
‘50	shades	of	Agile’	

An	analysis	of	different	perspec2ves	
of	Agile	SE	

July

www.incose.org/symp2016

The	authors	

24th Annual INCOSE International Symposium

Copyright	©	2016	by	Crown	Copyright,	Birmingham	University,	IBM,	Leonardo	and	MBDA.	
This	paper	represents	the	views	of	the	authors,	and	does	not	represent	the	posiIon	of	the	MOD,	

IBM,	MBDA,	Leonardo	or	the	University	of	Birmingham.	

+ Kirsty

July

www.incose.org/symp2016

A	long	Ime	ago	in	a	galaxy	far-far	away	

July

www.incose.org/symp2016

But	soMware	is	different	from	systems	

July

www.incose.org/symp2016

Approach	taken	in	paper	

July

www.incose.org/symp2016

RaIonale	for	Agile	
R1 The SE process is time-consuming and boring,
we want to start building stuff immediately

R2 I need to deliver something within a specified
timeframe

R3 The system’s environment will change

R4 The customer is unable to define the
requirements up front

R5 Technology is developing faster than we can
integrate

R6 Good tailoring of the SE process can speed
things up

R7 Because it is the next ‘silver bullet’ we need to
be doing

R8 We want Agile, but we want it fully defined first
(Agile in handcuffs)

R9 We want the up-front SE to be delivered quickly
with maximum user engagement

July

www.incose.org/symp2016

Systems	we	could	develop	using	agile	

Image © Network Rail

S1 The ‘user interface’ & mission
software
S2 All the software – including safety
critical software
S3 A component
S4 A sub-system
S5 The product system
S6 The operational capability
S7 The wider System of Systems
S8 SE Documents/models

July

www.incose.org/symp2016

Approaches	to	agile	
A1 Ignore the formal SE process, it’s just
useless bureaucracy

A2 Tailor the SE process

A3 Buy off the shelf kit

A4 Reuse existing components/sub-systems

A5 Incremental design and deployment

A6 Incremental design, integration and
testing

A7 Develop solution in small evolutionary
steps

A8 Split technology and product
development

A9 Half-baked transition

A10 Develop and agree up-front SE products
using Agile

July

www.incose.org/symp2016

Analysis	
•  We	analysed	the	
weltanschauungen	
against	
–  Cynefin	framework	
–  Ring	cycle	
–  12	agile	principles	
–  Hitchins’	5	layer	model	

July

www.incose.org/symp2016

Cynefin

R1. “The SE process is time-consuming and boring, we want to start
building stuff immediately”

R2. “I need to deliver
something within a
specified timeframe”

R3. “The system’s environment will change after
we deploy the solution”

R4. “The customer and users are unable to define the
requirements up front”

R5. “Technology is developing faster
than I can integrate effectively”

R6. “Good tailoring of the SE process
can speed things up and save money”

R8. “We want Agile, but we want it
fully defined first (Agile in
handcuffs)”

R9. “We want the up front SE to be delivered quickly with
maximum user engagement”

July

www.incose.org/symp2016

Cynefin

A1. Ignore the formal SE process, it’s just
useless bureaucracy

A2. Selectively ‘value engineer’ or tailor
the SE process to focus effort on the
greatest value-adding elements of SE

A4. Avoid delays/reduce cost by
reusing existing components/
sub-systems A5. Incremental

design and
deployment

A6. Incremental Design, Integration and
Testing

A7. Develop solution in small evolutionary steps, trying it
at each stage and learning from experience

A8. Split technology
development and product
development.

A3. Buy off the
shelf kit

A10. Develop and agree up-front SE
documents/models in an agile manner prior to
full development

July

www.incose.org/symp2016

Agile	principles	
A1	 A2	 A3	 A4	 A5	 A6	 A7	 A8	 A10	

Early	and	conInuous	delivery	

Welcome	changing	requirements	

Deliver	working	soMware	frequently	

Work	together	daily	

MoIvated	individuals	

Face-to-face	conversaIon.	

Working	soMware	

Sustainable	development	

Technical	excellence	and	good	design	

Simplicity	

Self-organizing	teams.		

Team	reflects	and	adjusts	behaviour		

July

www.incose.org/symp2016

Ring	cycle	
A7,	A8	

A6	A2	

A3	

A4	

A5	

A1,	A9	

FOCUS	ON	VALUE	

FOCUS	ON	PURPOSE	

FOCUS	ON	SOLUTION	

A10	

July

www.incose.org/symp2016

Traditional

Agile or
traditional

S1 The ‘user interface’ &
mission software

S2 All the software –
including safety critical
software

S3 A component

S4 A sub-system

S5 The product system

S6 The operational
capability

S7 The wider System of
Systems

S8 SE Documents/models

S8 SE Documents/
models

S7 The wider System of
Systems

S6 The operational
capability

S1 The ‘user interface’
& mission software

S5 The product system

S2 All the software –
including safety critical
software

S3 A component

S4 A sub-system

R1 The SE process is time-consuming
and boring, we want to start building stuff
immediately

R2 I need to deliver something within a
specified timeframe

R3 The system’s environment will
change

R4 The customer is unable to define the
requirements up front

R5 Technology is developing faster than
we can integrate

R6 Good tailoring of the SE process can
speed things up

R7 Because it is the next ‘silver bullet’
we need to be doing

R8 We want Agile, but we want it fully
defined first (Agile in handcuffs)

R9 We want the up-front SE to be
delivered quickly with maximum user
engagement

R9 We want the up-front SE to be
delivered quickly with maximum user
engagement

R3 The system’s environment will change

R4 The customer is unable to define the
requirements up front

R5 Technology is developing faster than
we can integrate

R6 Good tailoring of the SE process can
speed things up

R8 We want Agile, but we want it fully
defined first (Agile in handcuffs)

R2 I need to deliver something within a
specified timeframe

R7 Because it is the next ‘silver bullet’ we
need to be doing

R1 The SE process is time-consuming
and boring, we want to start building stuff
immediately

Agile SE document development

Summary	of	analysis	
A1 Ignore the formal SE process, it’s
just useless bureaucracy

A2 Tailor the SE process

A3 Buy off the shelf kit

A4 Reuse existing components/sub-
systems

A5 Incremental design and
deployment

A6 Incremental design, integration
and testing

A7 Develop solution in small
evolutionary steps

A8 Split technology and product
development

A9 Half-baked transition

A10 Develop and agree up-front SE
products using Agile

A10 Develop and agree up-front SE
products using Agile

A8 Split technology and product
development

A7 Develop solution in small
evolutionary steps

A2 Tailor the SE process

A4 Reuse existing components/
sub-systems

A6 Incremental design, integration and
testing

A5 Incremental design and deployment

A3 Buy off the shelf kit

A1 Ignore the formal SE process, it’s just
useless bureaucracy

High tempo, changing requirements,
immediate operational feedback

Faster, high integrity SE against a
defined requirement

Snake oil and the Agile excuse

July

www.incose.org/symp2016

Four	shades	of	agile?	

July

www.incose.org/symp2016

Where	does	agile	sit?	

July

www.incose.org/symp2016

PercepIons	and	misunderstandings	

•  No	common	understanding		
•  Risk	it	becomes	a	meaningless	label		
•  Move	to	Agile	difficult	because	we	don’t	

understand	why	low	tempo	SE	works!	
•  OperaIonal	use	is	a	criIcal	element	of	the	

Agile	approach.		
•  Agile	approaches	can	be	used	to	develop	SE	

documents	or	models. 		
•  Agile	rigour	is	different	to	convenIonal	

rigour	

July

www.incose.org/symp2016

Agile	SE	is	different	

•  Agile	soMware	techniques	not	always	applicable	
to	SE.	

•  Agile	SE	is	different	to	Agile	SoMware	Engineering.		
•  ConvenIonal	and	agile	SE	are	in	different	part	of	

the	trade	space	
•  ConvenIonal	SE	manages	risks	by	managing	

them,	agile	SE	by	avoiding	them	

July

www.incose.org/symp2016

Different	SE	for	different	places	

•  The	Agile	SE	and	convenIonal	SE	paradigms	are	
fundamentally	different	

•  ConvenIonal	works	well	in	complicated	space	
•  Agile	works	well	in	complex	spaces	
•  ConvenIonal	SE	works	best	when	assurance,	

design,	manufacture	and	installaIon	rework	costs	
are	significant	

•  The	more	effecIve	the	organisaIon	the	befer	
able	to	do	agile	and	convenIonal	SE	

July

www.incose.org/symp2016

Future	work	
INCOSE	UK	

Guide	to	Agile	SE	
	
	
	
	
	
	
	

Agile	SE	
Readiness	assessment	

	
	
	
	
	
	
	

July

www.incose.org/symp2016

Summary	

Mapping Agile SE approaches to Agile principles

A1. Ignore the form
al SE process,

it’s just useless bureaucracy

A2. Selectively ‘value engineer’ or
tailor the SE process

A3. Buy off the shelf kit

A4. Reuse existing
com

ponents/sub-system
s

A5. Increm
ental design and

deploym
ent

A6. Increm
ental Design,

Integration and Testing

A7. Develop solution in sm
all

evolutionary steps

A8. Split technology product
developm

ent.

A10. Develop and agree SE
docum

ents/m
odels in an agile

m
anner prior to full developm

ent

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the
project.

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

