distinguish *manual* v. *machine* processing
- Case study
 - Knowledge encoding (*cybersecurity decision patterns*)
 - Local & systemic role, fit, function, and effects

PDF Determination Process

Determine *probability distribution functions* (PDFs)

- Anomaly processing scale
- Root in reality
- Ranges of data
- Specific data within ranges
- Goodness of fit
- Baseline v. estimated post-solution effects

Anomaly Processing Scale¹

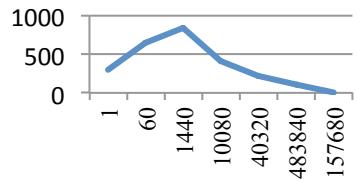
# Minutes	Label	Description
1	seconds	less than a minute (<60 sec)
60	minutes	less than an hour (<60 min)
1440	hours	less than a day (<24 hours)
10080	days	less than a week (<7 days)
40320	weeks	less than a month (<4 weeks)
483840	months	less than a year (<12 months)
1051200	years	up to 2 years (<2 years)

¹Derived from Ponemon 2014 Data Breach Report

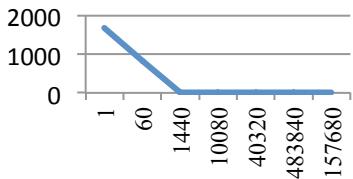
Example PDF Table for Manual Detection

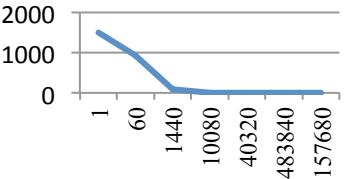
P(x)	Cum(x)	Time (minutes)
0	0	1
0.122	0.122	60
0.256	0.378	1440
0.322	0.7	10080
0.178	0.878	40320
0.089	0.967	483840
0.033	1	1051200

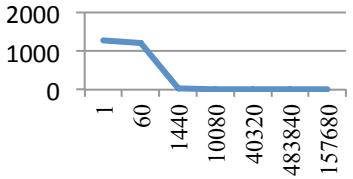
PDF Application

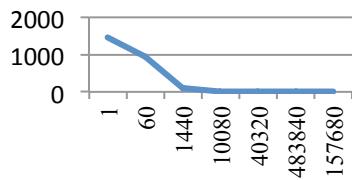

Generate data points w/ basis in reality

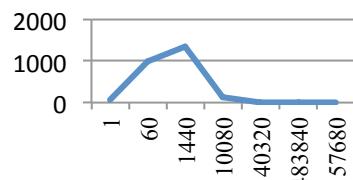
- Use Excel
- 5,000 data points per workflow phase
 - Generate random numbers
 - Use VLOOKUP on probability distribution scale
 - 5,000 anomaly processing *time ranges* per phase

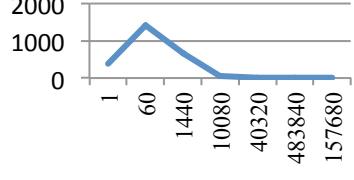

Probability Distribution Graphs

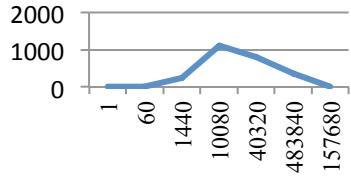

Detect

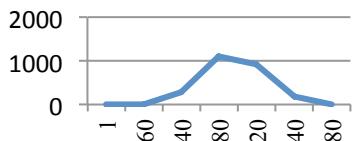

Characterize

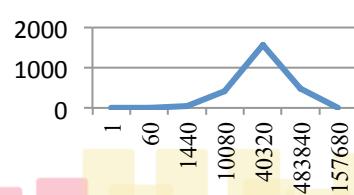

Notify


Triage


Escalate


Isolate

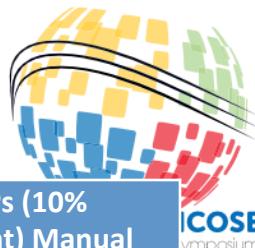

Restore


RCA

Recover

Feedback

Baseline PDFs for the SDM


Phase	Pre-<proposed solution> PDFs	
	Manual	Machine
Detect	WEIBULL(.33264,1869,922)	LOGNORMAL(41961.42,58278966.6,923)
Characterize	LOGNORMAL(20,280,924)	LOGNORMAL(1.68,5.14,925)
Notify	LOGNORMAL(40,751,109)	LOGNORMAL(2.33,9.1,110)
Triage	LOGNORMAL(53,920,227)	LOGNORMAL(2.59,10.73,228)
Escalate	LOGNORMAL(53,1252,228)	LOGNORMAL(3.06,14.77,229)
Isolate	WEIBULL(.56032,432,112)	LOGNORMAL(468.59,21153.18,113)
Restore	LOGNORMAL(1117,35405,1962)	LOGNORMAL(108.72,4431.36,1963)
RCA	UNIFORM(41, 483856,1938)	NA
Recover	UNIFORM(41, 483714,1966)	UNIFORM(0, 482793,1967)
Feedback	UNIFORM(43, 483621,1935)	NA

Estimating Solution Effects

- Effects reflected in PDF tables
 - One or more workflow phases
 - May be uniform across relevant phases
 - May vary across relevant phases
- New probability distribution functions (PDFs)
- Modify SDM with new PDFs
- Rerun SDM
- Compare post-solution results to baseline

PDFs for Estimated Improvements

Phase	Post-CDPs (1% improvement) Manual	Post-CDPs (2.5% improvement) Manual	Post-CDPs (5% improvement) Manual	Post-CDPs (10% improvement) Manual
Detect	LOGNORMAL(143551.89,82 229861.89, 922)	LOGNORMAL(138023.37,7 8478463.84, 922)	LOGNORMAL(154200.65,1 04251444.55, 922)	LOGNORMAL(148223.09,10 7706259.16, 922)
Characterize	LOGNORMAL(19.68,264.5,9 24)	LOGNORMAL(18.27,237.1 9,924)	LOGNORMAL(18.24,243.6, 924)	LOGNORMAL(16.35,204,92 4)
Notify	LOGNORMAL(39.73,743.74, 109)	LOGNORMAL(37.73,699.4 1,109)	LOGNORMAL(35.17,622.0 0,109)	LOGNORMAL(32.59,574.06, 109)
Triage	LOGNORMAL(50.50,841.15, 227)	LOGNORMAL(51.01,864.1 2,227)	LOGNORMAL(45.39,734.1 3,227)	LOGNORMAL(42.55,701.07, 227)
Escalate	LOGNORMAL(53.02,1249.9 1,228)	LOGNORMAL(49.89,1144. 86,228)	LOGNORMAL(48.45,1104. 96,228)	LOGNORMAL(40.34,843.40, 228)
Isolate	W E I B U L L (. 55865,417.92,112)	G A M M A (. 42373,1642.36,112)	W E I B U L L (. 54394,389.6,112)	G A M M A (. 38757,1672.44,112)
Restore	LOGNORMAL(1107.69,3592 0.96,1962)	LOGNORMAL(1131.34,392 43.71,1962)	LOGNORMAL(1231.24,501 36.44,1962)	LOGNORMAL(1134.13,5049 9.44,1962)
RCA	UNIFORM(0,483512,1938)	UNIFORM(0,483840,1938)	UNIFORM(0,483700,1938)	UNIFORM(0,483797,1938)
Recover	UNIFORM(0,483858,1966)	UNIFORM(0,483854,1966)	UNIFORM(0,483798,1966)	UNIFORM(0,483802,1966)
Feedback	UNIFORM(0,483815,1935)	UNIFORM(0,483857,1935)	UNIFORM(0,483859,1935)	UNIFORM(0,483787,1935)

Results Analysis

Quantity

- All anomaly processing quantities went up (incr efficiency)
 - Expected due to effect assumptions

Time

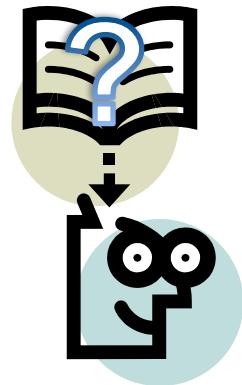
- Some anomaly processing times went down (incr efficiency)
- Some went up (decr efficiency)

∴ Quantity increase shifted bottlenecks down stream

∴ More anomalies are in phases that take longer to process, thus increasing mean times

Conclusions

- Consummate systems thinking challenge
 - Behavior within the whole
 - Behavior of the whole
 - Conceptualize local changes in context of the whole
- Improving cybersecurity operations
 - A multi-step, multi-year process
 - Shifting future focus according to current results
- Model helps anticipate effects
 - Validate expected consequences
 - Identify unanticipated consequences


Future

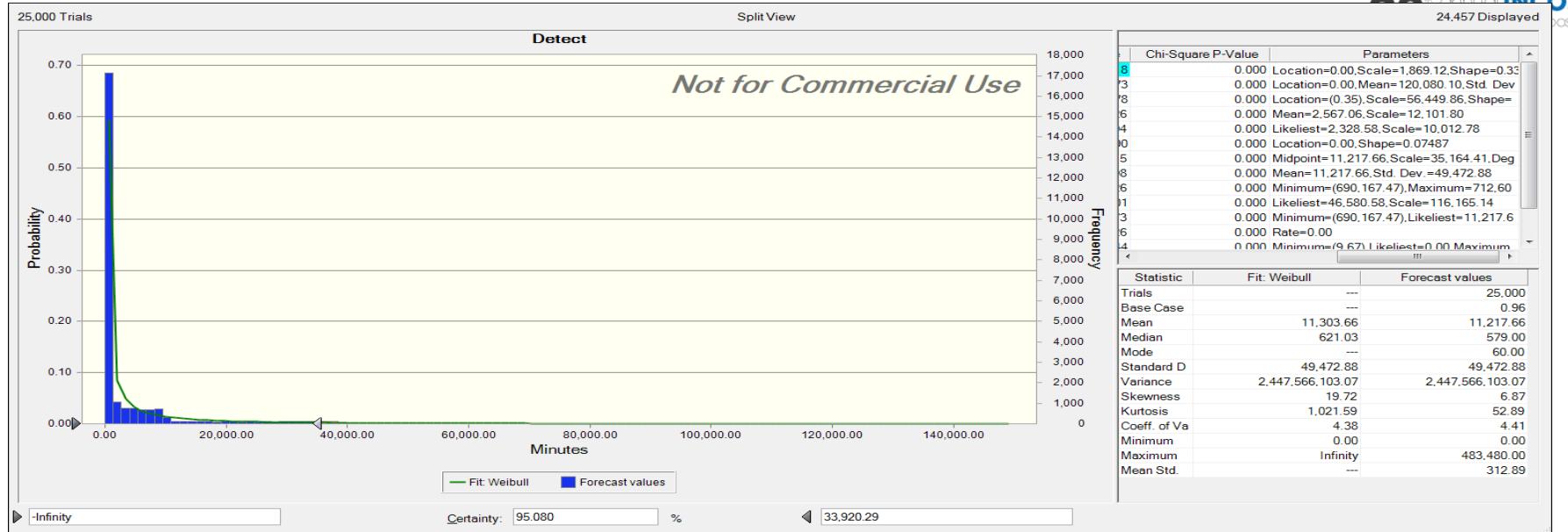
- Run model for multiple years
- Dynamic feedback of CDP (knowledge) production
 - Manual anomaly processing
 - Machine anomaly processing
 - Knowledge effects on machine processing
- Upper bounds to improvements
- Add knowledge degradation
- Monetize model
 - Associate dollars to anomaly processing time
 - ROI decision support
- Model verification and validation

Future continued...

- Causal loop feedbacks:
 - To Perimeter Defense effectiveness from RCA
- Distinguish types of anomalies
- Distinguish anomaly impact (for cost estimates)
- Distinguish type of manual resource
 - Novice, journeyman, master, subject matter expert (varying costs)
- Model shift in processing from SME to novice over time

Questions

Backup Slides


Probability Distribution Ranges Excerpt

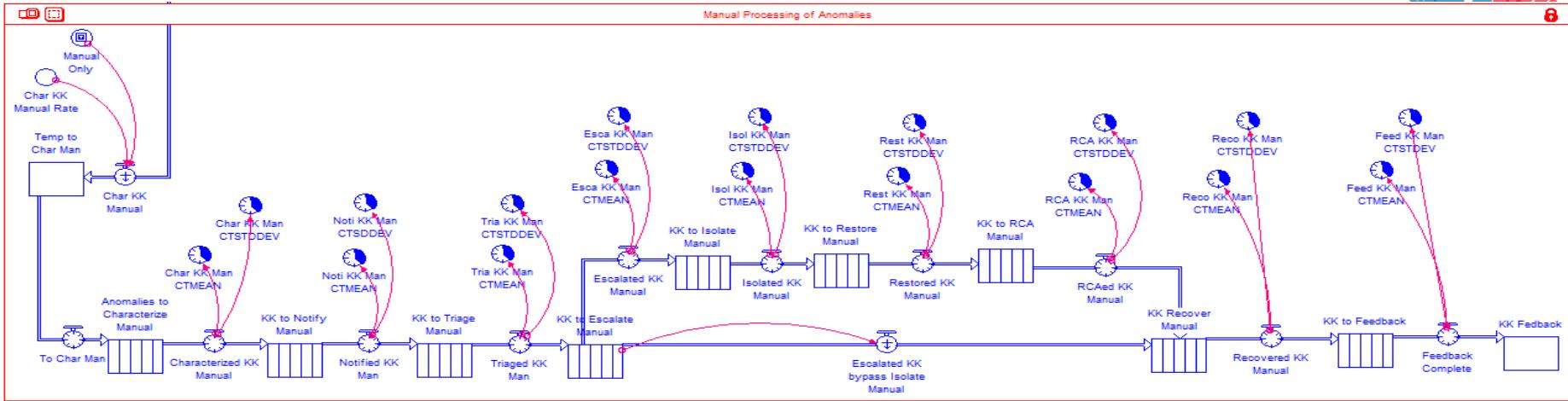
r(Det)	Detect (MTTD)	r(Char)	Characterize (MTTC)	r(Not)	Notify (MTTN)	r(Tri)	Triage (MTTT)
0.12539634	60	0.99450602	1440	0.50902739	1	0.82893511	60
0.83770346	10080	0.76424075	60	0.02691813	1	0.38211664	1
0.55457905	1440	0.55108253	1	0.50498849	1	0.85421571	60
0.98757692	483840	0.5296778	1	0.12907582	1	0.48586495	1

Goodness of Fit Test

Example: MTTD Manual

Results (Quantity)

Run	KK Characterized Man Total	KK Notified Man Total	KK Triaged Man Total	KK Escalated Man Total	KK Isolated Man Total	KK Restored Man Total	KK RCAed Man Total
Base	1,398.30	1,398.13	1,397.93	1,397.64	172.24	171.90	90.65
1.00%	1,473.80	1,473.74	1,473.66	1,473.58	179.24	178.94	95.01
2.50%	1,444.26	1,444.15	1,443.94	1,443.70	175.90	175.36	96.95
5.00%	1,511.24	1,511.02	1,510.81	1,510.48	185.95	185.62	99.45
10.00%	1,776.47	1,776.35	1,776.18	1,775.88	217.65	217.25	117.79


Results (Time)

Run	Char KK Man	Noti KK Man	Tria KK Man	Esca KK Man	Isol KK Man	Rest KK Man	RCA KK Man	Reco KK Man	Feed KK Man
Base	20.46	36.59	50.61	47.12	691.09	835.41	167,908.13	169,164.61	130,950.15
1.00%	19.39	35.74	48.75	41.61	659.48	710.03	169,752.36	172,402.66	130,105.57
2.50%	19.80	35.07	47.92	66.93	700.82	836.99	168,163.12	170,674.75	129,303.08
5.00%	18.92	33.36	41.24	48.92	703.79	767.87	174,788.95	171,261.98	130,862.45
10.00%	16.04	31.07	42.20	39.58	655.98	852.81	170,105.83	171,888.20	132,641.70

Run	Char KK Man	Noti KK Man	Tria KK Man	Esca KK Man	Isol KK Man	Rest KK Man	RCA KK Man	Reco KK Man	Feed KK Man
Base									
1.00%	5.22%	2.34%	3.68%	11.69%	4.57%	15.01%	-1.10%	-1.91%	0.64%
2.50%	3.25%	4.16%	5.32%	-42.03%	-1.41%	-0.19%	-0.15%	-0.89%	1.26%
5.00%	7.55%	8.83%	18.52%	-3.81%	-1.84%	8.09%	-4.10%	-1.24%	0.07%
10.00%	21.59%	15.09%	16.62%	15.99%	5.08%	-2.08%	-1.31%	-1.61%	-1.29%

SDM Excerpt

