

26th annual **INCOSE**
international symposium

Edinburgh, UK
July 18 - 21, 2016

Testing of Autonomous Systems

Challenges and Current State-of-the-Art

Philipp Helle, Airbus Group Innovations

Wladimir Schamai, Airbus Group Innovations

Carsten Strobel, Airbus Group Innovations

 AIRBUS

 AIRBUS
HELICOPTERS

 AIRBUS
DEFENCE & SPACE

Airbus Group Innovations

Key figures

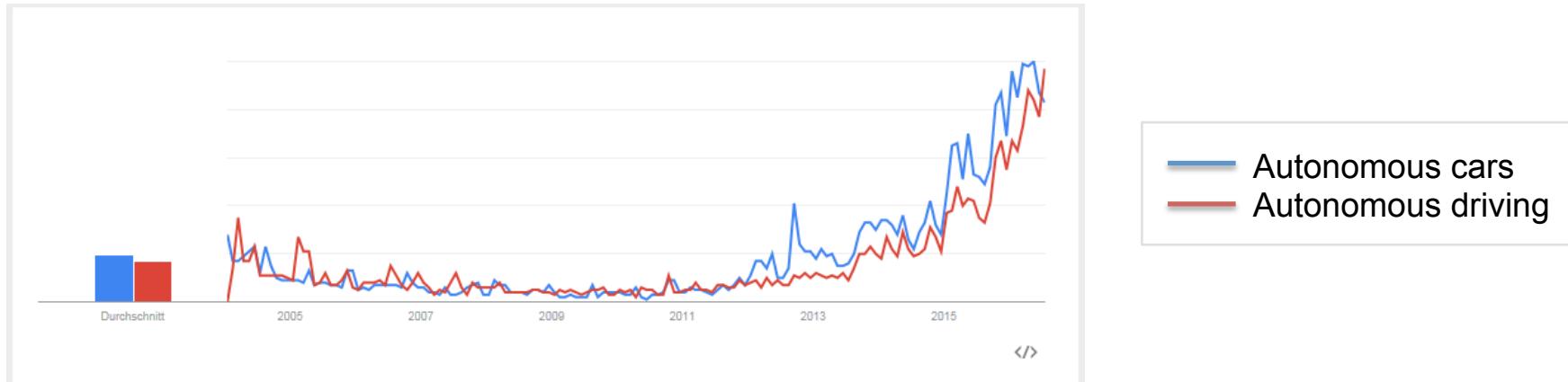
- Over 800 Researchers, Scientists, Engineers worldwide
- 20 sites around the world
- Located in 12 countries
- More than 100 new patent applications every year

Outline

- Autonomous Systems
- Testing Autonomous Systems
- “Things to do”

AUTONOMOUS SYSTEMS

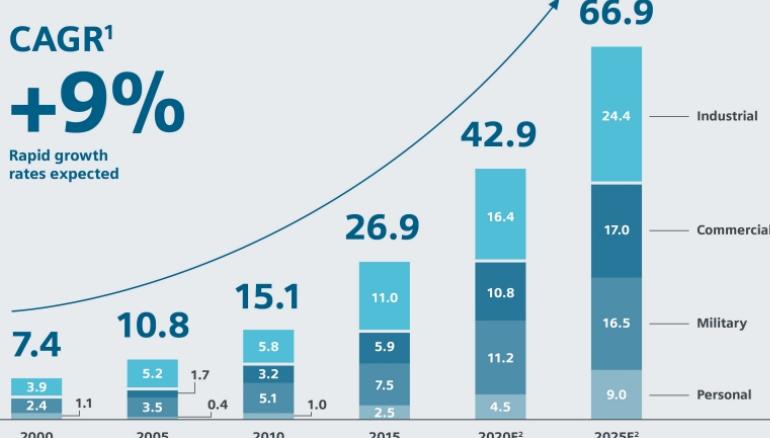
Autonomous systems



Autonomous systems

- From *auto* = *self* and *nomos* = *law* -> self-governing
- "an autonomous system has free will" [1]
- Common characteristics
 - **Knowledge:** The system knows facts about itself and its surroundings.
 - **Adaptation:** The system can adapt its own behavior dynamically to cope with changing surroundings.
 - **Self-awareness:** The system can examine and reason about its own state.
 - **Emergence:** Simple system elements construct complex entities.

[1] Clough, B. T. (2002). Metrics, schmetrics! How the heck do you determine a UAV's autonomy anyway. Air Force Research Laboratory.

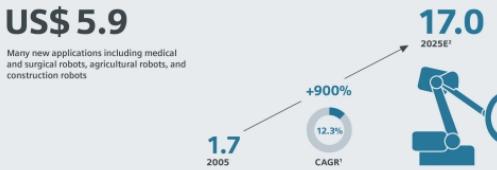

Trends

Numbers

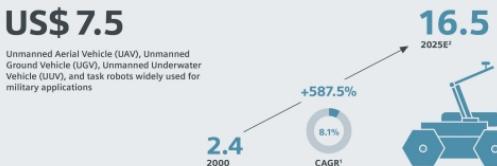
Worldwide Spending on Robotics is Expected to Reach US\$ 67 Billion by 2025

Global robotics market (US\$ Billions)

¹ Compound Annual Growth Rate


² E = Expected

Source: International Federation of Robotics, Japan Robot Association; Japan Ministry of Economy, Trade & Industry; euRobotics; company filings; BCG analysis.


Industrial market 2015 (US\$ Billions)

Commercial market 2015 (US\$ Billions)

Military market 2015 (US\$ Billions)

Source: <http://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/autonomous-systems-infographic.html>

Quotes

- “untapped short term market value of circa 7 billion per annum just for relatively low level autonomy products and services” [1]
- “potential economic impact of autonomous cars and trucks could be \$200 billion to \$1.9 trillion per year by 2025” [2]
- [they] estimate the total market for civilian robots at more than 10 billion euros in 2012 and continue that it ”should exceed 100 billion euros before 2020” [3]
- US DoD had planned to spend a \$24 billion-plus total budget for unmanned systems in the 2007-2013 timeframe [4]

[1] Mallors, R. L. (2013). Autonomous systems: Opportunities and challenges for the UK. IET Seminar on UAVs in the Civilian Airspace.

[2] Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive technologies: Advances that will transform life, business, and the global economy. McKinsey Global Institute San Francisco, CA, USA.

[3] Autefage, V., Chaumette, S., & Magoni, D. (2015). Comparison of time synchronization techniques in a distributed collaborative swarm system. European Conference on Networks and Communications (EuCNC) (pp. 455-459). IEEE.

[4] Clapper, J., Young, J., Cartwright, J., & Grimes, J. (2007). Unmanned systems roadmap 2007-2032. Office of the Secretary of Defense.

TESTING AUTONOMOUS SYSTEMS

Testing autonomous systems

- Unsolved issue

- "testing autonomous systems is still an unsolved key area" [1]
- "the major barrier that prevents the USAF from gaining more capability from autonomous systems is the lack of V&V methods and tools" [2]
- "developing certifiable V&V methods for highly adaptive autonomous systems is one of the major challenges facing the entire field of control science, and one that may require the larger part of a decade or more to develop a fundamental understanding of the underlying theoretical principles and various ways that these could be applied" [2]
- "there is a common misconception in the testing industry that all unmanned autonomous systems can be tested using methodologies developed to test manned systems" [3]

[1] Weiss, L. G. (2011). Autonomous robots in the fog of war. *IEEE Spectrum*, pp. 30-57.

[2] Dahm, W. J. (2010). Technology Horizons a Vision for Air Force Science & Technology During 2010-2030. Office of the US Air Force Chief Scientist.

[3] Thompson, M. (2008). Testing the Intelligence of Unmanned Autonomous Systems. *ITEA Journal*, pp. 380-387.

Testing autonomous systems is hard

- **Complex environment**
- **Complex software**
- **Non-deterministic behaviour**
- **High expectations**

“THINGS TO DO”

“Things to do”

- 1. Use models**
- 2. Be formal**
- 3. Automate**
- 4. Test early**
- 5. Test continuously**
- 6. Test virtually**
- 7. Start by testing the correctness of the autonomy capability**
- 8. Think ahead**

Thank you for your attention!

Airbus Group Innovations

Philipp Helle

Philipp.Helle@airbus.com

Wladimir Schamai

Wladimir.Schamai@airbus.com

Carsten Strobel

Carsten.Strobel@airbus.com