
A Case for Product Lines
Andy J. Nolan – Estimation Specialist

Andrew C. Pickard – Associate Fellow Systems Engineering
Steve Fisher - System Architect, System Design Integration
Richard Beasley – Associate Fellow Systems Engineering

July

www.incose.org/symp2016 2

July

www.incose.org/symp2016

An introduction

This
presentation is an

appetiser.
We encourage you
to read the paper.

July

www.incose.org/symp2016

Part 1

The need for
Product Lines

July

www.incose.org/symp2016

Engine Controllers

•  Certification evidence cannot
be easily generated centrally
but must be gathered on
each project instance, during
system integration and
integration with the hardware

•  Gathering this evidence,
which can be over 50% of the
Control Systems project’s
total cost, has to be incurred
on each configured project
instance.

The control system is fundamental to the certification of the engine
and Airframe. The Control system software is classed as safety
critical

July

www.incose.org/symp2016 6

1990 1995 2000 2005 2010 2015 2020

Fu
nc

tio
na

lit
y

Year of entry into Service

Application Software Equivalent Lines of Ada

The demand for software functionality is growing

Functional Growth
between 4% and 10%/

year

July

www.incose.org/symp2016 7

Process Improvement will soon end

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

C
os

t P
er

 F
un

ct
io

n
R

el
at

iv
e

to
 "b

as
el

in
e"

Evolution has halved the costs of
our projects. Process refinement
may be reaching its natural limits.
The next improvements will be in

product design

July

www.incose.org/symp2016

Product lines refers to engineering methods, tools and
techniques for creating a collection of similar systems
from a shared set of assets using a common means of
production.

July

www.incose.org/symp2016

Part 2

The need for
Product Lines

July

www.incose.org/symp2016 10

Causes of Estimation Inaccuracy

July

www.incose.org/symp2016

A fool with a tool
is still a fool!

July

www.incose.org/symp2016 12

July

www.incose.org/symp2016

Optimism
80% of people are optimistic!

July

www.incose.org/symp2016

If you are
optimistic when
estimating, the

problem is
compounded
when doing
cost/benefit
analyses.

July

www.incose.org/symp2016

 Only 13% of “good ideas”
 are good ideas!

July

www.incose.org/symp2016

Your
biggest
risk is
you!

July

www.incose.org/symp2016

We need estimation tools to:

• Minimise biases
• Understand complex situations
• Make informed trades
• Convince Leaders

July

www.incose.org/symp2016

Part 3

Philosophy

July

www.incose.org/symp2016

Its not the size that matters!

An	architect	may	be	tempted	
to	focus	on	easy	and	stable	
func5ons	which	may	contain	

many	lines	of	code	but	
represent	the	lowest	“value”	

to	the	project	

July

www.incose.org/symp2016

0	
2	
4	
6	
8	

10	
12	
14	
16	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Co
st
	to

	D
ev
el
op

	&
	D
ep

lo
y	

Number	of	Deployments	

Cost	to	Develop	and	Deploy	

The	overheads	of	
developing	an	

asset	

The	costs	to	
develop	and	

deploy	an	asset	

The	average	
net	cost	per	
deployment	

Its all about deployment!

July

www.incose.org/symp2016 21

Number of Deployments

once	

2	-	4	5mes	

5	-	7	5mes	

8	-	10	5mes	

10	-	13	5mes	 14	5mes	 You need a strategy
map in order to
prevent this from
occurring

July

www.incose.org/symp2016

Reuse is Not Free!

The	%	benefit	is	not	
consistent	with	the	%	

reused	

20%	

40%	

60%	

80%	

100%	

20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

%
	B
en

efi
t	

%	PL	Reuse	vs	%	Benefit	

% Assets Reused

July

www.incose.org/symp2016

Free things are very expensive!

July

www.incose.org/symp2016 24

Goldilocks and Product Lines
Full range of
functionality
across the

domain

Scope of the
asset

functionality

Projects needs
within the

design space

July

www.incose.org/symp2016 25

Goldilocks and Product Lines

A
The boundary lies close to the known
project i.e. the scope of the PL contains no
additional functionality other than the
known requirements

B

The boundary lies far away from
any known project i.e. the scope
of the asset contains significantly
more functionality than is known
about

C
The boundary lies at an
optimal distance

July

www.incose.org/symp2016 26

Co
st
	£
	

Increasing	FuncBonality	and	variability	

VariaBon	and	the	Goldilocks'	Effect	

Development	Cost	 Maintenance	Cost	 Net	Cost	

Goldilocks and Product Lines

A

B

C

July

www.incose.org/symp2016

The attributes that affect £benefit
Be

ne
fit
	£
	
Asset	AKributes	&	Benefit	

July

www.incose.org/symp2016

Evolving Maturity

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Core	asset	Team	 1st	Project	Deployment	2nd	Project	Deployment	3rd	Project	Deployment	

As
se
t	M

at
ur
ity

	

Asset	Maturity	vs	Time	

July

www.incose.org/symp2016

•  Development Costs

•  Deployment Costs

•  Maintenance Costs

•  Infrastructure costs

•  Disruption costs

July

www.incose.org/symp2016

100%

109% 109%

98%

94%

89%
87% 87% 87% 87% 87%

80%

85%

90%

95%

100%

105%

110%

115%

Baseline Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9 Project 10

R
el

at
iv

e
P

ro
du

ct
iv

ity

Relative Productivity

“Disruption” Costs

Initial disruption
followed by
productivity
improvements New process,

tools, governance
brings benefits.

July

www.incose.org/symp2016 31

New

New Product
Development

The costs to start
with a blank sheet

of paper

Traditional

What the project
would have cost
had we benefited
from traditional

reuse

Product Line

Cost of the project
based on Product

Line

C
os

t (
E

ffo
rt)

The business case is
based on the delta

between the Product
Line and what the

project would have cost

From traditional reuse
(clone and own) we

would have expected
some savings

July

www.incose.org/symp2016

Part 4

Tool Outputs

July

www.incose.org/symp2016

Benefit Per Asset

In some cases, it
may be more
economical to
clone and own an
asset rather than
use a Product
Line option

In some cases, there is
no overall benefit from
developing a Product
Line Asset

In some cases, there is
a gross benefit BUT
when factoring for
development costs,
there is no net benefit

July

www.incose.org/symp2016

Resource Loads

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

E
ng

in
ee

rs

Estimated Resource Profiles

PL Deployment
PL Asset Development & Overheads
Traditional Project

July

www.incose.org/symp2016

Cash Flow

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

£B
en

ef
it

Net £ Benefit

Net £M Benefit

Cumulative £M Benefit

Need to be
strategic because
of the initial outlay

July

www.incose.org/symp2016

Benefits X-Point

PL Develop & Deploy Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9

C
um

ul
at

iv
e

$M

PL Benefit Cross Over Point

Traditional Cumulative£M

Product Line £M

4 Project cross
over when the
Product Line
brings benefit

The line could be made
more “shallow” if we can
reduce verification costs

July

www.incose.org/symp2016

Part 5

Conclusions

July

www.incose.org/symp2016
38

Conclusions
•  Select assets based on their value rather than size.
•  The value of a Product Line asset is determined by the extent of

deployment
•  If a function already had good (traditional) reuse then investing in

the Product Line asset may not add value.
•  Doing nothing is still expensive in a safety critical world.
•  You must choose the right variation mechanism.
•  Introducing a Product Line "disturbs" the organization
•  Not all assets should be developed into Product Line assets – it’s

not always beneficial
•  Keep the product line team and deployment team is separate

entities, funded separately

